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Abstract: Buildings are responsible for a high percentage of global energy consumption, and thus, the
improvement of their efficiency can positively impact not only the costs to the companies they house,
but also at a global level. One way to reduce that impact is to constantly monitor the consumption
levels of these buildings and to quickly act when unjustified levels are detected. Currently, a variety
of sensor networks can be deployed to constantly monitor many variables associated with these
buildings, including distinct types of meters, air temperature, solar radiation, etc. However, as
consumption is highly dependent on occupancy and environmental variables, the identification of
anomalous consumption levels is a challenging task. This study focuses on the implementation of
an intelligent system, capable of performing the early detection of anomalous sequences of values
in consumption time series applied to distinct hotel unit meters. The development of the system
was performed in several steps, which resulted in the implementation of several modules. An initial
(i) Exploratory Data Analysis (EDA) phase was made to analyze the data, including the consumption
datasets of electricity, water, and gas, obtained over several years. The results of the EDA were used to
implement a (ii) data correction module, capable of dealing with the transmission losses and erroneous
values identified during the EDA’s phase. Then, a (iii) comparative study was performed between a
machine learning (ML) algorithm and a deep learning (DL) one, respectively, the isolation forest (IF)
and a variational autoencoder (VAE). The study was made, taking into consideration a (iv) proposed
performance metric for anomaly detection algorithms in unsupervised time series, also considering
computational requirements and adaptability to different types of data. (v) The results show that the
IF algorithm is a better solution for the presented problem, since it is easily adaptable to different
sources of data, to different combinations of features, and has lower computational complexity. This
allows its deployment without major computational requirements, high knowledge, and data history,
whilst also being less prone to problems with missing data. As a global outcome, an architecture
of a platform is proposed that encompasses the mentioned modules. The platform represents a
running system, performing continuous detection and quickly alerting hotel managers about possible
anomalous consumption levels, allowing them to take more timely measures to investigate and solve
the associated causes.

Keywords: outliers detection; data quality; machine learning; deep learning; energy/water/gas
anomalous consumption; buildings anomalous consumption detection platform

1. Introduction

The increasing impacts of climate change have caused a global awakening of individu-
als and governments, resulting in a necessary commitment to search for and implement
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solutions capable of combating them. In Western societies, the prosperity of the adopted
economic model of consumption is highly dependent on energy resources, placing high
pressure on their exploitation. The global report of the International Energy Agency pointed
out an increase in global energy demand by 4.6% in 2021 compared to 2020, exceeding
the pre-COVID-19 pandemic levels. Global economic growth was also revised upwards
and pointed to a 6.0% increase, with CO2 emission levels rising by nearly 4.8% due to
the demand for primary energy resources, such as coal, oil, and natural gas [1]. In this
context, it is understood that energy consumption is inherent to economic growth and,
nowadays, the consequent emission of greenhouse gases into the atmosphere somehow
seems inevitable.

These results, illustrating a growing demand for energy, place serious questions on
the environmental goals set for the coming years, namely the decarbonization of society
by 2050. Nevertheless, the objectives are clear and the impacts are positive, involving
a transition to greener society, based on three pillars: renewable electricity production,
electric mobility, and energy efficiency [2].

Renewable production has been around for several years, but photovoltaic and wind
production have only gained importance in the last 10 years with the technological evo-
lution of photovoltaic panels and wind turbines. For example, in Portugal, according
to data from the Portuguese Renewable Energy Association, renewable generation was
responsible for supplying 65.4% of the energy consumed in 2021, avoiding the emission of
11.6 MtCO2eq (megatonnes of Carbon Dioxide Equivalent) [3].

Electric mobility is also a reality these days, with substantial growth in the mobility
market share each passing year [4]. People’s acceptance of these vehicles is partly due to
the development of charging infrastructures, the greater reliability of batteries, and the
increase in autonomy, which is beginning to be comparable, and even in certain models
superior, to vehicles powered by combustion engines [5,6].

Finally, in our list, is energy efficiency, associated with the optimization of its use, i.e.,
consuming less and generating more. Much has been invested into improving the energy
efficiency of buildings, which represent 30–45% of global energy consumption [7] and in
the integration of building management systems, i.e., systems that monitor buildings and
optimize the resources for their exploration.

In the latter context, the reduction in consumption through the detection of anomalies
is one area of study in which there is great interest in energy management, because anoma-
lous consumption often represents additional losses, reflected by higher costs and environ-
mental pollution. Several intelligent solutions have been proposed that aim to perform the
early detection of defects and thus mitigate their effects [8–10], but this is not a closed issue.

The case study presented here aims specifically to describe the steps taken in the
implementation of an intelligent system capable of performing the detection of non-normal
consumption levels for hotel units. One of the biggest challenges in developing these solu-
tions for hotel units is the difficult characterization of the building’s consumption patterns.
Sometimes, the dependence on factors such as outside temperature, solar intensity, the day
of the week, the hour of the day, the building occupancy, the provision of external services
(e.g., events, conferences), and unplanned occupancy, among others, cause randomness
and unpredictability in the way that consumption is processed, making the task of anomaly
detection algorithms very challenging [11,12]. Other problems that may arise in the de-
velopment of these solutions are related to the need for a reliable data collection system
or the need for a solution adaptable to different meters and hotels, creating a problem
of generalization of the algorithms. To provide effective answers to the above-identified
problems, general requirements were defined for the development of the intelligent system
in this study, namely: (1) Integrate data from multiple sensors, which collected data at the
premises of the hotel (or other) services; (2) Make use of data science methodologies to
process and extract knowledge from available data; and (3) Detect anomalies associated
with consumption (e.g., energy, gas, or water) in a hotel environment.
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The intelligent system proposed here intends to be different from others in the sense
of (a) allowing an easy adaptation to different data with distinct behaviors; (b) being
compliant and easily adaptable to the different availability and combinations of variables;
and (c) being computationally scalable by supporting the analysis of hundreds of data
streams on a limited computational environment. In terms of (a), some appliances, such as
air conditioning, are mainly used when the temperature increases above the comfort level
or decreases significantly, while water heater systems require higher consumption when the
temperature is low (possibly being part of the year disconnected, when supported on solar
water heaters). Another example is water consumption, which has variations but is always
present, with peaks dependent on the season and hour of the day. In terms of (b), distinct
hotels have different sets of meters, information concerning occupancy, or meteorological
data. Thus, the implemented system must be capable of adapting to whatever variables
are available. Finally, related to (c), the system is expected to make predictions (anomaly
detection) but also ML/DL model updates (fitting of new data) while supported in limited
computer resources and multiple data streams.

