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Abstract: Carbonate reservoirs usually have strong heterogeneity, with complex pore structure and
well-developed natural fractures. During reservoir development, when the formation pressure is
lower than the bubble point pressure of crude oil, the fluid undergoes phase change and degassing.
This leads to the subsequent waterflooding displacement under the oil–gas two-phase condition, also
followed by a secondary phase change of oil and gas caused by the increase in formation pressure.
In this paper, the glass etching model is used to carry out microfluidic experiments. The porous
carbonate model and the fractured porous carbonate model are designed to simulate the process of
depletion development and waterflooding development. In the process of depletion development, it
can be observed that the crude oil degassing and gas phase occurrence areas of the porous model are
in the order of the large pore throat area first, followed by the small pore throat area. And the crude oil
degassing and gas phase occurrence order in the fractured porous model is as follows: fractures, large
pore throat area and, finally, small pore throat area. In the process of converting to the waterflooding
development, the early stage of the replacement reflects the obvious characteristic of “displace oil
but not gas”; with the replenishment of formation energy, the gas redissolution area expands from
the mainstream to other areas, and the waterflooding mobilization increases. The characteristics
of oil, gas and water flow in different stages of carbonate reservoirs with different pore-fracture
characteristics that are clarified, and the characteristics of fluid migration and the distribution under
the condition of oil and gas coexisting and water flooding after crude oil degassing are explored,
and the water displacement mechanism of volatile carbonate reservoirs with different pressure
levels is revealed.

Keywords: volatile reservoir; phase change; water flooding; microfluidic model; occurrence state

1. Introduction

Carbonate reservoirs are an important part of worldwide oil and gas resources. This
type of reservoir usually has strong heterogeneity [1–3], with a complex pore structure and
well-developed natural fractures. During reservoir development [4–7], the fluid undergoes
phase change and degassing when the formation pressure is lower than the bubble point
pressure of crude oil. This leads to the subsequent waterflooding displacement under
oil and gas two-phase condition, also followed by a secondary phase change of oil and
gas caused by the increasing of formation pressure [8–10]. Understanding the oil and gas
migration mechanism and how the flow behavior of water drives the phase change of oil
and gas is important for waterflooding, especially for achieving economic and efficient
development of volatile carbonate reservoirs.

Wang applied the two-dimensional etched glass micropore model, through visualiza-
tion technology, to study the characteristics of the gas–liquid phase change in condensate
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gas on a micro level [11]. As the pressure decreased, the anti-condensate liquid first ap-
peared in the small pores and the tip of the blind pore, then gradually filled the larger pores.
When the pressure dropped to the maximum anti-condensate pressure of the condensate
gas, the evaporation of the anti-condensate liquid in the pores was reduced. It reflected
the role of porous media adsorption and capillary aggregation. Song carried out physical
simulation experiments by using two capillary models (lipophilic and hydrophilic) and
a planar glass bead porous media-filling model to study the mechanism of gas–liquid
seepage accompanied by phase change [12]. It is found that the pipe radius and seepage
velocity have an influence on the oil–gas ratio during gas–liquid seepage accompanied
by the phase change under low-pressure conditions. If the capillary radius grows longer
and the seepage velocity increases, the gas–liquid ratio will be raised, but the absolute
pressure reduction will be small. It is found that the suitable water injection time is when
the formation pressure is reduced to more than 87% of the bubble point pressure. Alizadeh
demonstrated capillary interactions between flowing bubbles and previously captured
oil phases (three-phase ganglion dynamics) by using an etched glass microfluidic pore
network model and a micro-core oil-flooding device, integrated with microcomputer to-
mography (CT) imaging equipment [13]. It enabled some of the crude oil to be mobilized
and significantly improved oil recovery [14,15]. Based on the pore network experiment of
the sandfill core and the simulation parameters measured by the experiment, Chen used
the gas–water seepage model to predict the relative permeability and capillary force of
the gas–water phase under different temperature and pressure conditions [16]. The size
of filling sand particles, injection pressure and temperature had different effects on the
gas–liquid seepage characteristics at different stages. Zhao carried out experiments on the
properties of crude oil PVT and core displacement [17,18], based on characteristics of crude
oil phase and reservoirs. They discovered the influence of crude oil phase transition on
the seepage characteristics and development effects of reservoirs with different fracturing
degrees, and suggested that water injection should be appropriately started as soon as
possible when developing weak volatile carbonate reservoirs [19]. Chen studied the law
of near-critical fluid phase transition and the law of physical property change through
conventional fluid PVT experiments and reservoir production dynamic analysis [20]. It was
found that the near-critical fluid while developing volatile reservoirs is in an unbalanced
phase transition system. A degassing lag effect occurred in the production process. When
the system pressure is reduced to the same value, the degassing speed during high-pressure
falling speed is smaller than during low-pressure falling speed, and it is much smaller than
the degassing speed during the equilibrium phase transition.

