
Citation: Song, Q.; Liu, Y.; Lu, M.;

Zhang, J.; Qi, H.; Wang, Z.; Liu, Z.

Autonomous Driving Decision

Control Based on Improved Proximal

Policy Optimization Algorithm. Appl.

Sci. 2023, 13, 6400. https://doi.org/

10.3390/app13116400

Academic Editors: Andrea Prati, Luis

Javier García Villalba and Vincent A.

Cicirello

Received: 29 March 2023

Revised: 12 May 2023

Accepted: 22 May 2023

Published: 24 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Autonomous Driving Decision Control Based on Improved
Proximal Policy Optimization Algorithm
Qingpeng Song 1,2 , Yuansheng Liu 2,3,* , Ming Lu 4 , Jun Zhang 3 , Han Qi 1,2 , Ziyu Wang 5 and Zijian Liu 2,3

1 College of Smart City, Beijing Union University, Beijing 100101, China; 20201081210204@buu.edu.cn (Q.S.);
20211081210207@buu.edu.cn (H.Q.)

2 Beijing Key Laboratory of Information Service Engineering, Beijing Union University, Beijing 100101, China;
20201083510913@buu.edu.cn

3 College of Robotics, Beijing Union University, Beijing 100101, China; xxtzhangjun@buu.edu.cn
4 College of Applied Science and Technology, Beijing Union University, Beijing 100101, China;

yykjtluming@buu.edu.cn
5 College of Urban Rail Transit and Logistics, Beijing Union University, Beijing 100101, China;

wangziyu_zoey@163.com
* Correspondence: yuansheng@buu.edu.cn

Abstract: The decision-making control of autonomous driving in complex urban road environments
is a difficult problem in the research of autonomous driving. In order to solve the problem of high
dimensional state space and sparse reward in autonomous driving decision control in this environ-
ment, this paper proposed a Coordinated Convolution Multi-Reward Proximal Policy Optimization
(CCMR-PPO). This method reduces the dimension of the bird’s-eye view data through the coordi-
nated convolution network and then fuses the processed data with the vehicle state data as the input
of the algorithm to optimize the state space. The control commands acc (acc represents throttle and
brake) and steer of the vehicle are used as the output of the algorithm.. Comprehensively considering
the lateral error, safety distance, speed, and other factors of the vehicle, a multi-objective reward
mechanism was designed to alleviate the sparse reward. Experiments on the CARLA simulation
platform show that the proposed method can effectively increase the performance: compared with
the PPO algorithm, the line crossed times are reduced by 24 %, and the number of tasks completed is
increased by 54 %.

Keywords: deep learning; reinforcement learning; sparse reward environments; autonomous driving;
decision and control

1. Introduction

Decision control of autonomous driving in urban environments is a challenge in the
field of autonomous driving, due to the complex road geometry and the interaction of
multiple agents. The realization of an intelligent decision control system that can handle
complex road geometries and multi-agent interaction is essential for autonomous driving
in urban environments. At present, the mainstream autonomous driving method divides it
into three modules: perception, decision-making, and control, and the traditional percep-
tion module provides the vehicle with surrounding environment information through the
vehicle’s sensors, such as the vehicle’s location information [1] and the vehicle’s attitude
information [2,3]. The perception system is an important part of autonomous driving, and
a good perception system can provide reliable vehicle status data for decision-making and
control, and then help the vehicle make the correct decision-making control. Traditional
decision methods output decision results by dividing states and rules, such as finite state
machines [4], decision trees [5], and so on. Traditional control methods can be divided into
model-free control and model-based control, and the mainstream control methods include
PID control, sliding mode control (SMC), and model predictive control (MPC) [6]. Vehicle

Appl. Sci. 2023, 13, 6400. https://doi.org/10.3390/app13116400 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13116400
https://doi.org/10.3390/app13116400
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2927-1763
https://orcid.org/0000-0003-3258-3274
https://doi.org/10.3390/app13116400
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13116400?type=check_update&version=1