Thus, as a study case, the work can be summarized as follows. (i) Data from a hotel
were used as the main driver for the study of two anomaly detection algorithms. (ii) As can
be expected from real scenarios, the developed EDA revealed data problems (e.g., readings
are missing and erratic reading peaks) which led to the investigation and adoption of
methods to repair those data, before it was presented to the anomaly detection algorithms.
At this level, the interquartile range was used to detect possible outliers and a linear
weighted moving average was used to repair missing data. (iii) A metric to measure
the accuracy and tardiness of the anomaly detection algorithms was proposed. (iv) A
comparison between the isolation forest algorithm and a variational autoencoder was
made, allowing us to validate that, for a system with limited computational resources and
expected to look for anomalies in many meters of different hotels, the former is probably the
best solution as an anomaly detection method. Finally, (v) the architecture for an anomaly
detection intelligent system is proposed.

With the system requirements established, the study was organized in the following
way. A brief state-of-the-art analysis of anomaly detection in buildings consumption is
presented in Section 2. The section starts by introducing the anomaly detection problem and
then analyzes some developments and case studies in the building consumption anomaly
detection field. Then, in Section 3, the theoretical background behind the algorithms
studied here is explained and a newly proposed metric to compare the performances of the
algorithms in unsupervised time series is presented. Section 4 provides an exploratory data
analysis, introducing the procedures performed to analyze the data and the methods used
to correct the identified readings problems. Section 5 describes the solutions that support
the module for data treatment. Section 6 presents the comparison study between the IF and
VAE algorithms. Finally, the proposal of a platform, the conclusions, and some future steps
are presented in the last two sections.

2. Anomaly Detection in Building’s Consumption: A Brief Overview of the State of
the Art

Nowadays, the development of intelligent platforms hardly exists without the use of
ML algorithms [13,14]. Before proceeding to describe the methodology used in the detection
of anomalous consumption levels (Section 3), this section presents an introduction to the
anomaly detection problem and an analysis of the state of the art at the algorithmic level.

An anomaly detection problem can be defined by finding points or patterns in the data
that are very distinct from the rest [15]. Anomaly detection is an area of broad scope that can
be used in many fields of knowledge, such as fraud detection [16–18], image processing [19],
healthcare [20,21], equipment failure detection [22,23], or consumption [9,24]. Anomaly
detection problems are generally divided into three main categories [15,25]: (i) Supervised;
(ii) Semi-supervised; or (iii) Unsupervised detection. Supervised detection is characterized
by problems wherein data are classified, i.e., anomalies and normal data are previously
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known. Detection approaches are usually based on algorithms that compare the new
data with the classified one [26]. Semi-supervised detection is considered when only data
regarding the normality of the system are known. Typically, detection algorithms train
with these data and are tested with unseen datasets in order to assess the presence of
anomalies [27,28]. Finally, unsupervised detection, unlike supervised and semi-supervised
solutions, is supported on unlabeled data. These algorithms usually assume that few
anomalies exist in the dataset and they have different characteristics from the rest [29,30].

Bearing in mind the challenge of the detection of consumption anomalies, it was un-
derstood that we should fit our anomaly detection problem in the category of unsupervised
detection algorithms, since the data available for conducting the study were unclassified,
as will later be seen in Section 4. Furthermore, the system requirements demand a solution
applicable to different hotels and meters, with the possibility of dynamically adding new
ones to be analyzed on the fly.

As already mentioned, different algorithms exist for different types of anomaly detec-
tion problems. For example, Xiong et al. [31] proposed a data anomaly detection method
that combines an IF and an AE algorithm. The IF algorithm computes the anomaly score
of energy data, and then the lower anomaly score data are chosen for model training.
Then, new data pass through the AE, trained with “normal” data, and records whose
reconstruction error was larger than a predefined value are identified as anomalies. Experi-
mental results of the combined method, on the electricity consumption dataset, achieved
an F1 score of 0.981. Kaymakci et al. [32] presented an end-to-end solution of an anomaly
detection system. The system uses the concept of a Long Short-Term Memory-based AE as
an unsupervised learning model. Himeur et al. [33] proposed an anomalous energy con-
sumption detection system at the appliance level, using an AE and micro-moments. In their
work, the energy usage history of household appliances and occupancy patterns are used
for the building of a normal energy consumption behavior model. Energy micro-moments
are fixed when consumers turn an appliance on or off, change the energy consumption
of a specific appliance, or enter (or leave) a given site. The energy micro-moments are
associated with users’ daily tasks and their patterns are fed into an AE model. The model
included the detection of two kinds of anomalous energy consumption, namely: “excessive
consumption” and “consumption while outside”.

