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Abstract: Aiming at nonlinear flow in fractured porous media, based on the finite volume method,
the discrete equations of Darcy flow in porous and Forchheimer flow in fracture were derived, and a
solution method for coupling flow is proposed. The flow solution by the proposed method for single
fracture and intersecting fracture is verified against Frih’s solution. Based on this method, nonlinear
flow behavior for fractured rock deep-buried tunnels under high water heads was discussed. The
results show that the hydraulic gradient of surrounding rock is characterized by “large at the bottom
and small at the top”, with a maximum difference of 2.5 times. Therefore, the flow rate at the bottom of
the tunnel is greater than that at the top. The fracture flow rate along the flow direction is also greater
than that in the vertical flow direction, with a maximum difference of 60 times. The distribution
homogeneity and density of fracture are the most important factors that affect the hydraulic behavior
of fractured rock tunnels. The more fractures concentrated in the direction of water pressure and the
greater the density, the greater the surrounding rock conductivity and the greater the flow rate of the
tunnel. Under this condition, the water-inflow accident of the tunnel would be prone to occur. The
research results provide a reference for the waterproof design and engineering practice of fractured
rock tunnels.

Keywords: fractured rocks; Forchheimer flow; Darcy flow; finite volume method

1. Introduction

Seepage in the rock mass is one of the cores of rock mechanics, involving tunneling,
mining, petroleum, hydropower, geothermal exploitation, and other projects [1–3]. On
the one hand, the high permeability of rock fracture leads to a higher fluid flow rate in
the fracture compared with the flow in the rock matrix [4,5]. On the other hand, rock
permeability is low, and a fluid will pass slowly through the matrix in a rock mass. A
complex coupling process for fluid flow exists in fracture and matrix. Therefore, it is still
challenging to establish an effective seepage model for rock mass. Since the 1970s, various
seepage models of rock mass have been proposed based on the understanding of fracture
characteristics and distribution [6–8].

The continuum media model is applicable to model fluid flow in a rock mass with a
large number of small and regular distribution fractures [9,10]. Based on the homogeneity
theory, seepage coefficient tensor theory, generalized Darcy’s law, and the fluid continuity
equation, the partial differential equations of flow and pressure are derived. The partial
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differential equations are solved by the initial conditions and the boundary, and the velocity
and pressure fields of the whole flow field are obtained. However, when there are masses of
faults or fractures in the study area, the rationality of using the equivalent continuum model
remains to be discussed. The discrete fracture network model only considers the seepage of
macroscopic fractures in the rock mass, which are usually generated randomly according
to their occurrence, size, and hydrological parameters [11]. The governing equation is
established based on the flow balance principle at the intersection of each fracture, and
then the matrix equation of pressure and flow is obtained by combining the flow equation
of a single fracture. Finally, the velocity field and pressure field are obtained by solving the
equations. The discrete fracture network model is suitable for large-scale fractures with
sparse distribution in the rock mass. However, it does not consider the flow condition
of the rock block, and the error may be larger in some high-porosity rock masses. The
dual medium model divides fractured rock mass into a porous system and a fractured
system [12,13]. It is assumed that water flows on the porous system and the porous system
is used to store fluid. The two flow systems exchange on the fracture wall, which satisfies
the conservation law of flow. The generalized model holds that the interconnected fracture
is the channel of fluid flow, while the pore and the isolated fracture are the stores of fluid.
The flow exchange between the two on the interconnected fracture wall satisfies the law of
flow conservation. Therefore, the dual medium model can describe the preferential flow
phenomenon. At the same time, the exchange effect of water flow is taken into account,
which makes the simulation have better accuracy.