Appl. Sci. 2023, 13, 6400 2 of 17

control is realized by tracking the path planned by the decision module [7]. The traditional
decision control method has achieved good results to a certain extent, but it also has certain
limitations—they need to artificially specify the driving scenario, so they only apply to
known invariant scenarios; the artificial design rules do not fully satisfy the real needs
of the scenarios, leading to a significant decrease in the applicability of the algorithms.
With the application of machine learning methods in the field of urban intelligent trans-
portation [8,9], the use of neural networks to process environmental information [10,11]
and output vehicle control signals based on end-to-end imitation learning and reinforce-
ment learning decision models has become a much-researched topic in decision control
research [12]. The core of imitation learning is the construction of datasets of the driving
behaviors of expert drivers for supervised imitation training [13]. Toromanoff [14] success-
fully achieved end-to-end lateral control of autonomous driving by labelling and training
fisheye camera data. Geng’s [15] proposed approach can plan out an optimized lane change
path according to the vehicle condition by learning the excellent drivers’ driving routes.
However, imitation learning suffers from several weaknesses: it requires a large amount of
data labelling; moreover, expert data cannot provide hazardous driving operations and
therefore the trained system cannot make decisions about hazardous driving situations.
Different from imitation learning, reinforcement learning does not require complex data
annotation and only requires multiple trials and errors in the environment to obtain the
optimal model. It combines the advantages of deep learning and has been widely used as
deep reinforcement learning [16] to solve the decision and control problems of autonomous
driving [17]. Park [18] proposes a path planning method for mobile robots based on deep de-
terministic policy gradient (DDPG) to overcome the sparse reward problem in autonomous
driving mobile robots through hindsight experience replay technology. Kendall [19] used a
monocular image as input and was able to learn lane-tracking strategies using only a small
number of training scenes. Qiao [20] used an autonomous course-based deep reinforcement
learning approach to solve simple urban intersection decision-making problems. Isele [21]
implemented a Deep Q-network (DQN) [22] algorithm for driving decisions at intersections
using the CARLA [23] simulation environment. Current research on deep reinforcement
learning-based decision control for autonomous driving has made some achievements but
the research work still exhibits shortcomings. Firstly, the algorithm needs to explore a
lot during the training process, due to the high dimension of its input state data and the
random policy sampled by the agent during the initial training, which makes it difficult to
quickly obtain effective rewards [24]. Secondly, the design of the reward items is relatively
single, so that the agent can only obtain the reward after interacting with the environment
many times, and the reward in the intermediate process is difficult to evaluate. Finally, the
methods DDPG [25], PPO [26], and A3C [27], which can output continuous actions, have
stronger exploration capability and faster convergence speed compared to the DQN method
with discrete space actions. The algorithm training process has a high cost of interaction
with the environment. If it can solve the sparse reward problem to some extent and reduce
the dimension of state space, the convergence of the model can be accelerated and the
number of interactions with the environment can be reduced. The problems of high state
space dimension include sparse reward and excessive number of interactions with the envi-
ronment in deep reinforcement learning in autonomous driving decision control. Firstly,
this paper used a bird’s-eye view [28] as input, which provides abundant environmental
information and has a low data dimension compared to a forward-looking camera or lidar
data. To further extract the feature data to preserve its spatial information, this paper used
the coordinate convolutional network [29] (Coordinate Convolution, CoordConv) to extract
the feature data of the bird’s-eye view. To provide spatial information for the algorithm, the
feature data extracted above and the lateral distance between the vehicle and the lane line,
the angle between the vehicle and the lane line, the current speed of the vehicle, and the
distance to the vehicle ahead (collectively referred to as the vehicle state) were input to the
algorithm for decision-making. Secondly, the proposed method designs a multi-objective
reward mechanism for complex urban traffic scenarios according to the requirements of

Appl. Sci. 2023, 13, 6400 3 of 17

vehicle safety, comfort, etc., effectively alleviating the problem of sparse reward. Finally, the
CCMR-PPO algorithm controls the vehicle’s acc and steer commands by making decision
outputs from the reward values. Experiments show that the designed decision control
model presented in this paper achieves a good performance in traffic scenarios with the
participation of other vehicles, such as roundabouts and intersections.

2. Reinforcement Learning

The nature of reinforcement learning is interactive learning, i.e., it allows an agent to
continuously interact with the environment to obtain the maximum cumulative reward
value and thus learn the optimal strategy. The description of reinforcement learning is
usually based on the well-known Markov decision process, as shown in Equation (1).

E =< S, A, Ps
′

sa , P0, R, γ > . (1)

Six tuples are defined, where S and A are the set of states and the set of actions, Ps
′

sa ,
denotes the probability of transferring from state s ∈ S to state s

′ ∈ S through a given
action a ∈ A, P0 denotes the initial state distribution, and R is the reward function, which
usually uses the cumulative discounted reward to define the state reward at moment t, γ is
the discount factor, as shown in Equation (2).

R =
T

∑
i=t

γ(i−t)r(si, ai), (2)

where the discount factor γ ∈ [0, 1], whose smaller value indicates a greater focus on the
current reward, and r(si, ai) indicates the value of the reward obtained by choosing action
a ∈ A in state s ∈ S. A policy π is a mapping from states to action probability distributions:
π : S → p(A = a|S). The goal of reinforcement learning is to learn an optimal policy π∗

that maximizes the expected cumulative reward for all states, i.e., the goal of reinforcement
learning is as shown in Equation (3).

J = Es−p,a−π [R0]. (3)

Under policy π, the value of state s is denoted as Vπ(s), which represents the cumula-
tive discounted reward brought by executing policy π from state s. It is usually used as an
actor in the actor-critic algorithm and is defined as shown in Equation (4).

Vπ(st) = Es−p,a−π [Rt|st]. (4)

Similarly, under policy π, the value of action a taken for state s is Qπ(s, a), which rep-
resents the cumulative discounted reward brought by following policy π after performing
action a from state s. It is usually used as a critic in the actor-critic algorithm and is defined
as shown in Equation (5).

Qπ(st, at) = Vπ(st)Es−p,a−π [Rt|st, at]. (5)

In the policy gradient algorithm, a good policy is obtained by computing a policy
gradient estimate and then using a stochastic gradient descent algorithm. The objective
function of the network parameter θ update is as shown in Equation (6).

L(θ) = E[log π(at|st; θ)At(st, at)]. (6)

The update method for network parameters θ can be expressed as shown in Equation (7).

θt+1 = θt + α∆θ L(θt), (7)

Appl. Sci. 2023, 13, 6400 4 of 17

where At(st, at) is the estimate of the advantage function at moment t to measure the gap
between the score obtained by the current policy interacting with the environment and the
benchmark. The function is defined as shown in Equation (8).

At(st, at) = Qt(st, at)−V(st). (8)

In the PPO algorithm, a truncation method is usually used to limit the update of new
policies with a loss function defined as shown in Equation (9).

L(θ) = E[min(rr(θ)At, clip(rr(θ)), 1− ε, 1 + ε)At], (9)

where the ratio of the old to the new policy is denoted as shown in Equation (10).

rt(θ) =
πθ(at|st)

πθold(at|st)
. (10)

ε is the truncation constant, generally, with a value of 0.2; clip is the truncation
function; and the value of rt(θ) is limited to the range 1− ε and 1 + ε. In the process of
parameter updating, the PPO algorithm uses truncation to limit the update of new policies,
to avoid the problem of too-large differences in policies and improve the generalization of
the algorithm.