Apostol et al. [34] presented a rule-based decision system for anomaly detection in
multivariate time series using change point detection. Their solution automatically man-
ages to identify anomalies and remove the false positives originated by change points.
They also propose a metric based on the record to be an anomaly or a change point.
The experiments use a dataset with multivariate time series about water consumption.
Liu et al. [35] proposed a data mining-based framework that extracts electricity load pat-
terns and discovers hidden information on them. A clustering method was also proposed
to identify the typical electricity load patterns. The proposed framework was applied to
analyze the electricity consumption data of office buildings. Lipčák et al. [36] presented a
big data platform for the detection of anomalies in power consumption. They demonstrate
the application of the system to a scheme of power consumption anomaly detection, bench-
marking different alternatives. For a whole building, Chiosa et al. [37] proposed an anomaly
detection and diagnosis methodology to detect meter-level anomalous energy consumption
and then perform a diagnosis on the loads responsible for anomalous patterns. The process
consists of several steps combining data analytics procedures. The methodology was
developed and tested on the monitored data of a medium/low voltage transformation unit
of a university campus.

Some other works can be found that perform surveys on several methods. For instance,
the work by Al-amri et al. [38] presented a review of ML and DL techniques for anomaly
detection in IoT data. The work includes an analysis of the nature of the data, anomaly
types, learning modes, window models, datasets, and evaluation criteria. Furthermore,
research challenges related to data evolution, feature-evolving, windowing, ensemble
approaches, nature of input data, data complexity and noise, parameter selection, data
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visualizations, heterogeneity of data, accuracy, and large-scale and high-dimensional data
were studied. Furthermore, for the energy consumption of buildings, a review of anomaly
detection systems based on artificial intelligence was presented by Himeur et al. [24]. Their
work includes a taxonomy to classify existing algorithms based on different modules and
parameters, such as ML algorithms, computational platforms, anomaly detection degrees,
feature extraction procedures, and usage scenarios. Domain-specific issues, difficulties,
and challenges that remain open are also analyzed. Those challenges include the deficiency
of having definitions of anomalous power consumption, annotated datasets for supervised
and semi-supervised learning, standard metrics to evaluate the models’ performance, and
the reproducibility of scenarios, and privacy preservation.

In general, the studies are made with single sources of data, and most use well-known
datasets. The controlled quality datasets are used to evaluate the performance of the
models, providing different conditions than the ones that are proposed in this case study.
In our case, we are looking for a semi-automated process, adaptable to different sources
of data and combinations, to be implemented without major tuning, and without major
knowledge by the deployers. In this context, the methodology for this work is presented
next, including the two unsupervised algorithms which were analyzed (namely the IF/ML
approach and the VAE/DL approach) and a new performance metric.

3. Methodology

The methodology adopted for the development of the study follows a classical ML flow
(Figure 1). The first part was the collection of the data, which were obtained from meters
located in hotels in the region of Algarve, Portugal. Then, an EDA was developed, reveal-
ing some of the data problems, such as missing and erratic-peaks (Section 4). Some of the
revealed problems were solved by the implementation of a data correction module (Section 5).
With the initial data analysis transformation applied to the data, some algorithms for anomaly
detection were considered. This selection was supported in works such as those ones from
Pereira and Silveira [39], Zhou and Paffenroth [40], Chen et al. [41], Yao et al. [42],
and Cook et al. [13] (Section 3.1). Then, to evaluate the models, a metric to measure the ac-
curacy and promptness/tardiness of the anomaly detection algorithms was then proposed
(Section 3.2). Finally, the tested algorithms were evaluated (Section 6) and an architecture for
an anomaly detection intelligent system is proposed (Section 7).

Data 
gathering

Data 
cleaning, 

manipulation 
and preparing

Select and 
train models

Evaluate 
models

Select and 
deploy 

model(s)

Figure 1. Flow diagram of the adopted methodology.

3.1. Algorithmic Approach

This section details the algorithms that were later used for the model selection.
Two algorithms were considered, namely: isolation forest and variational autoencoder.

3.1.1. Isolation Forest

In the field of ML, the isolation forest [43] algorithm belongs to the unsupervised
machine learning group of algorithms. This method works a bit differently from the typical
methods of clustering, which are consistently associated with unsupervised detection.
Furthermore, IF was used in the past to handle anomaly detection problems that involve
time series, similar to those evaluated herein (e.g., in [44,45]).

This method consists of a set of elements called isolation trees. Isolation trees are
built by isolating the points of the given dataset, X = {X1, X2, . . . , Xj}, through a recursive
division of the sample space. In this recursive division, a feature belonging to the elements
of the sample space (X) is randomly chosen. Then, also randomly, a division value (p)
is computed within the range of values of that same feature, as shown in the example
depicted in Figure 2. Supported by the fact that theory tells us that anomalous observations
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are usually different and exist in small numbers, it is expected that those anomalous
observations would demand a smaller number of divisions to be isolated, because they
should be more distant from the other ones. In the end, the process is equivalent to the
logic of a collection of trees, i.e., a forest is obtained.

1

5

3

2
4

Figure 2. An example of the process that occurs in an isolation tree building to isolate points in a
two-dimensional sample space.

The classification of samples as anomalies or normal is supported in a scoring system
given by the equation

s(x, n) = 2−
E(h(x))

c(n) ,

where for a given x, h(x) corresponds to the length of the path from the root node to the
outer node that isolates x in a given forest tree, E(h(x)) is the average length of these paths
in the forest, and c(n) is the average length of the isolation trees for n samples (n is the
number of samples in the set X). This value is computed by equation

c(n) = 2H(n− 1)− (2(n− 1)/n),

where H is a harmonic number [43].
The rationale of the IF algorithm is to use multiple trees (as sketched in Figure 3) to

increase the effectiveness of anomaly detection. As the splitting process is made indepen-
dently in different trees, the randomness that results from multiple decision trees is lower
than that obtained from a single tree.