In the early days, dual media models assumed that fluid flow in fractured or porous
media would conform to Darcy’s law. Darcy’s Law is consistent with a single-phase
incompressible flow in porous media at low flow rates, such as water-bearing reservoirs in
an underground rock mass with low permeability. However, Darcy’s Law does not apply
to wells or high permeability fracture areas where flow rates are higher. To describe the
seepage law at high flow rates, one of the simplest ways is to add a second amendment
term in Darcy’s Law, which has been widely adopted as Forchheimer’s Law. The law
combines the viscous effect and the inertia effect: At low flow, the viscous effect dominates,
and the model is simplified to Darcy’s law. When the flow rate is increased, the inertia effect
is dominant, which makes the pressure increase nonlinearly with the flow rate. Huang
and Ayoub (2008) [14] and Barree and Conway (2004) [15] proved that Forchheimer’s
law for laminar flow is effective in a certain range. Chen et al. (2001) [16] and Giorgi
et al. (1997) [17] derived Forchheimer’s Law from the theoretical perspective through
the homogeneous and perturbation methods, respectively, and proved its existence and
uniqueness. Numerically, Douglas et al. (1993) [18] and Xu et al. (2017) [19] obtained the
approximate solution of seepage by using different methods, such as the finite difference
method and the multipoint flux approximation method. The forms of those solutions are
consistent with Forchheimer’s law.

For Darcy flows in the fractures and pores of the rock, the main difficulty of the dual
media simulation method is the coupling problem between n-dimensional (n = 2, 3) pore
media flows and n − 1-dimensional fractures [20–22]. In recent years, many scholars have
conducted in-depth studies on this problem. For example, Lang et al. (2014) [23] proposed
a calculation method for the total permeability tensor of fracture–pore dual media based on
the dual media theory. However, there are few reports on a Forchheimer flow simulation
with dual media seepage considering fractures under high permeability pressure. The main
difficulty of this problem lies in solving the nonlinear system after fracture discretization.
Among them, Fri et al. (2008) [24] adopted the interface model to deal with fractures,
added nonlinear transfer conditions to the contact, and simplified the problem into a
nonlinear system problem of (n − 1)-dimension by using region decomposition technology.
Arrears et al. (2019) [25] adopted the multi-grid method to calculate the nonlinear system
problem and discussed the robustness of the nonlinear system for the dual media Darcy–
Forchheimer flow. The results showed that the algorithm was heavily dependent on mesh
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size and the Forchheimer coefficient. So far, there is still no good method to solve the
double medium Darcy–Forchheimer flow problem [26,27].

During the long-term operation of tunnels under high water heads, water gushing is a
commonly existing engineering geological disaster that needs to be highly paid attention
to [28]. The Darcy flow is usually used to analyze seepage conditions in the tunnel rock
mass. However, under a high water head, the Darcy flow would result in a large deviation
from the field test [29]. Therefore, it is necessary to analyze the seepage field of the
tunnel surrounding the rock by using the Darcy–Forchheimer coupled flow method in the
fractured rock mass.

Thus, based on previous studies, a Darcy–Forchheimer coupled flow method in the
fractured rock mass is proposed based on the finite volume method, taking into account the
Forchheimer flow in fractured media and the Darcy–Forchheimer coupled flow in porous
media. Based on this method, the nonlinear seepage law of the tunnel surrounding rock
is studied, which provides some theoretical and technical support for the waterproofing
design of a fractured tunnel.

2. Materials and Methods
2.1. Seepage Equations in the Rock Matrix

The seepage velocity of groundwater in the homogeneous rock matrix is slow and fol-
lows Darcy’s flow law. Assuming that the fluid is incompressible, the mass and momentum
conservation equations of the fluid flowing in the matrix are [30],

um = − km

µ
∇pm (1)

∇um = qm (2)

where um is flow velocity in the rock matrix, km is the permeability coefficient of the rock
matrix, µ is the viscosity coefficient of fluid, pm is the fluid pressure of the rock matrix, and
qm is the fluid source of the rock matrix.

2.2. Seepage Equations in Fracture

Under a high hydraulic gradient, groundwater flows faster in fractures, which can be
described by Forchheimer’s law. The relationships between the pressure gradient and the
flow velocity of the fluid in the fracture are as follows [30],

(1 + β|u f |)u f = −
k f

µ
∇p f (3)

∇u f = q f (4)

where uf is flow velocity in the rock fracture, kf is the permeability coefficient of the rock
fracture, pf is the fluid pressure of the rock fracture, qf is the fluid source of the rock fracture,
and β is the Forchheimer coefficient.