3. Method

In this paper, the proposed CCMR-PPO method improved the implementation of
the PPO. Its algorithm structure is shown in Figure 1, including three main modules: a
CoorConv network, a multi-objective reward mechanism, and a PPO algorithm module.
The CoorConv network extracts the effective information from the bird’s-eye view and
converts the 256 × 256 × 3 bird’s-eye view information into 256 × 1 low-dimensional data
with key features. These feature data provide the CCMR-PPO with information about the
location of other vehicles relative to the controlled vehicle. The multi-objective reward
mechanism calculates the reward value according to the vehicle state data and passes the
reward value into the experience pool of the PPO algorithm. The PPO algorithm inputs
the fused state data into the policy network of the algorithm, generates the expectation
and variance of the action through the current state, and then conducts random action
sampling to generate commands for vehicle control. The evaluation network evaluates
the performance of the policy network according to the data in the experience pool and
then guides the policy network to update the parameters. When the new policy network
is updated to a certain step, the old policy network is updated. Finally, the evaluation
network and the policy network are updated periodically.

3.1. State Space

The state space contains the information required for autonomous driving decisions,
including information about the vehicle’s state and the road environment ahead. The
positioning system is used to obtain the pose of the autonomous vehicle, a road route and
map are obtained from a high-precision map, and the above information is transformed
into a bird’s-eye view. As shown in Figure 2a, the red rectangle is the controlled vehicle,
always positioned in the lower middle region of the image, while the other vehicles are
represented using green rectangles. Lanes are segmented using grey and white lines. The
forward direction, relative position, speed, and lane information of these vehicles can be
obtained from the figure. The blue area is the travel trajectory of the environmental plan.
Figure 2b shows the front view image corresponding to the bird’s-eye view. The controlled
vehicle state space is defined as shown in Equation (11).

s = {τ, l, φ, v, d}, (11)

Appl. Sci. 2023, 13, 6400 5 of 17

where τ is the feature vector, obtained by inputting the bird’s-eye view to the CoordConv
network. l is the lateral distance of the vehicle relative to the lane line, φ represents the
angle between the vehicle and the lane line, v is the current speed of the vehicle, and d is
the distance to the vehicle ahead. The above information is fused to obtain a new vector s
as the input of the policy and evaluation network.

Agent

PPO

Actor-New

Actor-Old

Update WeightCritic Advantea
ge

Store Memory

min

Sample

Expectation
and variance Action

CoordConv
Network

4x4 C
oordC

onv
8+R

elu

3x3 C
oordC

onv
16+R

elu

3x3 C
oordC

onv
32+R

elu

3x3 C
oordC

onv
64+R

elu

3x3 C
oordC

onv
128+R

elu

3x3 C
oordC

onv
256+R

elu

State

Bird's-
eye view

Vehicle State

Multi-objective reward system
Collision
penalty

Longitudinal
speed

Lateral bias

Lateral
velocity

Brake Reward

Throttle
penalty

Reward

Perception and
planning module

Control commands(acc, steer)

Data Fusion
Feature data

Vehicle State

Simulation
environment

Vehicle surroundings and state information

Figure 1. A framework for an autonomous driving agent. The agent takes information from the
sensing module and generates a bird’s-eye view, which is extracted by the CoordConv network into
low-dimensional state data, which is then used by the PPO algorithm to learn policies to generate the
correct control command.

(a) (b)

Figure 2. Simulation environment map: (a) Bird’s-eye view, where the red box is agent and the green
box is other vehicles. (b) Front view.

3.2. Action Space

The control of the vehicle is mainly divided into lateral control and longitudinal
control. Longitudinal control is established by the longitudinal control parameter acc using
the throttle and brake. The method normalizes acc to [−1, 1], accelerates forward when acc
is positive, and brakes when acc is negative. Lateral control is established by the steering
wheel angle steer of the vehicle. The method normalizes steer to [−1, 1], turns right when
steer is positive, and turns left when steer is negative. So, the action space is defined as
shown in Equation (12).

A = {acc, steer}. (12)

3.3. Reward Function

In order to allow the agent to learn an excellent driving strategy, measure the quality of
the actions performed by the agent, and solve the sparse reward problem of the algorithm,
reference [30] considered a total of six environmental variables and state factors: collision

Appl. Sci. 2023, 13, 6400 6 of 17

(rcollision), longitudinal speed (rspeed_lon,r f ast), lane departure(rout,rline), lateral speed(rlat),
brake(rbrake), and throttle(rthrottle). The last term c is a small constant set to −0.1, which was
used to penalize the ego vehicle for stopping still. The design of the reward function needs
to encourage the vehicle to move forward along the lane while taking care that the change
in action output is as smooth as possible. This paper split the targets according to their
credit assignment, setting a scale of 50 parameter adjustment for the less frequent cases
of the initial state such as the collision reward term rcollision, and a scale of 5 parameter
adjustment for r f ast. For the initial frequently occurring cases such as rout, rbrake, and
rthrottle, set a parameter adjustment with a scale of 1. For the other continuously changing
parameters, rspeed_lon, rline and rlat, set a parameter adjustment with a scale of 0.1. Finally,
this paper obtained the parameters in the paper and, after several tests, the reward function
is as shown in Equation (13).