The algorithm has been used to solve several anomaly detection problems. For exam-
ple, Puggini and McLoone [46] compared four methods for variable reduction and used
the IF algorithm in anomaly detection, based on data from the semiconductor industry.
To understand which approach was better for the study, they carried out two case studies,
from which they concluded that there would be some advantages in using certain reduction
methods over others. They also proposed an anomaly detection system based on the IF
method. Ding and Fei [45] also presented a general architecture for anomaly detection in
streaming data with the IF method, and suggest an approach where they associate the IF
with a sliding window method, a well-known approach for time series. To evaluate the
method, they performed several tests using four datasets, which allowed them to validate
the effectiveness of the algorithm. Another interesting work, carried out by de Santis and
Costa [47], consisted in comparing different algorithms in the identification of faults in
small hydroelectric power plants. From the results obtained, they concluded that the IF
algorithm and its variant, the extended isolation forest, were the algorithms that stood
out the most, having good characteristics to be adopted in an online detection system.
The authors concluded that these are also solutions that require a low computational cost.
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Isolation Tree 2 Isolation Tree n-1Isolation Tree 1 Isolation Tree n

Isolation Forest

...

Anomaly

High Risk

Normal

Figure 3. Sketch of anomaly detection with IF.

3.1.2. Variational Autoencoder

The variational autoencoder, like other autoencoders (AEs), is composed of two
parts: (i) the encoder, which performs the learning/compression of the data into a re-
duced dimension, called latent space, while preserving the most relevant information; and
(ii) the decoder, which performs the reconstruction of the input data with the smallest
possible loss [48,49]. Figure 4 illustrates the architecture of AEs, as defined above: the
encoder on the left side, the compressed information on the middle, and the decoder on the
right side.

Y

Z

Compressed

information

Encoder

X

Decoder

Figure 4. Sketch of the AE base architecture.

The main characteristic of the VAE is associated with the modeling of the latent space,
Z, as a function of a random variable with a given type of distribution. Usually, an isotropic
normal distribution is applied, because it is considered that the relations between variables
in a reduced dimension will be less complex than in the input dimension.

The architecture of the VAE used in this study is represented in Figure 5. In this
context, the work of Pereira and Silveira [39] was used as a baseline for the VAE design
and associated parameterization, including the number of neurons, activation functions,
and layers used. The encoder (an orange element in the figure) and the decoder (green
element in the figure) were both designed with a bi-directional layer of 128 Long Short-
Term Memory (LSTM) cells in each direction [50,51], making a total of 256 cells, with tanh
activation function, and as result, the concatenation of the two layers. The latent space Z
was modeled according to an isotropic normal distribution [52,53], with the parameters µz
and σz being obtained through two fully connected artificial neural network layers, which
connect to the last state (ht) of the encoder, with linear activation and SoftPlus, respectively.
The latent space Z is calculated using the approximation Z = µz + σzε, where ε is a random
value of the chosen distribution that acts as an auxiliary noise. The latent space vector, Z, is
repeated t times and then, in the decoder, data are reconstructed into the original form. The
detection of anomalies with this model can be carried out based on the reconstruction error
or, as it is a probabilistic model in which the parameters of a distribution are reconstructed,
it is possible to use probabilistic measures for the classification of anomalies [53]. In our
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case, we opted for a more conventional solution, i.e., detection by reconstruction error and
the use of a sliding window to perform the identification of potential anomalies.

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

x1 x2 xtx3 ...

μz σz

Z

y1 y2 y3 yt...

ε

Figure 5. Architecture of the used VAE. The encoder is represented in orange and the decoder in
green, with bi-directional layers of Long Short-Term Memory cells in each direction and the latent
space Z modeled according to an isotropic normal distribution (with parameters µz and σz).

There are several recent works where the VAE algorithm has been used for unsuper-
vised anomaly detection. The one made by Pereira and Silveira [39] stands out, where an
VAE was applied to the anomaly detection on photovoltaic production data, in order to
identify problems with possible causes on the weather or inverters failure, for example.
In another work, Xu et al. [54] proposed a model named “Donut”, a VAE-based approach
to perform unsupervised anomaly detection for seasonal KPIs in web services. The author
concluded that the “Donut” model outperformed the state of the art at that time. Further-
more, Yao et al. [42] made a comparison study of algorithms in different datasets to identify
anomalies, with VAE-based feature extraction as one of the approaches.

3.2. Performance Metric

Performance metrics are fundamental for evaluating algorithms’ performance. In the
case of supervised learning, common metrics for classification problems, such as confusion
matrices, accuracy, F1-score, precision, or recall, were used in some works in the field
(e.g., in [31,38]). However, while treating unsupervised time series or measuring the
promptness of detection on streaming data, those metrics do not apply. The Numenta
Anomaly Benchmark (NAB) [55] shows a way to evaluate the performance of algorithms
with streaming data. To do that, the algorithms are tested in the labeled datasets available
to the effect and a group of metrics evaluates the performance of the algorithms in many
topics, like if all anomalies were detected or the promptness of detection. Here, it was
decided to propose a metric, founded in the NAB principles but more adapted to our
unsupervised problem concerns, as we will see below.

The proposed performance metric is formulated by combining 2 scores: S1, which is
the score that indirectly evaluates the incidence of supposed false positives, and S2, which
is the score referring to the promptness classification of anomalies. The final score, S f inal ,
combines the previous two and is responsible for assigning the algorithm’s performance
score for a given test scenario. The score values are in the interval [0, 1], with 1 as the
best performance.