To consider the flow exchange of the porous media and the fractured media, the
exchange function Ψ is introduced to show their mutual effect. The strength of flow
exchange between porous media and fractured media is related to fluid characteristics
and fracture connectivity. Therefore, the exchange function of pressure can be defined
as follows:

Ψ f m = CI × km

µ
×

p f − pm

L
(5)

Ψ f m = CI ×
k f

µ
×

pm − p f

A
(6)
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where CI is the connectivity of the fractures, and L and A are the area (length) of the fracture
and the volume (area) of the pore, respectively. Connectivity CI was defined by [31] and
expressed as,

CIij,k =
Aij,k

dij,k
(7)

where Aij,k is the total length of fracture k in pore matrix element ij, and the average distance
between fracture element k and pore matrix element ij, as shown in Figure 1.

Figure 1. Schematic diagram of fractured porous media.

CIij,k =
Aij,k

dij,k
(8)

dij,k =

∫
lkdA
Aij

(9)

By expanding this formula, the double integral expression is obtained,

dij,k =

s √
(x′ − x′ko)

2 +
(
y′ − y′ko

)2dx′dy′
s

dx′dy′
(10)

where, (x′ko, y′ko) is the central coordinate of fracture element k in the local coordinate
system. Equation (10) generally has analytical expressions in a small part of cases, while
most cases must be solved by numerical method. Hajibeygi et al. (2011) [31] gave analytic
expressions in some cases.

By substituting the pressure exchange function into Equations (1)–(4), the governing
equations of pore and fracture seepage can be obtained,

qm +∇( km

µ
∇pm) + Ψm f = 0 (11)

∇
k f

µ
∇p f + (1 + β|u f |)q f+Ψ f m = 0 (12)

Equations (11) and (12) describe Darcy flow in porous media and Forchheimer flow in
fractured media under high water pressure. The relations to two flows use the pressure
exchange function.
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3. Numerical Solutions
3.1. Discrete Scheme Using Finite Volume Method
3.1.1. Discrete Scheme of Seepage Equation in Porous Media

The porous media zone Ω was discretized into the quadrilateral element Ωij, as shown
in Figure 1. Integrating the porous media seepage equation using the Gauss theory, the
volume fraction of Equation (11) can be converted into the surface integral perpendicular
to the external surface [30], ∫

Ωij

(qm +∇( km
µ ∇pm) + Ψm f )dV ⇒∫

∂Ωij

( km
µ ∇pm + Ψm f )nds +

∫
Ωij

qmdV
(13)

Using the finite volume method, the central difference discrete form of the Ωij seepage
equation for each element is obtained,

∆y
(

k
µ

)m

i,j
∆x

(
pm

i,j − pm
i−1,j

)
+

∆y
(

k
µ

)m

i,j
∆x

(
pm

i,j − pm
i+1,j

)
+

∆x
(

k
µ

)m

i,j
∆y

(
pm

i,j − pm
i,j−1

)
+

∆x
(

k
µ

)m

i,j
∆y

(
pm

i,j − pm
i,j+1

)
+qm

ij ∆x∆y + ∑
Ωij∩Ωk

CIk

(
k
µ

)
ij,k

(p f
k − pm

ij ) = 0

(14)

3.1.2. Discrete Scheme of Seepage Equation in Fracture

Similarly, one-dimensional elements were used to discretize fractures to obtain the
central difference discretization form of seepage Equation (12) of each element as follows:

bk

(
k
µ

) f

k
∆x f

(
p f

k − p f
k−1

)
+

bk

(
k
µ

) f

k
∆x f

(
p f

k − p f
k+1

)
+
(

1 + β
∣∣∣u f

∣∣∣)qm
ij b∆x f − ∑

Ωij∩Ωk

CIk

(
k
µ

)
ij,k

(p f
k − pm

ij ) = 0
(15)

3.2. Treatment of Intersecting Fracture

When the fluid passes through the intersecting fracture, it will lead to fluid head loss
and affect the seepage behavior of the whole area. To consider the impact of intersecting
fractures on the water head, Karimi et al. (2004) [32] calculated the conductivity Tij of two
intersecting fractures (i and j) using the following formula:

Tij =
Ui ×Uj

Ui + Uj
(16)

Ui =
k f i

µ

bi
0.5∆x f

, Uj =
k f i

µ

bj

0.5∆x f
(17)

where ∆xf is the length of the element, and bi and bj are the apertures of i element and j
element, respectively.