In recent years, scholars at home and abroad have adopted a variety of experimental
methods, including etched glass experiments, plane sand filling experiments, CT scanning
technology and PVT experiments, to study the phase transition process of formation fluids
in the process of developing oil and gas reservoirs [21–28]. Most of their studies are
about the gas–liquid seepage, but there are fewer studies on the oil–gas–water seepage
experiments and mechanisms [29,30]. In this paper, the glass etching model is used to carry
out microfluidic experiments to observe the phase transition and the occurrence state of gas
in the process of crude oil degassing under microscopic conditions, and the sequence and
process of injected water entering fractures and large and small throat. The characteristics
of oil-, gas- and water-flow in different stages of carbonate rocks with different pore-fracture
characteristics are clarified, the characteristics of fluid migration and distribution under
the condition of oil and gas coexisting with water flooding after crude oil degassing is
explored, and the water displacement mechanism of weakly volatile carbonate reservoirs
with different pressure levels is revealed.

2. Experimental Material
2.1. Simulated Live Oil Fluid

In order to simulate the real groundwater flooding process, live oil was used in the
experiment, considering that the formation pressure dropped below saturation pressure
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accompanied by crude oil degassing. For experiments where the pressure is below the
saturation pressure, firstly, one needs to prepare live oil, and the main instrument used to
prepare live oil is the live oil sampler.

Oil used for configuration: In this experiment 99.7 anhydrous kerosene was used
and dyed red with Sudan III dye. Kerosene has a viscosity of 2.5 mPa·s, a density of
0.8 g/cm3, a freezing point of −47 ◦C, a boiling range of 180–310 ◦C, and an average
molecular weight of 200–250. Gas used for configuration: In this experiment, the carbon
dioxide cylinder is compressed into the piston sampler at 20 ◦C (room temperature). Water
used for experiments: The displacement solution used in this experiment is a mixture of
distilled water and glycerin, and dyed blue with methyl blue dye. Distilled water viscosity
1 mPa·s, density 1 g/cm3, freezing point 0 ◦C, boiling point 100 ◦C, molecular weight
18; Glycerol viscosity 1412 mPa·s, density 1.26 g/cm3, melting point 18 ◦C, boiling point
291 ◦C, molecular weight 92.

The main steps of configuration are as follows: firstly, pour 1 L kerosene into the
sampler, cover the lid, and start filling water at the other end until the oil comes out of
the sampler. Then, inject carbon dioxide gas into the sample-preparation end. After the
injection is completed, inject water into the water-injection end to make the pressure rise to
about 6 MPa and stop water injection. Finally, open the swing device, swinging around for
one day, after which the oil can be configured. The prepared live oil is transferred to the
PVT instrument, and its physical property parameters are further measured. The saturation
pressure is 1.3 Mpa, and the dissolved gas–oil ratio is 30 m3/m3.

2.2. Microfluidic Model Design

The microfluidic model of the microfluidic experiment selects the glass etching model,
which has the advantages of relatively simple production, easy operation and easy observa-
tion. Meanwhile, according to the experimental scheme, two types of microfluidic models
are required for microfluidic experiments, including the porous carbonate model and the
fractured porous carbonate model, in which the fractures of the fractured porous carbonate
model are parallel to the mainstream line. Therefore, it is necessary to select the casting
thin section data of typical wells in the actual oilfield to design the microfluidic model.