R =
[

k1 k2 k3 k4 k5 k6 k7 k8
]


rcollision
rspeed_lon
r f ast
rout
rline
rlat
rbrake
rthrottle


+ c (13)

3.3.1. Collision Penalty

If the controlled vehicle collides with another vehicle or road boundary during net-
work training, the current training episode ends and the next episode training begins.
The collision penalty rcollision is set to −1 if a collision occurs; otherwise, set to 0. With
experimentation, it is verified that setting the weight of k1 too small will result in frequent
collisions, while if the weight of k1 is set too large, negative reward values become common
and the system cannot learn effective policy. Consequently, to ensure that the vehicle
does not collide as much as possible, the factor k1 of rcollision is set to 200, as shown in
Equation (14). This paper used 50 as a ruler to test the decision-making control effect of
vehicles in dense and non-intensive traffic flow, and the experimental results show that the
value of k1 is set between 150 and 300, so the value of k1 is set to 200.

rcollision =

{
−1, i f collision
0, otherwise.

(14)

3.3.2. Longitudinal Speed

rspeed_lon is the reward for the vehicle’s longitudinal velocity rspeed_lon. The greater the
longitudinal speed, the greater the reward value obtained. The coefficient k2 is set to 1. If
the weight is set too large, the vehicle speed will increase rapidly and cause a collision. If it
is set too small, the vehicle cannot move forward, as shown in Equation (15).

rspeed_lon = vspeed. (15)

In addition to a higher reward value for higher vehicle speeds, a certain penalty is set
when the speed exceeds the threshold speed, where the penalty is denoted by r f ast. The
threshold speed in this paper was set to vthr = 8 m/s, r f ast was set to −1 when the vehicle
speed was greater than 8 m/s, and 0 otherwise; its weight k3 was set to 10, as shown in
Equation (16).

r f ast =

{
−1, i f v > vthr
0, otherwise.

(16)

Appl. Sci. 2023, 13, 6400 7 of 17

3.3.3. Lane Departure

The lateral deviation of the vehicle is 0 when the vehicle is driving in the middle of
its lane. When the vehicle is leftward, the value is negative, and the greater the deviation,
the more negative the value. When the vehicle is rightward, the value is positive and, the
greater the deviation, the larger the value. The lateral deviation penalty is set according to
the properties of the function e−|x| as shown in Figure 3a. Equation (17) is used to constrain
the vehicle to travel within the road, where x is the lateral deviation of the vehicle from
the lane line, and the reward value is maximum when the value of x is zero and decreases
exponentially with the increase of the deviation value. The coefficient k5 is set to 1 and the
characteristic curve of rl is shown in Figure 3b.

rline = e−|x|
3+1. (17)

(a) (b)

Figure 3. Negative exponential function characteristic graph. (a) Negative exponent. (b) Negative
exponent of error.

This paper set the threshold value of the maximum lateral deviation of the vehicle
as lthr > 2 m; the training episode ends when the vehicle lateral deviation exceeds the
threshold value, and the next episode is start. Experiments show that, if lthr is set too large,
the vehicles are prone to collision and it is difficult to learn effective policy. if lthr is set too
small, the vehicles have no room for trial and error, leading to early episode endings, and it
is difficult to learn effective policy. The vehicle deviation penalty is defined as rout, which
is set to -1 when the lateral deviation of the vehicle exceeds lthr and to 0 otherwise. The
coefficient k4 is set to 5, as shown in Equation (18).

rout =

{
−1, i f l > lthr
0, otherwise.

(18)

3.3.4. Lateral Speed

To prevent the vehicle from driving unstably due to excessive lateral speed, the penalty
rlat is set according to the steering wheel turning angle steer and speed vspeed. The coefficient
k6 is set to 0.2, as shown in Equation (19).

rlat = −abs(steer) ∗ v2
speed. (19)

3.3.5. Brake Reward

Braking should be applied when an obstacle is encountered in front or when the
vehicle speed is greater than the speed threshold. The brake reward is rbrake. In this paper,
the distance to detect the obstacle ahead was dthr = 15 m. When there is an obstacle in front
of the agent or the speed is greater than vthr = 8 m/s, the braking value brake is used as the
bonus value. The coefficient k7 is set to 5, as shown in Equation (20).

Appl. Sci. 2023, 13, 6400 8 of 17

rbrake =

{
brake, i f d < dthr or v > vthr .
0, otherwise

(20)

3.3.6. Throttle Penalty

Penalties are applied when the vehicle accelerates after the speed exceeds vthr = 8 m/s.
A throttle penalty is also applied to lateral deviations to prevent the vehicle from accelerat-
ing out of its lane in the event of a lane deviation. The throttle penalty is denoted as rthrottle.
When the vehicle’s speed is greater than vthr = 8 m/s and the vehicle still accelerates or
when the vehicle still accelerates after deviating from the lane, the throttle value throttle is
used as the penalty value. The coefficient k8 is set to 5, as shown in Equation (21).

rthrottle =

{
−throttle, i f v < vthr or acceleration a f ter crossin the line
0, otherwise.

(21)

3.4. Policy and Value Function as Neural Networks

This paper used the same actor-critic algorithm framework based on the design
approach of the PPO algorithm, where the input state S of the actor network gives the
expectation µ and variance σ of the next action. The expected value and variance of the
actions are calculated based on the values of α and β in the beta distribution and sampled
to obtain the value of the action a. The critic network input state S determines output
state value function V to evaluating the discounted reward of the policy. The structure of
the two network models is the same, but the outputs are different. To keep the network
updated synchronously and extract effective feature data, the weights of the previous
CoordConv network are also updated at the same time. The specific structure of the
CoordConv network is shown in Figure 1. There are six layers in the network, the size of
the convolution kernel in the first layer is 4 × 4, and the size of the convolution kernel in
the remaining layers is 3 × 3. The channels wide are 8, 16, 32, 64, 128, and 256, and the step
size is 2. Relu is used as the activation function between the layers, and the data input is
four frames of 256 × 256 bird’s-eye view, and the output is 1 × 256 feature data. The actor
network in this paper contained an input layer, two fully connected layers, and an output
layer. The overall structure is shown in Table 1. The input layer contained 300 linear units,
and the input data were the fused features extracted by CoordConv and the vehicle state.
Two fully connected layers were designed with 100 linear units each, and the activation
function of the first fully connected layer was tanh and the second was a soft plus. The
output layer contained two linear units that output α and β. In the process of training
the neural network, the Adam optimizer was used as the optimizer of the gradient loss
function, and the learning rate took the value of 0.0005.