In more detail, S1 is obtained using the equation

S1 =
1

1 + exp
(

nva−nup×k1
nup×k2

) , (1)

where nva translates a number of unknown points detected as an anomaly by the algo-
rithm (i.e., that do not belong to the anomalies that were introduced), nup is the total
number of unclassified points in the test sample (number of points in test sample minus
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the number of anomalies introduced), and k1 and k2 are the values that allow adjusting the
associated penalty level. With the score S1, it is possible to evaluate the algorithm in terms
of false positives giving tolerance to the classification of uncertain points as anomalies.
In our case, k1 = 0.1 and k2 = 0.01 were considered. In this case, when the algorithm
detects up to 5.0% of false positive anomalies, a small decrease is introduced on the value
of S1. When 10% of the readings are marked as false positives, then S1 would be equal
to 0.5.

As an example, Figure 6 graphically represents the evolution of the S1 score as a
function of the number of unknown points detected as an anomaly (nva) for a total number
of unclassified points (nup) of 8112. This was the scenario studied during the performed
tests (Section 6). For example, if the algorithm classifies 300 readings as anomalies, be-
yond the anomalies introduced (i.e., nva = 300), in a universe of nup = 8112 samples,
the performance of the algorithm will not be badly evaluated, since 5% of the 8112 is 405.6.
However, if the value of nva increases, a penalty will begin to exist which is reflected in the
S1 score. For instance, with nva = 750, the value of S1 would decrease to 0.68. Thus, this
sigmoidal shape, adjustable by the formula’s parameters (nu p, k1, and k2), allows for being
more or less flexible in the identification of anomalies that were not identified as such in
the dataset.

Figure 6. Illustrative example of the evolution of the S1 metric as a function of the number of
unknown points classified as abnormal (nva), with nup = 8112.

The score S2 is obtained for each interval of anomalies from equation

S2 =
1− exp

(
k3

R f−At
At−As

)
1 + exp

(
k3

R f−At
At−As

) (2)

where the indices As and At translate, respectively, the first and last index of the anomaly
window, R f is the first reading detected inside the window, and k3 is a parameter that
was set to 10 in this case study. S2 scores the performance in classifying the anomalies,
the speed of detection, and false negatives. The equation was adjusted to start the penalty
depending on the extension of the anomaly and to decrease more sharply in the middle of
it. The score S2 is equal to 0 when the anomaly is not detected, reflecting the non-detection
of a true anomaly.

Figure 7 shows the evolution of S2 as a function of R f , for an anomaly consisting of
24 points, which, for the tests carried out, would correspond to an anomaly lasting 24 h.
When the R f is less than 12, that is, the anomaly detection is performed in the first 12 h,
there is a small penalty, and only when the detection delay goes beyond that threshold
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does the algorithm’s performance start to be penalized. Parameter k3 allows for more or
less flexible in the promptness/tardiness in identifying known sets of anomalies.

Figure 7. An illustrative example of the evolution of the value of S2 as a function of the value of R f ,
for an anomaly of a sequence of 24 readings.

Finally, the value of the algorithm’s performance metric is given by

S f inal = S1
∑n

i=1 S2,i

n
, (3)

where S2,i is the values of S2 for the anomalous range i. The equation computes the average
of the anomaly detection scores (S2), as different anomalies with different extensions might
exist, penalized by the classification of unknown points as anomalies (S1). In the end,
the intention of the final metric value, S f inal , is to reflect a balance between the detection
of anomalies and the incidence of false positives. For example, S f inal ≈ 1 means that
all anomalies were detected quickly and the number of points from which the algorithm
classification could not be assessed remained low.

4. Exploratory Data Analysis

Before performing the tests with ML algorithms, an initial study of the data was carried
out, that is, an EDA phase was performed. The objective of the EDA was to understand the
nature and characteristics of the data, identifying possible problems that in the future may
impair the performance of ML models [56,57].

The initial approach of the EDA phase was performed using graphical representations
and a statistical analysis of the consumption. In terms of statistical analysis, a simple
observation of the mean, median, and quartiles was enough to find possible anomalies,
in some cases not related to the consumption itself.

The datasets used in the EDA refer to one water meter, a gas meter, and two electricity
meters from a hotel unit in the Algarve, Portugal. At this stage, and given the diversity
of the analyzed cases, the data were considered to be representative of the types of time
series that will be analyzed by the system in the future. We should notice that readings
were sampled hourly and refer to the period between January 2014 and October 2021.
Furthermore, in this context, a “problematic observation” is simply a purely bad quality
observation caused by technical issues while an “anomaly reading” should be an effective
problem with consumption.

4.1. Graphical Representation of the Time Series

The first EDA approach consisted of the graphical representation of the different time
series, shown in Figure 8. For the analyzed meters, one of the identified problems was the
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existence of occasional peaks in readings. It was later understood that these values were
associated with data transmission failures by the hotel’s centralized technical management
system (CTMS). When this failure occurs, the readings are accumulated on the sender side
until the transmission is resumed. At this point, the accumulated value is transmitted,
producing both: (1) an apparent peak in consumption, which effectively did not occur;
and (2) an interval of time without readings, as shown with more definition in Figure 9.
These peaks and gaps in the data, due to transmission errors or lack, should not be confused
with anomalous consumption.
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Figure 8. Representation of the readings series (sampled hourly), associated with different hotel
meters, where occasional consumption peaks are clearly visible.
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Figure 9. Detail of technical failure in readings (hourly sampled) received by meter “Electricity 1”.