3.3. Solution Strategy

According to the solution steps of the finite volume method, a large sparse equation
group T·x = A was obtained by assembling the pressure discrete equations of each element,
including the seepage equations in porous media and fractured media. The coefficient
matrix T is,

T =

(
Tmm Tm f

T f m T f f

)
(18)
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where Tmm is the conduction matrix in porous media, Tff is the conduction matrix of
fractures, including the conduction coefficient of fractures and their intersections. Tmf

and Tfm comprise the pore–fracture exchange conduction matrix and the fracture–pore
exchange conduction matrix. It is worth noting that the fracture conduction matrix Tff is a
function of velocity, so the assembled equations are nonlinear. To solve the equations, a
fixed-point iterative algorithm is used [26,27]. The method is described as follows: Based
on the above calculation method, the MATLAB programming function is used to design
the nonlinear seepage program in the dual media. The program flow chart is shown in
Figure 2. As seen in Figure 2, the connectivity index CI and Ψ function are first calculated.
At the same time, the fracture velocity is initiated. The conduction matrix of porous and
fractured media is then determined. Considering pressure and velocity boundaries, the
pressure matrix is assembled and solved. When pore and fracture pressure tolerance is
smaller than the allowable value, the calculation finishes. If not, the calculation returns
back to the conduction matrix calculation.

Figure 2. Flowchart of coupling Darcy–Forchheimer flow in fractured porous media.

4. Validation

The two selected examples were reported by [24]. The two models were rectangular
regions with a size of 2 × 1 m. Model 1 contained four fractures with an aperture of 0.01 m,
which intersected at one point T1. Model 2 contains five fractures with an aperture of
0.01 m, which intersect at points T2 and T3. The permeability coefficient km of porous area
is 10−9 m2, and the permeability coefficient of fracture is 10−7 m2. The boundary conditions
are as follows: the water pressure is set as 106 and 0 Pa at the left and right boundaries of
the porous region, 106 and 0 Pa at the upper and lower boundaries of the fracture, and the
other boundaries are flow-free boundaries, as shown in Figure 3a,b. The fluid has a density
of 1000 kg/m3 and a viscosity coefficient of 10 × 10−3 Pa·s. To illustrate the accuracy of
the proposed method, error index e is used to represent the difference between the new
method and the solutions of [24],

e =
∑(pNew−pF)

2

∑(pF)
2 × 100% (19)

where p is the pressure distribution calculated by the new method, and pF is the pressure
distribution calculated by [24]. Firstly, the pressure distribution of the case with a nonlinear
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parameter β = 10 and a mesh size of 0.02 m is simulated. Figure 4 shows the pressure
distribution and fracture velocity distribution calculated by the new method. The calculated
pressure distribution and fracture velocity distribution are consistent with the calculated
results of [24].

Figure 3. Geometry model of intersecting fracture cases.

Figure 4. Pressure distribution of two cases.
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In addition, the influence of different mesh sizes on the accuracy of the pressure
solution was investigated. Figure 5 shows the relationship between mesh size h and the
calculation error index e of the new method. It can be seen that for the mesh size range
investigated, the calculation error index e decreases from 12% to 0.6% with decreasing mesh
size. When the mesh size is less than 0.01 m, the error index is less than 1%, which indicates
that the new method can describe the nonlinear seepage behavior in the dual media.

Figure 5. Relationship of error and mesh size for intersecting fracture case.

5. Nonlinear Seepage Analysis of Tunnel
Model Setting and Calculating Parameters

Due to the complex geological conditions and large water pressure of buried fracture
tunnels with rich water depth, the traditional calculation of cubic law would result in a
large deviation from the field test. Therefore, it is necessary to analyze the seepage field of
the tunnel surrounding the rock by using the Darcy–Forchheimer coupled flow method in
the fractured rock mass.

As shown in Figure 6, a numerical model of the buried tunnel with rich water depth is
divided into 10,000 quadrilateral elements, with a total number of 10,201 nodes and a size
of 0.8 m. The length and height of the calculation model are 80 m and 80 m, respectively,
according to the geological conditions of the site and the influence of the boundary. The
tunnel is a circular tunnel with a radius of 3 m and the coordinates of the center of the
circle are (40,40). The tunnel does not consider the support measures and implements
internal drainage, so the tunnel water pressure p is 0 Pa. The calculation parameters were
selected from the engineering geology report. The water density was set as 1000 kg/m3, the
permeability coefficient of rock mass was 1× 10−8 m2, the porosity was 0.3, and the fracture
permeability coefficient was 1 × 10−5 m2. The viscosity of the fluid is 10 × 10−3 Pa × s.
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Figure 6. Geometry model of tunnel.