Table 1. Network structure of actor.

Name of Network Network Dimension Activation Function

Input layer 256 + 4 /
Fully connected layer1 100 tanh
Fully connected layer2 100 soft plus

Output layer 2 /

The critic network has the same general structure as the actor network, except that
the activation function and the output layer have been changed. As shown in Table 2,
the output layer of the critic network directly outputs the reward value with dimension
1. The input is the state information extracted from the experience pool. The experience
pool of PPO stores the experience information of the previous h steps until the experience
pool is filled, at which point it is sampled from the experience pool. The sampled state
information is fed into the critic network to obtain the value function, and then the value
function calculates the advantage function to update the actor network in reverse. In the

Appl. Sci. 2023, 13, 6400 9 of 17

process of training the neural network, the same Adam optimizer is used as the optimizer
of the gradient loss function, and the learning rate takes the value of 0.0005.

Table 2. Network structure of critic.

Name of Network Network Dimension Activation Function

Input layer 256 + 4 /
Fully connected layer1 100 tanh
Fully connected layer2 100 tanh

Output layer 1 /

3.5. Termination Conditions

In the deep reinforcement learning process of interaction with the environment, there
are fewer rewards obtained in the early stage, and the reward value cannot be increased,
resulting in many negative memories stored in the experience pool, which affects the
training speed, so the termination conditions need to be set; for the training reported here,
the following termination conditions are set.

3.5.1. Specify the Number of Steps to Perform in the Episode

The maximum number of steps a vehicle can perform per episode in the environment
is 1000. When its number of steps reaches 1000, the current episode is finished and the
training for the next episode is started.

3.5.2. Out of Lane

The threshold of exceeding the distance from the lane is set to 2, which means that
the vehicle exceeds the lateral range of 2 m, starting from the center of the lane. When the
vehicle deviates from the threshold to the left or right, the current episode is ended and the
training of the next episode begins.

3.5.3. Collision Occurs

When the vehicle collides with other vehicles or surrounding buildings, the current
episode is ended and the training for the next episode is started.

4. Results and Discussion
4.1. Experimental Environment

The CPU model of the simulation hardware used in this study was Ryzen7 3700; the
GPU model was RTX3060Ti; the memory stick had a capacity of 16G; and the operating
system was Ubuntu 18.04. The simulation software environment was jointly built by
CARLA and Python. The main parameters of CCMR-PPO were set as shown in Table 3.

Table 3. Main parameters of CCMR-PPO.

Parameter Value

Sampling time (s) 10−3

CoordConv network initial learning rate 10−3

Actor network initial learning rate 5 ∗ 10−3

Critic network initial learning rate 5 ∗ 10−3

Discount factor γ 0.99
Clip parameter ε 0.2
GAE parameter λ 0.95

Batch size 64
Number of Episodes 1600

All experiments in this paper were conducted in the CARLA simulator, and different
driving scenarios were constructed by choosing the Town3 map in the simulator to train and

Appl. Sci. 2023, 13, 6400 10 of 17

test the algorithm. The Town3 shown in Figure 4a contains a variety of urban road scenarios
such as roundabouts, intersections, and curves. The map area size is 400 m × 400 m, where
the total length of the road is 6 km, and the environment varies greatly from section to
section. To improve the generalization ability of the model to allow vehicles to drive on
different road sections in the environment and to ensure uniform distribution of samples,
the locations at the beginning of each training were chosen randomly. At the same time,
to increase the vehicle’s ability to handle various traffic environment situations, other
vehicles were added to the road traffic during each simulation, and the initial positions of
these vehicles were set randomly. During the training process, the vehicle speed, steering,
acceleration, coordinate attitude, and other data were obtained in real time through the
program interface provided by CARLA, while an RGB camera and LIDAR sensors were
added to the controlled vehicle to obtain environmental information. The RGB bird’s-eye
view of size 256 × 256 × 3 was obtained by transforming the above information and
high-precision map projection.

(a)

(b)

(c)

Figure 4. The simulation environment for algorithm training. (a) The map layout. (b) The crossroads.
(c) The roundabout.

4.2. Comparative Analysis of Algorithms

To evaluate the performance of the algorithms in this paper, the original PPO, DDPG,
and CCMR-DDPG, which incorporate CCMR ideas into the DDPG algorithm, were used
as comparison algorithms. These algorithm models in this paper trained 1600 episodes,
converged in about 300 episodes, and converged in 4.8 h. The state inputs of the original
PPO and DDPG methods are bird’s-eye views that are not processed by the CoordConv
network, and the reward term was designed with reference to paper [30]. In the paper [30],
four reward items rspeed_lon, rlat, rcollision, and rout were set, which represent speed, steering,
collision, and exceeding lane lines. Each algorithm was trained separately for 1600 episodes
in Town3, and the algorithm’s two metrics of average reward for episodes and average
reward for single steps were counted. The episode average reward is the average of the
cumulative rewards of the 10 episodes and used to evaluate the task learning; the average
single-step reward records the actual number of steps interacting with each step, and
the average single-step reward is obtained to further evaluate the goodness of the model
through the single-step reward.