Other analyses were also carried out on the data, to understand its behavior over time.
For example, Figure 10 shows the weekly consumption in distinct years for the “Electricity
1” and “Gas” meters, showing that the consumption tends to follow a pattern, due to the
annual seasonality of tourism in that hotel. The year 2020 looks a little out of the ordinary
due to the COVID-19 pandemic and the year 2021 is not represented in this analysis
because the available readings were not complete. From a daily perspective, analyzing a
few random weeks of the different meters, a periodicity was also verified on different days
of the week, concluding that, typically, from Monday to Sunday, consumption tends to
maintain an hourly pattern, as shown in Figure 11.
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Figure 10. Yearly analysis with weekly sampled readings for meters “Electricity 1” and “Gas”.
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Figure 11. Representations of daily consumption in different days of a week, for the 4 m under study.
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4.2. Statistical Analysis

In a second phase, a statistical analysis of the 4 m was carried out with the computation
of the mean, standard deviation, quartiles (Q1, Q2 e Q3), and the minimum and maximum
values of the readings, as presented in Table 1. From these data, some conclusions could
be drawn. The maximum value identified in the four meters is very far from the values
recorded in the third quartile (Q3). Specifically in the case of the “Electricity 1” meter,
there is at least one reading with 1064 kWh of hourly electrical consumption, with a similar
situation being verified for the “Water” meter, with an hourly reading of 173.10 cubic meters
(m3). These situations clearly suggest the possibility of problematic or anomalous data in
the available readings. Another value that suggests the existence of errors in the data is
the value of the standard deviation, showing a large range of variation in some readings in
relation to the mean value, which again suggests the presence of problematic readings.

Table 1. Statistical description of the meters’ readings in the analysis.

Meters Water (m3) Electricity 1
(kWh)

Electricity 2
(kWh) Gas (m3)

mean 0.83 4.73 11.61 9.95
std 1.39 4.13 21.89 10.66
min 0.00 0.00 0.00 0.00
25% 0.00 2.70 0.00 4.00
50% 0.40 4.30 0.00 9.00
75% 1.10 6.90 18.80 14.00
max 173.10 508.60 1064.60 800.00

4.3. Histograms

Histograms were used in the last phase of the analysis, which have shown to be
important to confirm the results obtained in the last steps. As can be seen in Figure 12 (note
that the scale of the ordinates is logarithmic), it is possible to perceive which ones are the
most common intervals of values and to anticipate whether the data obey some known
distribution or not. The readings previously highlighted in the statistical analysis as
possible anomalies are readings with unitary frequency, which, attached to their distance
from the others ones and knowing the physics associated with the respective meters,
(almost) guarantees that they will be problematic.
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Figure 12. Histograms of the “Water”, “Electricity 1”, “Electricity 2” and “Gas” meters with the
readings from January 2014 to October 2021.
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4.4. Conclusions of the Eda

With the EDA, which was summarized in this section, it was concluded that data are
affected by seasonality (e.g., annual and weekly) and that the biggest problems affecting
data quality are: (i) outliers/unreliable and (ii) missing readings. The origin of the problems
noticed at this stage was later justified by technical issues that resulted from transmission
errors or gaps. This is in fact a problem that affects many sensor networks and should not
be confused with consumption anomalies. To solve the mentioned problems, statistical
approaches were chosen to automatically identify them and then introduce estimated
values to correct anomalous ones (or fill the gaps in the readings), resulting in the data
correction module. This was thought to be necessary to guarantee a better historic registry
of readings to our promoter, and data with higher quality/reliability will be used by the
ML alarmistic model, as will be explained next.

5. Data Correction Module

The analysis of the datasets performed in the EDA phase has shown that the anomaly
detection system must integrate a data correction module. In fact, this module should be
capable of detecting faulty transmissions before those data reach the machine learning
module. The development made in this work has led to the specification, and the later
implementation, of a solution that should be capable of: (i) detecting and removing prob-
lematic observations; and (ii) introducing missing values when a period of data loss is
identified. In the following, we describe these features of the data correction module.

5.1. Detection and Removal of Problematic Observations

Problematic observations are values that directly interfere with the quality of the data
and that could generate false alarms or later reduce the identification of real anomalies,
if the training of the algorithms is performed with these values. Two statistical methods
were considered to perform these functions: the interquartile range (IQR) [58,59] and
standard deviation method (SDM) [56,60].

The use of the SDM was the first to be considered. However, the analysis carried
out on data (Section 4) proved that it might not be sufficiently robust, because it is not
guaranteed that meters conform to a normal distribution, as this method requires. For that
reason, the adopted solution was the IQR method, as our data tend to be skewed and
have fewer limitations associated with the distribution of data. The IQR method is very
simple to apply as it considers values in the range [Q1 − K × I IQ, Q3 + K × I IQ] to be
“normal”, where Qi is the ith quartile, K is an adjustment parameter (usually defined as
1.5), and I IQ = Q3 −Q1 is the interquartile range.

As an example of this data treatment, Figure 13 presents the resultant data after remov-
ing the peak values shown in Figure 8. The data quality has significantly improved and
virtually all readings that could be visually considered problematic have been removed.
In this context, it was found that this IQR method must be adjusted by setting the tuning
parameter K according to each meter, in order to preserve the maximum number of cor-
rect readings. After carrying out this procedure, the missing values were estimated and
reinserted, as described in the following section.

5.2. Missing Values Imputation

The imputation of missing values in time series can be essential to ensure its viable
use in certain ML algorithms, such as the ones supported in LSTM cells, which depend on
the data sequence. For this reason, and in order to support a detailed record of readings
with better quality and reliability, a solution was required that would allow estimating
missing values due to, for example, transmission failures.

The use of more complex solutions based on ML algorithms to perform this task would
add a whole complexity to the system. For this reason, the method chosen was the linear
weighted moving average (LWMA) algorithm, formulated according to equation
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Rweighted =
n

∑
i=1

Riwi, (4)

where Rweighted is the weighted reading, Ri (i = 1, 2, . . . , n) are readings from the n previous
days that occurred at the same time of the reading being weighted, and each past reading
is affected by a weight wi =

2(n−i+1)
n(n+1) (i = 1, 2, . . . , n).
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Figure 13. Representation of corrected time series, associated with the different hotel meters.