2.2.1. Casting Thin Section Selection

The cast thin section photo of a typical well was selected as the reference unit for pores
and fractures, as shown in Figure 1. The test results of the cast thin section are shown
in Table 1. The pore reference unit etched the pore carbonate model, and the fracture
pore carbonate model was etched after splicing the pore reference unit and the fracture
reference unit, and the fracture width was set as 0.17 mm, the average fracture width of
the actual oilfield. The low permeability sandstone model is etched by the cast thin section
photographs of the sandstone oil field with a permeability similar to the actual oil field.
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Table 1. Test results of cast thin section.

Serial
Number Horizon The Name

of the Rock

Storage Space (%)

The Hole Fissure

Total Hole Seam
Surface RatioIntergranular

Dissolved Pore Paste Die
The

Coelomic
Cavity Hole

Solution
Pores

Structural
Fractures

4-17
The

carboniferous
KT-I

Dolomicrite 23.4 0.5 3 9 0.1 36

4-43z
The

carboniferous
KT-I

Argillaceous
and silty
dolomite

8 1 1 5 0.1 15.1

2.2.2. Analysis of Pore Throat Structure Characteristics

Pore and throat structure characteristics of the carbonate reservoir pore reference unit
are analyzed through pore and throat structure extraction. Pore radius distribution and
throat radius distribution are shown in Figure 2. The carbonate reservoirs in the target area
have a wide pore radius distribution with a maximum pore diameter of 754.29 µm and a
minimum pore diameter of 10.57 µm, and a concentrated pore radius distribution ranging
from 200 µm to 400 µm.
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Based on the real core casting sheet, combined with the extracted pore throat features,
a microscopic numerical model was established, and then the physical model was made by
wet etching. The manufacturing process includes the following: UV exposure, photoresist
removal, chromium removal, HF etching and encapsulation.

The physical models are shown in Figure 3, respectively. The pore throat parameters
of the model are summarized in Table 2.
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Table 2. Pore throat parameters summary of microfluidic model.

Model Type Maximum
Aperture (µm)

Minimum
Aperture (µm)

Average Aperture
(µm)

Concentrated
Distribution Range

of Aperture (µm)
Seam Width (mm)

Pore type 754.29 10.57 125.82 200–400 /
Fracture pore

pattern 754.29 10.57 125.82 200–400 0.17

3. Experimental Equipment and Key Processes
3.1. Experimental Equipment

The experimental platform is mainly composed of a microflow injection pump, a
microflow control model, a high-pressure clamping kettle, an intermediate vessel, a circular
pressure tracking pump, a back-pressure pump, back-pressure gauge, a back-pressure
buffer container, a back-pressure valve, a type microscope, a computer and other equipment,
as shown in Figure 4.
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The difference between the microfluidic experimental platform whose pressure is
below the saturated pressure and the water–oil displacement microfluidic experimen-
tal platform is mainly the use of back-pressure system and high-pressure clamping ket-
tle. This is because the oil degassing process needs to be simulated in the water drive
experiment where the pressure is below saturated pressure, and the absolute pressure
level is high (higher than the pressure tolerance level of the microfluidic model). There-
fore, a high-pressure clamping kettle tank is used, and the back-pressure system that
can be adjusted arbitrarily is established. The model confining pressure is reasonably
tracked and set according to the injection pressure and the pressure tolerance level of the
microfluidic model.

3.2. Experimental Procedure

(1) Preparation before experiment: use kerosene and carbon dioxide to configure and
simulate the formation of crude oil in a high-pressure sampler piston, which is dyed by
Sudan III stain. After configuration, we use the PVT barrel and capillary viscosity meter to
measure the simulation of the physical properties of the oil. These mainly include crude
oil viscosity, saturation pressure, dissolved gas ratio, volume factor and other parameters.
According to the similarity criterion, the displacement system with consistent viscosity
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was configured with distilled water, and the displacement system was stained with methyl
blue dye;

(2) Assembly of microfluidic model: the microfluidic model is installed in the high-
pressure clamping kettle, and the microscope is highly focused by adjusting the bright-
ness of the bottom light source so that the high-precision microscope can collect clear
channel images;

(3) Vacuumization: vacuumize the annular space and the model at the same time,
vacuumize the microfluidic model and experimental pipeline for 2 h, and close the inlet
and outlet valves;