Appl. Sci. 2023, 13, 6400 11 of 17

4.2.1. Analysis of Training Results

The training results of the episode average the reward of the algorithm are shown in
Figure 5, and the single-step average reward is shown in Figure 6. Each curve stabilizes
after rising, showing that the algorithm reaches convergence after exploratory learning.
It can also be seen that the episode average reward and single-step average reward of
the CCMR-PPO algorithm after convergence are higher than CCMR-DDPG, PPO, and
DDPG, indicating that the performance is optimal after convergence, and the reward value
is significantly improved relative to the original PPO and DDPG algorithms. Similarly,
the effect of adding the improved parts of this paper to the DDPG algorithm also shows
a significant improvement, indicating that the improvements proposed in this paper are
effective. However, the CCMR-PPO algorithm converges more slowly than the DDPG
algorithm, completing convergence at 300 episodes.

Figure 5. Episode average reward.

Figure 6. Single-step average reward.

4.2.2. Analysis of Test Results

The models trained by the four algorithms were placed on the Town3 where 100 other
vehicles driving according to the rules were randomly placed. The test was conducted for
five scenarios: driving in a straight line, turning on a curve, crossing the crossroad, turning
at T-junction, and through the roundabout, and three evaluation indexes were set according

Appl. Sci. 2023, 13, 6400 12 of 17

to the number of tasks completed (without triggering the termination condition) (CT),
the number of times the line is crossed (CL), and the number of collisions that occurred
(CO). To ensure the reliability of the experiment, 10 tests were conducted for each task,
and the test results are shown in Table 4. CCMR-PPO can complete each task better, and
all the indexes exceed the CCMR-DDPG, PPO, and DDPG comparison algorithms, and
the number of squeezes is reduced by 24% relative to PPO, and the number of completed
tasks increased by 54%. The CCMR-DDPG, which transposes the ideas of this paper to the
DDPG algorithm, also performs better, and all performance indexes are improved. The
original DDPG algorithm performs poorly, and the vehicle swings at a large angle while
driving, which does not meet the requirements of comfort and stability, making it difficult
to complete task scenarios with large turning angles such as turnings and roundabouts.

Table 4. Test results of the four algorithms.

Algorithms
Straight-Road Curve-Road Crossroad T-Junction Roundabout

CT CL CO CT CL CO CT CL CO CT CL CO CT CL CO

CCMR-PPO 10 0 0 10 0 0 10 1 0 6 5 4 10 2 0
CCMR-DDPG 10 3 0 8 5 1 6 2 2 4 4 3 8 5 0

cPPO 6 3 4 4 3 0 5 3 3 2 6 2 2 5 2
DDPG 2 10 0 0 10 0 3 10 2 0 10 0 1 10 0

4.3. Ablation Study
4.3.1. Analysis of Training Results

To verify the effectiveness of the CoordConv network described and to demonstrate
the actual impact that the network has on the algorithm, statistics are presented on the
episode average reward and the single-step average reward with and without joining
the network. The average reward results of the algorithm rounds are shown in Figure 7.
From the results, the algorithm without the use of the CoordConv network has lower
reward values and slower convergence. The reason for this result is that the algorithm has
a better extraction effect on the features of the state input; the improvement proves the
effectiveness of the CoordConv network. The single-step average reward of the algorithm
is shown in Figure 8. The single-step average reward that the algorithm produces without
joining the CoordConv network has a lower value, further proving the effectiveness of the
CoordConv network.

Figure 7. Episode average reward.

Appl. Sci. 2023, 13, 6400 13 of 17

Figure 8. Single-step average reward.

This paper discussed the effect of the proposed reward on the algorithm model. For
the proposed reward in Equation (13), the impact on the algorithm results was analyzed
after removing the throttle or brake reward. As seen in Figures 9 and 10, both the average
episode reward and the average single-step reward decrease significantly after removing
the throttle or brake reward.

Figure 9. Episode average reward.

Figure 10. Single-step average reward.

Appl. Sci. 2023, 13, 6400 14 of 17

4.3.2. Analysis of Test Results

For the above training model, two scenarios of roundabouts and crossroads were
set up for testing, while 100 other vehicles were set up near the scenarios, and the task
completion of driving in and out of the traffic circle was tested for the inner and outer
circles, respectively, for the traffic circle scenario. The crossroads scenario tested the task
completion of a left turn and a right turn. Each scenario task was tested for ten episodes,
and three evaluation indexes were set for the number of CTs, the number of COs, and the
number of CLs.

Table 5 shows that the rbrake and rthrottle reward terms have a greater impact on the
algorithm, especially when vehicles make left and right turns at intersections, which are
prone to both collisions and lane violations. Figure 11a shows a vehicle making a left turn in
the middle lane of the intersection in the total reward case, and Figure 11b shows a vehicle
making a right turn in the middle lane of the intersection after removing rthrottle—the
vehicle crossed the line. Figure 11c shows a vehicle making a right turn in the middle lane
of the intersection after removing rbrake—it collides with an oncoming vehicle.

(a)

(b)

Figure 11. Cont.

Appl. Sci. 2023, 13, 6400 15 of 17

(c)

Figure 11. Comparison of ablation experiment results. (a) Total Return. (b) Remove rthrottle. (c) Re-
move rbrake.

Through the verification of simulation experimental results, the proposed algorithm in
this paper can effectively improve the learning efficiency of the model, so that the network
can output more rewarding vehicle driving actions, and the reward term design is scientific
and effective, which improves the comfort and safety of the vehicle. To further illustrate
the effect of this paper, a video link is recorded as https://pan.baidu.com/s/1ujPbbV9
mCp7mErkSO4UvBw?pwd=12a3 (accessed on 25 March 2023).