This solution is supported by the fact that most meters have a weekly frequency (see
Section 4.1) and, as can be seen in the Tables 2 and 3, there is a bigger correlation between
the most recent readings in the different analyzed meters. The LWMA algorithm has
been used in other works where it was necessary to impute values, in which the authors
concluded that the algorithm was effective in performing this task [61,62].

Table 2. Values of existing correlations between readings at 12:00 A.M. (midday) and readings that
occurred at the same time on previous days.

Number of
Days before Water Electricity 1 Electricity 2 Gas

1 0.66 0.86 0.91 0.86
2 0.65 0.83 0.88 0.83
3 0.63 0.82 0.86 0.81
4 0.62 0.79 0.84 0.80
5 0.61 0.78 0.83 0.79

Figure 14 shows the results obtained using the LWMA method for the introduction of
the missing values and filtered readings, in the “Electricity 1” meter. As can be verified,
the time series was reestablished and the new values are “imperceptible”, making this
approach a reasonable solution to this problem.

The realization of tests with ML and DL algorithms needs data integrity and quality
to produce relevant results. With the data corrected using the described solution, in the fol-
lowing section, a presentation is made of the tests, the results achieved with the algorithms,
and the conclusions obtained from them.
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Table 3. Values of existing correlations between readings at 12:00 P.M. (midnight) and readings that
occurred at the same time on previous days.

Number of
Days before Water Electricity 1 Electricity 2 Gas

1 0.63 0.96 0.96 0.92
2 0.59 0.95 0.95 0.90
3 0.55 0.93 0.93 0.89
4 0.52 0.91 0.91 0.88
5 0.50 0.88 0.90 0.87
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Figure 14. Pre-processing of the data collected by meter “Electricity 1”: original data (top), after re-
moval of peaks (middle), and after the input of estimated values for the missing values (bottom).

6. Comparison between Isolation Forest and Variational Autoencoder Algorithms

This section compares the performance of the IF and VAE algorithms on the classifica-
tion of anomalies in an unsupervised time series of hotel consumption. The comparison
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was made using a battery of tests developed by the authors, which were evaluated using
a newly proposed performance metric and based on the computational costs that each
method imposes.

6.1. Established Dataset

The established dataset consists of 2 years (2015 and 2016) of hourly measurements
to perform the training (17,520 readings), followed by 1 year (2017) of data for the tests
(8760 readings), considering the independent analysis for the four meters in this study.
The considered period was chosen according to the results of the EDA and the convergence
between the variables’ registry, i.e., the availability of other features used in the algorithms
(e.g., hotel occupancy), as we will see later. Furthermore, following a strategy reviewed
by Al-amri et al. [38], the sequence of anomalies was explicitly forced in the test year to
simulate excessive consumptions (three periods of 24 readings and one long period of
576 readings), as depicted in Figure 15 (marked in red). The different scenarios tested (which
included a combination of the data with the parametrization of the algorithms), which will
be explained next, had the following main objectives: (i) evaluate the performance of the
algorithms in the classification of anomalies in different meters; (ii) discover a possible
set of variables and hyper-parameters to be used as a baseline in the training of models;
and (iii) study the behavior of the algorithms when exposed to different combinations of
variables, since the detection system needs to be very adaptable to this type of situation.
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Figure 15. Graphical representation of the dataset of one meter used in the computational tests.
The green line separates the train and test periods; the anomalies introduced in the test year are
in red.

As already mentioned, to understand the level of precision in the detection of outliers
by the algorithms in the study, four anomalies were introduced into the original test dataset,
giving us a more controlled environment.

6.2. Features Scenarios

Four scenarios of input variables were considered, as shown in Table 4. These scenarios
include consumption features, temporal variables, hotel, and environment variables. Those
sets of features give more “context” to the readings and should improve the results. Some
of the variables based on meter readings were created in the process of data engineering,
such as:

∆X—the difference between the current reading and the reading obtained X hours before,
e.g., ∆2h is the difference between the current reading and the reading that occurred
2 h earlier. X assumes six values: 1 h, 2 h, 3 h, 24 h, 48 h, and 72 h;

∆average24h—the difference between the current reading and the average of the last 24 h;

min24h—identifies the minimum consumption of the last 24 h.
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Binarization of these parameters was also tested, identified with a super-scripted b
in features detailed in Table 4, whose objective was to transform the differences into 0 or
1, depending on whether the consumption increased or decreased. Temporal variables
and variables associated with the hotel were also used, such as, e.g., “temperatures”,
“occupancy”, and “degree day” (measurement unit for the building’s heating/cooling
needs), as suggested by Eras et al. [11].

Table 4. Different sets of input variables of the algorithms used in the tests.