(4) Saturated oil: A back-pressure pump is used to control the back pressure up to the
saturation pressure, then a flow injection pump is used to gradually raise the pressure of
the intermediate container, with oil simulating the formation of crude oil, to more than
saturation pressure. Inject water into the annular space until the fluid flows out from the
export of the annular space, then connect the oil sample and the model to the saturated oil.
The microflow injection pump pumps the saturated oil with a rate that is not higher than
0.02 mL/min until the model is filled with oil, and the confining pressure is adjusted to a
level slightly higher than that of the injection pressure;

(5) Step-down and degassing: close the switch at the inlet end of the clamping kettle,
adjust the back-pressure pump to reduce the back pressure to a level that is below the
saturation pressure. Then observe the simulated oil step-down and degassing process, and
collect images at the frequency of 100 frames/s;

(6) Water flooding: open the switch at the inlet end of the clamping kettle, set the
microflow injection pump to carry out water flooding at the speed of 0.002 mL/min, and
collect images at the frequency of 100 frames/s during the displacement process. When the
remaining oil in the pore and throat of the model no longer changes, the displacement will
be stopped;

(7) Pressure relief of the system: After the experiment, keep the injection pump open
and gradually release the back pressure, and the whole experimental system synchronously
relieves the pressure until the pressure returns to normal.

4. Experimental Results and Analysis

The gas phase behavior, water flooding characteristics and residual oil distribution of
the pore carbonate model and the fracture pore carbonate model were analyzed, respec-
tively, in the failure development stage and the water flood development stage. The specific
experimental results are as follows.

4.1. Dynamic Occurrence Law of Oil and Gas in Depletion Stage
4.1.1. Microfluidic Experiment of Porous Carbonate Reservoir

The porous carbonate reservoir model after being saturated with oil is shown in
Figure 5. Adjust the back pressure to simulate the depletion development stage. When the
pressure reaches the set pressure, the simulated oil in the model begins to degas. The first
degassing area is around the production well and the large pore throat area in the model,
as shown in Figure 6. At this time, with pressure propagation, the dissolved gas of the
crude oil in the small pore throat region does not escape, but exists in the liquid phase.

The gas phase migration of the porous carbonate model is shown in Figure 7. The gas
in the large pore throat keeps expanding, merging and migrating. Meanwhile, due to the
existence of bubbles in the large pore throat, the pore throat in the area where degassing
does not occur is the main migration channel; that is, the small pore throat is the main
gas migration channel. When the gas passes through the small pore throat, it provides
conditions for the aggregation of gas molecules in the small pore throat; that is, auxiliary
gas nucleation. As the volume of the released gas increases, the gas phase in the small
pore throat gradually expands, merges and migrates. The degassing area of the porous
carbonate model is shown in Figure 8.
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At the end of depletion development, the escaped gas exists in both the large and small
pore throats. The remaining oil distribution of the porous carbonate reservoir for exhaustion
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development is shown in Figure 9. According to threshold segmentation calculation, the
displacement efficiency of the microfluidic model of the porous carbonate reservoir in the
depletion development stage is 37.80%, as shown in Figure 10.
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4.1.2. Microfluidic Experiment of Fractured Porous Carbonate Reservoir with Fracture
Parallel to Mainstream Line

The fractured porous carbonate reservoir model after being saturated with oil is shown
in Figure 11. Adjust the back pressure to simulate the depletion development stage, and
the degassing process can be divided into three stages, according to the analysis of the
experimental results.
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Figure 11. Fracture porosity model saturated oil.

In the first stage, when the pressure reaches the set pressure, degassing occurs first
near the production well. Because fractures are developed around the well, a large amount
of crude oil is degassing first along the fractures, and at the same time, crude oil in the
matrix near the fractures is degassed. At this time, the fractures are the main oil-producing
and gas-producing channels, as shown in Figure 12.
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In the second stage, the degassing range in the matrix is extended from the near-slit
matrix to the large pore throat region in the matrix, as shown in Figure 13. In addition, gas
migration occurs in the matrix with increasing deaeration, as shown in Figure 14.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 20 
 

 
Figure 13. Second degassing stage of fracture pore model. 

 
Figure 14. Gas migration in the large pore throat of fracture pore model. 

 
Figure 15. Migration of pore throat in fracture pore model. 