Table 5. Test results of the four algorithms.

Crossroad Roundabout
Reward Turn Left Turn Right Inner Circle Outer Circle

CT CL CO CT CL CO CT CL CO CT CL CO

Total reward 10 0 0 8 2 1 10 0 0 10 0 0
Remove rthrottle 7 3 1 6 4 4 9 1 0 8 3 0
Remove rbrake 8 1 2 6 3 2 10 2 0 10 1 0

5. Conclusions

This paper proposed the CCMR-PPO method based on the PPO algorithm. Firstly, the
bird’s-eye view data were extracted through the CoordConv network, and the extracted
data and the vehicle state data were fused as the input of the algorithm, which effectively
reduces the dimensionality of the state space and the exploration space of the algorithm in
comparison with the forward-looking camera or lidar image data as the input. Secondly,
by designing a multi-objective reward term mechanism, the algorithm can quickly obtain
effective rewards to output throttle, brake, and steering control commands. The proposed
algorithm was trained and verified by building a simulation environment using CARLA.
Simulation results show that the CCMR-PPO method proposed in this paper has good
decision-making capability, and the number of successful decisions and average rewards
are improved in both traffic circle and intersection simulation environments, with a 24%
reduction in the line crossed times and a 54% increase in the number of completed tasks
relative to the original PPO algorithm.

Although the CCMR-PPO algorithm achieves better results at roundabouts and inter-
sections, training and testing for challenging driving scenarios, such as more dense traffic,
pedestrian involvement, and compliance with traffic rules, have not been thoroughly inves-

https://pan.baidu.com/s/1ujPbbV9mCp7mErkSO4UvBw?pwd=12a3
https://pan.baidu.com/s/1ujPbbV9mCp7mErkSO4UvBw?pwd=12a3

Appl. Sci. 2023, 13, 6400 16 of 17

tigated, which is the research goal of continuing work extending the research presented in
this paper.

Author Contributions: Funding acquisition, Y.L.; investigation, Q.S.; methodology, Q.S. and Z.L.;
project administration, Q.S., H.Q. and Z.W.; resources, J.Z. and M.L.; software, Q.S. and Z.W.;
supervision, Y.L. and Z.L.; writing—original draft, Q.S.; writing—review and editing, Q.S., M.L. and
Z.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported in part by the National Key R&D Program under Grand 2021YFC3001300,
in part by the National Natural Science Foundation of China Key Project Collaboration under Grand
61931012, in part by the Natural Science Foundation of Beijing under Grand 4222025, in part by the
Science and Technique General Program of Beijing Municipal Commission of Education under Grant
No. KM202011417001, and in part by the Academic Research Projects of Beijing Union University
under Grant ZK10202208 and ZK90202106.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Gao, L.; Xiong, L.; Xia, X.; Lu, Y.; Yu, Z.; Khajepour, A. Improved Vehicle Localization Using On-Board Sensors and Vehicle

Lateral Velocity. IEEE Sens. J. 2022, 22, 6818–6831. [CrossRef]
2. Xia, X.; Hashemi, E.; Xiong, L.; Khajepour, A. Autonomous Vehicle Kinematics and Dynamics Synthesis for Sideslip Angle

Estimation Based on Consensus Kalman Filter. IEEE Trans. Control. Syst. Technol. 2022, 31, 179–192. [CrossRef]
3. Liu, W.; Xia, X.; Xiong, L.; Lu, Y.; Gao, L.; Yu, Z. Automated Vehicle Sideslip Angle Estimation Considering Signal Measurement

Characteristic. IEEE Sens. J. 2021, 21, 21675–21687. [CrossRef]
4. Xiong, G.; Li, Y.; Wang, S. Behavior prediction and control method based on FSM for intelligent vehicles in an intersection.

Behavior 2015, 35, 34–38.
5. Wu, L. Research on Environmental Information Extraction and Movement Decision-Making Method of Unmanned Vehicle. Ph.D.

Dissertation, Chang’an University, Xi’an, China, 2016.
6. Liu, W.; Hua, M.; Deng, Z.; Huang, Y.; Hu, C.; Song, S.; Xia, X. A systematic survey of control techniques and applications: From

autonomous vehicles to connected and automated vehicles. arXiv 2023, arXiv:2303.05665.
7. Chen, G.; Hua, M.; Liu, W.; Wang, J.; Song, S.; Liu, C. Planning and Tracking Control of Full Drive-by-Wire Electric Vehicles in

Unstructured Scenario. arXiv 2023, arXiv:2301.02753.
8. Gutiérrez-Moreno, R.; Barea, R.; López-Guillén, E.; Araluce, J.; Bergasa, L.M. Reinforcement Learning-Based Autonomous Driving

at Intersections in CARLA Simulator. Sensors 2022, 22, 1424–8220. [CrossRef]
9. Yu, W.; Qian, Y.; Xu, J.; Sun, H.; Wang, J. Driving Decisions for Autonomous Vehicles in Intersection Environments: Deep

Reinforcement Learning Approaches with Risk Assessment. World Electr. Veh. J. 2023, 14, 2032–6653. [CrossRef]
10. Xia, X.; Meng, Z.; Han, X.; Li, H.; Tsukiji, T.; Xu, R.; Ma, J. Automated Driving Systems Data Acquisition and Processing Platform.

arXiv 2022, arXiv:2211.13425.
11. Liu, W.; Quijano, K.; Crawford, M.M. YOLOv5-Tassel: Detecting Tassels in RGB UAV Imagery with Improved YOLOv5 Based on

Transfer Learning. IEEE J. Sel. Top. Appl. Earth Obs.Remote Sens. 2022, 15, 8085–8094. [CrossRef]
12. Tampuu, A.; Aidla, R.; van Gent, J.A.; Matiisen, T. LiDAR-as-Camera for End-to-End Driving. Sensors 2023, 23, 1424–8220.