In the simulation, it is assumed that the water supply of the surrounding rock far
site is sufficient, and the underground water surface does not decrease with the tunnel
drainage. Therefore, the groundwater level remains constant, and the water pressure is
0 Pa. The seepage field of the tunnel is linearly distributed along the numerical direction
under the action of gravity and the gradient is fluid gravity. Therefore, the water pressure
at the bottom is 8 × 105 Pa (80 m head), and the water pressure on both sides is linear, as
shown in Figure 6.

To simplify the calculation, the tunnel model does not consider the geological struc-
ture, such as strata and faults, and only simulates the influence of random fractures
in surrounding rock. The fracture model was generated by the random Mento-Carlo
method [33–36]. The position of the fracture obeys uniform distribution, and the length
obeys exponential distribution,

f (l) = λe(−λl) (20)

where f (l) is the probability density function of fracture length, and λ is the exponential
distribution parameter. The length of fracture is in the range of [lmin, lmax]. Another
important parameter is the direction of the fracture. In the three-dimensional fracture, it
refers to the inclination and dip angle of the fracture, while in the two-dimensional fracture
system, it can be expressed by the angle of the fracture θ. The angle θ of fracture can be
simulated by the von-Mises distribution,

f (θ) =
eκ cos (θ−µ)

2π I0(κ)
(21)

In(κ) =
1
π

∫ π

0
exp(κ cos(x)) cos(nx)dx (22)

where µ is the mean value of fracture inclination and κ is the von-Mises distribution
coefficient, which indicates the non-uniform distribution of fracture.

6. Result and Discussion

Based on the numerical method of nonlinear flow in dual media, the influences of
fracture heterogeneity and density on the evolution of inrush flow in fractured surrounding
rock tunnels are studied.

(1) The effects of heterogeneity of fracture

To investigate the influence of fracture orientation inhomogeneity, the simulated
fracture parameters κ are 0, 1, 2, 4, and 8. The larger κ is, the more non-homogenous the
fracture distribution is. Other parameters are as follows: the aperture of all fractures is set
at 0.1 mm, the length of fracture is between [10, 80] m, and the exponential distribution is
λ = 1. The average fracture angle is 90◦.
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Figure 7 is the cloud map of water pressure distribution in a tunnel surrounding
rock with different κ values. As can be seen, the water head of the whole flow field
expands outward in concentric circles with the tunnel. The water pressure nephogram
of surrounding rock with different κ values is slightly different, which indicates that the
uniformity of fracture affects the water pressure distribution of surrounding rock in the
tunnel. To better illustrate this difference, the water pressure in y = [30, 50] sections of the
tunnel centerline at x = 40 was taken, and the water pressure distribution with different κ
values was plotted as shown in Figure 8. The water pressure near the bottom of the tunnel
changes greatly, with an average gradient of 8300 Pa/m, while the water pressure near the
top of the tunnel changes less, with an average gradient of 3300 Pa/m. This suggests that
the flow at the bottom of the tunnel is higher than at the top. In addition, the greater the κ
value is, the greater the water pressure gradient around the tunnel is. But the influence on
the surrounding rock at the bottom of the tunnel is less than that at the top of the tunnel.
This indicates that the more the fracture direction is concentrated in the direction of the
hydraulic gradient, the larger the tunnel flow will be.

Figure 7. Water pressure distribution of fractured rock tunnel under different κ values.

Figure 9 shows the flow distribution of the fracture network with different κ values.
As can be seen, the fracture flow distribution has obvious heterogeneity: the fracture
flow along the flow direction (Y-axis) is large, the fracture flow along the vertical flow
direction (X-axis) is small, and the maximum flow is about 60 times the minimum flow.
The maximum fracture flow is distributed near the tunnel, ranging from 1 × 10−6 to
2 × 10−6 m3/s/m. The main reason is that there is a large hydraulic gradient at the tunnel
exit, which is consistent with the analysis results of the above water pressure distribution.
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Figure 8. Water pressure distribution of tunnel rock at [30, 50] range under different κ values.