 
Figure 16. The third stage of degassing for the porous carbonate model. 

According to the three stages of gas phase evolution, the degassing sequence of the 
fractured porous carbonate reservoir is fracture, large pore throat region and small pore 
throat region. The locations of the gas phase increase in the same order. Gas phase state 
and position and its change rule is that in the early depletion stage, the gas phase occurs 
in fractures near the matrix, and rapidly forms a continuous gas phase in fractures. In the 

Figure 13. Second degassing stage of fracture pore model.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 20 
 

 
Figure 13. Second degassing stage of fracture pore model. 

 
Figure 14. Gas migration in the large pore throat of fracture pore model. 

 
Figure 15. Migration of pore throat in fracture pore model. 

 
Figure 16. The third stage of degassing for the porous carbonate model. 

According to the three stages of gas phase evolution, the degassing sequence of the 
fractured porous carbonate reservoir is fracture, large pore throat region and small pore 
throat region. The locations of the gas phase increase in the same order. Gas phase state 
and position and its change rule is that in the early depletion stage, the gas phase occurs 
in fractures near the matrix, and rapidly forms a continuous gas phase in fractures. In the 

Figure 14. Gas migration in the large pore throat of fracture pore model.

In the third stage, the gas in the large pore throat keeps expanding, merging and
migrating. Meanwhile, due to the existence of bubbles in the large pore throat and serious
Jamin effect, the migration channel is mainly the pore throat in the area where degassing
does not occur; that is, the small pore throat is the main gas migration channel, as shown in
Figure 15. This provides conditions for bubble nucleation in the small pore throat region,
and degassing occurs in the small pore region, as shown in Figure 16.

According to the three stages of gas phase evolution, the degassing sequence of the
fractured porous carbonate reservoir is fracture, large pore throat region and small pore
throat region. The locations of the gas phase increase in the same order. Gas phase state
and position and its change rule is that in the early depletion stage, the gas phase occurs
in fractures near the matrix, and rapidly forms a continuous gas phase in fractures. In the
middle depletion stage, the occurrence position extends from fractures near the matrix
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to the large pore throat region. At the same time, the continuous gas phase forms and
migrates in the matrix, the occurrence position extends to fractures, the large pore throat
region and the small pore throat region.
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The distribution of the remaining oil of the microfluidic model of the fractured porous
carbonate reservoir in the depletion development stage is shown in Figure 17. According to
threshold segmentation calculation, the displacement efficiency of the microfluidic model
of the fractured porous carbonate reservoir in the depletion stage is 33.12%, as shown in
Figure 18.
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4.1.3. Evolution Process of Gas Phase

Through the simulation of the depletion development of the porous carbonate reservoir
and the fractured porous carbonate reservoir, it is found that gas in dissolved crude oil
undergoes a series of changes, such as nucleation, growth and the merger of bubbles in the
porous media, as shown in Figure 19.
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Figure 19. Evolution process of gas phase. (a) Oil saturation; (b) Bubble nucleation; (c) Bubble
expansion; (d) Bubble coalescence; (e) Continuous gas phase migration.

Nucleation: when the pressure is lower than the bubble point pressure, the dissolved
gas begins to separate from the oil phase, forming a bubble core. The bubble is bound to
the pore wall and does not flow with the oil flow. Expansion: the pressure continues to
reduce, the solubility of the gas becomes less and less, through diffusion into the formed
bubble core, so that the bubble continues to expand. Coalescence: in the process of bubble
expansion, multiple adjacent bubbles begin to contact and merge to form large bubbles.
Migration: Large bubbles continue to coalesce and eventually form a continuously flowing
gas phase.

From the evolution of bubbles, it can be seen that bubbles in porous media need to
go through a series of processes from generation to migration, and the evolution time is
greatly affected by the size of the pore throat and the fractures in the porous media. At
the same time, in the evolution process of the gas phase, nucleation is not only affected by
pressure, oil-dissolved gas is just an internal cause of degassing: whether or not the oil will
degas still depends on the external conditions, the degassing of the external cause. This
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is because the oil-dissolved gas can also exist in liquid oil, and the gas migration process
without a degassing area can also be used as the external cause of bubble nucleation, which
can be used to gather the dissolved gas molecules in the undergassed region.