[CrossRef] [PubMed]
13. Chen, J.; Yuan, B.; Tomizuka, M. Deep imitation learning for autonomous driving in generic urban scenarios with enhanced

safety. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8
November 2019; pp. 2884–2890.

14. Toromanoff, M.; Wirbel, E.; Wilhelm, F.; Vejarano, C.; Perrotton, X.; Moutarde, F. End to end vehicle lateral control using a single
fisheye camera. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid,
Spain, 1–5 October 2018; pp. 3613–3619.

15. Geng, G.; Wu, Z.; Jiang, H.; Sun, L.; Duan, C. Study on Path Planning Method for Imitating the Lane-Changing Operation of
Excellent Drivers. Appl. Sci. 2018, 8, 2076–3417. [CrossRef]

16. Li, D.; Zhao, D.; Zhang, Q.; Chen, Y. Reinforcement learning and deep learning based lateral control for autonomous driving
[application notes]. IEEE Comput. Intell. Mag. 2019, 14, 83–98. [CrossRef]

17. Zhu, Z.; Zhao, H. A Survey of Deep RL and IL for Autonomous Driving Policy Learning. IEEE Trans. Intell. Transp. Syst. 2022, 23,
14043–14065. [CrossRef]

http://doi.org/10.1109/JSEN.2022.3150073
http://dx.doi.org/10.1109/TCST.2022.3174511
http://dx.doi.org/10.1109/JSEN.2021.3059050
http://dx.doi.org/10.3390/s22218373
http://dx.doi.org/10.3390/wevj14040079
http://dx.doi.org/10.1109/JSTARS.2022.3206399
http://dx.doi.org/10.3390/s23052845
http://www.ncbi.nlm.nih.gov/pubmed/36905051
http://dx.doi.org/10.3390/app8050814
http://dx.doi.org/10.1109/MCI.2019.2901089
http://dx.doi.org/10.1109/TITS.2021.3134702

Appl. Sci. 2023, 13, 6400 17 of 17

18. Park, M.; Lee, S.Y.; Hong, J.S.; Kwon, N.K. Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in
Sparse Reward Environments. Sensors 2022, 22, 1424–8220. [CrossRef] [PubMed]

19. Kendall, A.; Hawke, J.; Janz, D.; Mazur, P.; Reda, D.; Allen, J.M.; Shah, A. Learning to drive in a day. In Proceedings of the
International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 8248–8254.

20. Qiao, Z.; Muelling, K.; Dolan, J.M.; Palanisamy, P.; Mudalige, P. Automatically generated curriculum based reinforcement learning
for autonomous vehicles in urban environment. In Proceedings of the IEEE Intelligent Vehicles Symposium (IV), Changshu,
China, 26–30 June 2018; pp. 1233–1238.

21. Isele, D.; Rahimi, R.; Cosgun, A.; Subramanian, K.; Fujimura, K. Navigating Occluded Intersections with Autonomous Vehicles
Using Deep Reinforcement Learning. In Proceedings of the IEEE international conference on robotics and automation (ICRA),
Brisbane, QLD, Australia, 21–25 May 2018; pp. 2034–2039.

22. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Hassabis, D. Human-level control through deep
reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

23. Dosovitskiy, A.; Ros, G.; Codevilla, F.; López, A.; Koltun, V. CARLA: An Open Urban Driving Simulator. In Proceedings of the 1st
Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017; pp. 1–16.

24. Plappert, M.; Andrychowicz, M.; Ray, A.; McGrew, B.; Baker, B.; Powell, G.; Schneider, J.; Tobin, J.; Chociej, M.; Welinder, P.; et al.
Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request for Research. arXiv 2018, arXiv:1802.09464.

25. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. arXiv 2015, arXiv:1509.02971.

26. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,
arXiv:1707.06347.

27. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous methods for deep
reinforcement learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June
2016; pp. 1928–1937.

28. Bansal, M.; Krizhevsky, A.; Ogale, A. Chauffeurnet: Learning to drive by imitating the best and synthesizing the worst. arXiv
2018, arXiv:1812.03079.

29. Liu, R.; Lehman, J.; Molino, P.; Such, F.P.; Frank, E.; Sergeev, A.; Yosinski, J. An intriguing failing of convolutional neural networks
and the coordconv solution. In Proceedings of the 32st International Conference on Neural Information Processing Systems (NIPS
2018), Montréal, QC, Canada, 2–8 December 2018; pp. 9605–9616.

30. Chen, J.; Yuan, B.; Tomizuka, M. Model-free deep reinforcement learning for urban autonomous driving. In Proceedings of the
IEEE intelligent transportation systems conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 2765–2771.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/s22249574
http://www.ncbi.nlm.nih.gov/pubmed/36559941
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670

	Introduction
	Reinforcement Learning
	Method
	State Space
	Action Space
	Reward Function
	Collision Penalty
	Longitudinal Speed
	Lane Departure
	Lateral Speed
	Brake Reward
	Throttle Penalty

	Policy and Value Function as Neural Networks
	Termination Conditions
	Specify the Number of Steps to Perform in the Episode
	Out of Lane
	Collision Occurs

	Results and Discussion
	Experimental Environment
	Comparative Analysis of Algorithms
	Analysis of Training Results
	Analysis of Test Results

	Ablation Study
	Analysis of Training Results
	Analysis of Test Results

	Conclusions
	References