Figure 9. Fracture flow rate distribution under different κ values.

(2) The effects of fracture density

The influence of the number of fractures on the seepage field of the tunnel surrounding
rock is analyzed by changing the number of fractures. The number of fractures is 10, 50,
100, 150, 200, and 300. The other parameters are the same as in section (1). Figure 10
shows the distribution of water pressure and velocity of surrounding rock under different
N values. The water pressure distribution around the tunnel is less affected by the number
of fractures. Similarly, the water pressure at y = [30, 50] of the tunnel centerline with x = 40
was taken, and the water pressure distribution with different N values were drawn, as
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shown in Figure 11. The greater the value of N, the greater the water pressure gradient
around the tunnel. However, the influence of N value change on the surrounding rock
at the tunnel bottom is less than that at the tunnel top. This indicates that the greater the
number of fractures, the greater the water pressure gradient of the tunnel surrounding rock
is, and the greater the tunnel flow is.

Figure 10. Water pressure distribution of fractured rock tunnel under different fracture numbers.

In addition, the flow distribution of the fracture network under different N values
was calculated, as shown in Figure 12. It can be seen that the N value will affect the flow
distribution of the fracture. The larger the value of N, the more fractures with high flow
there are, although mainly distributed near the tunnel. The main reason for this is that the
N value affects the number of fractures. The larger the N value, the more fractures there
are, and the more likely they are to intersect with the tunnel, resulting in more fractures
with high flow.

In conclusion, the distribution heterogeneity and density of fracture are the key factors
affecting the pressure field and water inflow of fractured surrounding rock tunnels. For
deep-buried water-rich fractured tunnels, the more the fracture direction is concentrated
in the direction of water pressure and the higher the density is, the more water-gushing
accidents will occur in the tunnels. Therefore, it is necessary to find out the relevant
geological body information, such as fractures and faults, in time and take all-inclusive
waterproofing measures when necessary.
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Figure 11. Water pressure distribution of tunnel rock at [30, 50] range under different
fracture numbers.

Figure 12. Fracture flow rate distribution under different fracture numbers.

It is also noted that the representativeness of fracture distribution uses two parameters,
namely fracture heterogeneity and density. This work focus on the effects of fracture
heterogeneity and density on flow behavior in the tunnel. Although the generation of
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fractures is based on the Monte Carlo method, the influences originate from several fracture
network models. Hence, the results are applicable to flow in fractured rock tunnels.

7. Conclusions

Based on the finite volume method, the discrete scheme of the Darcy flow equation
in porous media and the Forchheimer flow equation in the fracture is derived, and the
solution method of the coupled flows is proposed. Based on this method, the nonlinear
seepage law of buried fractured surrounding rock tunnel with rich water depth is studied,
and the main conclusions are as follows:

(1) The results of the new method are compared with those of Frih et al. (2008) for
intersecting fracture cases. The pressure and fracture velocity distributions calculated
by the new method are consistent with those calculated by Frih et al. (2008). When
the mesh size is less than 0.02 m, the calculation error is less than 1%. Therefore, the
new method can accurately describe the nonlinear seepage behavior in fractured and
porous media.

(2) The water pressure gradient of the surrounding rock in the fractured tunnel presents
the characteristics of “large at the bottom and small at the top”, which indicates that
the flow at the bottom of the tunnel is higher than that at the top. In addition, the
fracture flow along the flow direction is large, the vertical flow direction is small, and
the maximum flow is 60 times the minimum flow.

(3) The random fracture uniformity affects the hydraulic characteristics of the tunnel
surrounding the rock. The more the fracture direction is concentrated in the direction
of the hydraulic gradient, the stronger the conductivity of the surrounding rock is and
the greater the water inflow is.

(4) Fracture density is another important factor affecting the conductivity of the tunnel
surrounding the rock. The greater the fracture density, the greater the water pressure
gradient and the greater the tunnel flow. The main reason is that the larger the fracture
density is, the more fractures there are, and the more likely it is to intersect with the
tunnel, resulting in more fractures with high flow. It is also noted that although the
generation of fractures is based on the Monte Carlo method, the influences originate
from several fracture network models. Hence, the new insights are applicable to flow
in fractured rock tunnels.
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