4.2. Law of Water-Driven Oil and Gas Mobilization in Waterflood Development Stage
4.2.1. Microfluidic Experiment of Porous Carbonate Reservoir

After the porous carbonate reservoir model changes from depletion development to
waterflooding development, the injection water preferentially selects the large pore throat
containing only simulated oil as the flow channel in the early stage of displacement. This
displacement process shows an obvious characteristic of “displace the oil, not the gas”.
This is due to the large flow resistance of gas in the pore throat and the serious Jamin effect.
There is a great difference on the waterflooding front between the early displacement stage
and the waterflooding stage when the pressure is higher than saturated pressure. The
waterflooding front of the waterflooding model is channeling seriously along the large
pores, without the stage of advancing as a 1/4 arc, as shown in Figure 20. When water-
breakthrough happens, the waterflooding results of the model are shown in Figure 21, and
the sweep coefficient is only 0.14.
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Figure 21. Porosity model water in production well.

As water is injected to restore the formation pressure, as shown in Figure 22, the
released gas dissolves and water drive mobilization increases. Figure 23 shows the distri-
bution of the remaining oil in the porous carbonate reservoir model after depletion and
water injection. According to threshold segmentation calculation, the oil displacement
efficiency of the microfluidic model of the porous carbonate reservoir after depletion and
water injection development is 88.82%, as shown in Figure 24.
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4.2.2. Microfluidic Experiment of Fractured Porous Carbonate Reservoir with Fractures
Parallel to Mainstream Line

After the fractured porous carbonate reservoir model with fractures parallel to the
mainstream line changes from depletion development to waterflooding development, the
injected water first flows along the fracture at the early stage of displacement, as shown
in Figure 25, and then water breakthrough happens quickly and the water cut increases
rapidly, as shown in Figure 26. Although the injected water flows through the fracture, the
injected water can restore formation pressure in the main line area, and dissolved gas from
the main line area gradually dissolves again. When the pores containing only simulated
oil increase gradually, the fractured porous model is the same as the porous carbonate
reservoir model. The large pore throat containing only simulated oil is selected as the flow
channel at the same time, the displacement process shows an obvious characteristic of “
displace the oil, not the gas”, and the water driving range is significantly increased.

As the water is injected, the formation pressure is restored, and the dissolved gas
continues to dissolve. The area where re-dissolution occurs gradually expands from the
main line to the edge, and the efficiency of waterflooding increases, as shown in Figure 27.
Figure 28 shows the distribution of the remaining oil of the fractured porous carbonate
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reservoir model after depletion and water injection. According to threshold segmentation
calculation, the oil displacement efficiency of the microfluidic model of the fractured pore
carbonate reservoir after depletion and water injection development is 60.73%, as shown in
Figure 29.
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4.3. Distribution Rule of Remaining Oil

The remaining oil distribution of the porous carbonate reservoir and the fractured
porous carbonate reservoir is shown in Figure 30, which is dominated by a contiguous
cluster of remaining oil, followed by remaining oil that is dispersed and porous. This
type of remaining oil distribution is caused by the strong heterogeneity of the carbonate
reservoir. At the same time, due to the influence of hydrophilic and weak hydrophilic
wettability of the glass etching model, the distribution of the membranous remaining oil
is less. Due to the influence of fracture-enhancing heterogeneity, the water driving range
of the fractured porous carbonate reservoir is obviously reduced, and the remaining oil
saturation is larger than that of the porous carbonate reservoir, and the oil displacement
efficiency is reduced by 28.09%.
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Compared with the water drive oil microfluidic experiment with a pressure higher
than the saturated pressure, it is found that not only the pore throat size, but also the gas
phase distribution affects the effective use of oil by injecting water in the water drive oil
and the gas microfluidic experiment has a pressure lower than the saturated pressure. In
the process of displacement, due to the serious Jamin effect in the gas phase, displacement
shows the characteristic of “displace the oil, not the gas”, and the decrease of the oil
displacement efficiency is larger than that of the water–oil displacement experiment.

4.4. Mechanism of Water Drive Oil and Gas

(1) Replenishing formation energy

In depletion and water injection development, the injected water can occupy the
volume of the crude oil that is produced, and replenish the formation energy consumed by
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depletion development and raise the formation pressure to maintenance level, as shown in
Figure 31.
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Figure 31. Water injection to replenish formation energy. (a) The pressure drops below satu-
ration at the end of depletion development; (b) Rising above saturation pressure at the end of
waterflood development.

It can be seen from Figure 31 that water injection development after depletion devel-
opment can improve the formation pressure maintenance level, and the formation pressure
level gradually rises from below the saturation pressure to above the saturation pressure.

(2) Protection of reservoir and fluid properties

The water injection development after depletion development can improve the forma-
tion pressure level, and the weak volatile oil reservoir especially showed the mechanism of
protecting the reservoir and fluid properties. Water injection can make the dissolved gas
dissolve again and protect the fluid properties, as shown in Figure 32. The process of redis-
solution can be seen in Figure 32, which is the inverse process of nucleation, enlargement
and coalescence. In addition, water injection can alleviate reservoir damage caused by the
Jamin effect and expand the effective mobilization range, as shown in Figure 33.
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(3) Improve the degree of crude oil recovery

Similar to the oil-displacement mechanism of higher-than-saturation pressure, after
the depletion development, the injection water can provide the oil-displacement power
to drive the crude oil in the large pore throat forward. In hydrophilic-weak hydrophilic
reservoirs, the oil is removed from the rock surface along the rock particle surface (pore
throat wall), and the oil is transported forward in the form of a continuous water film to
drive the oil and improve the degree of crude oil recovery. Figures 34 and 35 show the
change of the oil displacement efficiency of the porous and fractured porous carbonate
reservoirs, respectively. After waterflooding, the displacement efficiency of the porous and
fractured porous carbonate reservoirs increases by 51.02% and 27.61%, respectively.
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5. Conclusions

In this paper, in order to explore the gas occurrence state and the flow characteristics
of the oil–gas–water three-phase formation fluid in the depletion development process of
volatile carbonate reservoir, microscopic displacement experiments of a typical fractured
porous reservoir were carried out. The following conclusions can be drawn by analyzing
the experimental results:

(1) In the process of depletion development, the first degassing area of the porous carbon-
ate reservoir is around the production well and the large pore throat area in the model,
and the main gas migration channel is the small pore throat area. With the increase of
the volume of gas, the gas phase in the small pore throat gradually expands, coalesces
and migrates. The degassing sequence of the fractured porous carbonate reservoir is
fracture, large pore throat region and small pore throat region.

(2) The locations of the gas phase increase in the same order. Gas phase state and position
and its change rule is as follows: in the early depletion stage, the gas phase occurs in
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fractures near the matrix, and rapidly forms a continuous gas phase in the fractures.
In the middle depletion stage, the occurrence position extends from fractures near the
matrix to the large pore throat region. Along with the continuous gas phase formation
and migration in the matrix, the occurrence position extends to fractures, the large
pore throat region and the small pore throat region.

(3) When the depletion development is converted to water injection development, in
the early stage of displacement, the injection water preferentially selects the large
pore throat or fracture containing only simulated oil as the flow channel, and the
displacement process shows an obvious feature of “displace the oil, not the gas”.
As the injected water restores and maintains formation pressure, the dissolved gas
dissolves continuously, and the area where re-dissolution occurs gradually expands
from the main line to the edge, increasing the effective mobilization of water flooding.

(4) Due to the strong heterogeneity of carbonate reservoirs, the remaining oil in this
type of oil field is dominated by a contiguous cluster of remaining oil, followed by
the dispersed porous remaining oil, and the membranous remaining oil. Moreover,
fractures enhance the influence of heterogeneity, so that the water driving mobilization
range decreases obviously, and the remaining oil saturation increases.

(5) The microfluidic experiment of water-driven live oil can better simulate and observe
the whole process of formation fluid seepage in a volatile carbonate reservoir with
depletion and waterflooding development. Through analysis and summary, the oil
and gas dynamic occurrence law in the depletion development stage and the oil and
gas production law in the waterflooding development stage can be obtained. The
experimental results show that this method is a feasible and accurate microscopic
physical simulation experiment to study the oil–gas–water three-phase flow law in
fractured porous carbonate reservoirs.
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