Scenario Features Temporal
Variables

Hotel and Environment
Variables

1 Reading, ∆1h, ∆2h, ∆3h, ∆24h, ∆48h, ∆72h, min24h,
∆mean24h

Hour, day of the
week, month

None

2 Reading, ∆b
1h, ∆b

2h, ∆b
3h, ∆b

24h, ∆b
48h, ∆b

72h, min24h,
∆meanb

24h

Hour, day of the
week, month

None

3 Reading, ∆1h, ∆2h, ∆3h, ∆24h, ∆48h, ∆72h, min24h,
∆mean24h

Hour, day of the
week, month

Temperature, occupancy, degree
day, daily meals, rooms

4 Reading, ∆b
1h, ∆b

2h, ∆b
3h, ∆b

24h, ∆b
48h, ∆b

72h, min24h,
∆meanb

24h

Hour, day of the
week, month

Temperature, occupancy, degree
day, daily meals, rooms

6.3. Results of the Tests Performed with the Isolation Forest

The Sklearn library (version 1.1.1) [63] was used to perform the computational tests
of the IF algorithm. In terms of algorithm settings, a grid search was performed on the
hyperparameters contamination ∈ {0.008, 0.01, 0.03, 0.05, 0.1}, bootstrap ∈ {True, False},
and max_samples ∈ {‘auto’, 0.05, 0.1, 0.3, 0.5}. For the remaining hyperparameters (see
the IF class documentation https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.IsolationForest.html, accessed on 27 May 2022 ), the default values of the library
were considered. The best results obtained by the IF algorithm are summarized in Table 5.
From the results, it can be concluded that, according to the metrics defined before, the algo-
rithm performed well in the detection of unknown points (S1 = 0.99) for all meters, that is,
the number of unidentified readings classified as anomalous remained within the tolerance
range. The same happened also in early-stage anomaly detection (S2). An exception was
the anomaly “S2 Anomaly 2” in the “Electricity 1” meter, which could not be identified,
penalizing its S f inal , reaching only 0.73 points on the scale.

Analyzing the results, it appears that the model, in a real context, needs to have the
parameters and input variables adjusted according to each meter. In terms of variables,
it was found that three of the best results are associated with scenarios where hotel and
environmental variables (as expressed in Table 5) were present. This indicates their rel-
evance and the fact that they should be considered whenever possible. When choosing
the set of variables for the training base of the models, it was clear that the readings from
meters, temporal variables, and min24h seem to improve the performance of the algorithm.
The results were unclear regarding the integration of the variables ∆X and ∆average24h,
particularly regarding whether they should be considered with the calculated difference
or in the binary perspective of consumption increase/decrease. Therefore, in order to
make a decision, a critical analysis of the situation was carried out and it was understood
that a binary approach could bring some loss of sensitivity, specifically placing large and
small variations in the same proportion. Regarding the hyperparameters, it is not possible
to draw a clear conclusion, given the diversity of data types considered, so keeping pre-
established parameters seems to be a viable solution. In the context of use, the parameter
contamination must be adjusted according to the results by the system manager. It should
also be noted that several of the simulations which were carried out took an average of
about 30 s to complete, which is relatively fast considering the number of samples used.
This proves that the IF algorithm requires little computational cost, confirming the results
obtained for examples by de Santis and Costa [47].

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
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Table 5. Best results for each meter with the IF algorithm, according to the proposed metric, among all
scenarios and considering the mentioned grid-search.
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Water 4 0.008 ‘auto’ True 0.99 0.99 0.78 0.99 0.99 0.94
Electricity 1 2 0.05 0.3 False 0.98 0.99 0.00 0.97 0.96 0.73
Electricity 2 3 0.1 ‘auto’ False 0.94 0.99 0.99 0.99 0.99 0.94

Gas 3 0.05 0.1 True 0.96 0.99 0.90 0.98 0.99 0.93

6.4. Results of the Tests Performed with the Variational Autoencoder

The Keras computational library (version 2.7.0) [64] was used to implement the VAE
architecture, as explained in Section 3.1.2. Input data were grouped into sequences with a
dimension t = 24, and anomaly detection was performed based on the reconstruction error,
using a sliding window [65,66]. Given the computational restrictions in the tests of this
model, only the width of the sliding window was changed (24, 48, and 72), because it soon
was understood that simulations could take approximately 8 h for 1500 training cycles.

The model performed well on three types of meters, as shown in Table 6. The excep-
tion was the “Water” meter, with a poor performance in both the detection of unknown
points (S1 = 0.79) and in the detection of anomalies, with one of them not being detected
and the other being detected late. This led to a final score of 0.57. There were also problems
with the model convergence during the tests in some scenarios and features, which we
were unable to understand.

The scenarios with the best performance in this model were 1 and 2, which in both
cases did not use hotel variables. The results were not conclusive with regard to the width
of the sliding window to be used. Although two of the best results used a sliding window
of 24, one of these meters was “Water”, which did not have a good performance and the
remaining meters used a width of 48 and 72. For that, this parameter should eventually
be user-adaptable.

Table 6. Best results for each meter with the VAE algorithm, according to the proposed metric,
among all scenarios and considering the mentioned grid-search.
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Water 1 24 0.79 0.99 0.00 0.99 0.90 0.57
Electricity 1 1 24 0.85 0.99 0.99 0.99 0.99 0.85
Electricity 2 2 48 0.96 0.99 0.99 0.99 0.99 0.96

Gas 2 72 0.99 0.99 0.99 0.85 0.99 0.95

6.5. Comparison between the Algorithms

Comparing the VAE results with the ones of IF, it was concluded that the latter would
be a better solution for the problem studied, because, according to the obtained results,
it presented more stable outcomes in terms of the final score. For example, the average
value of S f inal for the IF algorithm was 0.89, while it was 0.83 for the VAE. It was found,
however, that the solution based on the VAE algorithm, when all the proposed anomalies
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were detected, was able to surpass the performance of the IF, for the “Electricity 2” and
“Gas” meters. However, in the “Water” meter, the VAE algorithm had the worst score
of the presented results. There were also problems of convergence in some scenarios,
as mentioned. This indicated the possibility of the algorithm not being sufficiently robust
when applied to solutions such as the ones analyzed herein, which needs to be as adaptable
as possible over an uncontrolled environment. It was also verified during the tests that the
training of VAE models is time-consuming and computationally heavy. This individual
computational cost, associated with a high number of hotels, meters, and the more or less
frequent (re-)training of the algorithms, could raise additional problems regarding the
hardware requirements of the global system. Another reason that did not support the VAE
was the large amount of history that must exist for these models to be functional and robust,
which could be an impediment to making proper anomaly detection for new meters.

7. System Proposal

Concluding the tests with the algorithms, the structure of the intelligent system to
identify anomalies in hotel consumption is depicted in Figure 16. It is composed of two
main modules: (i) the data correction module, explained in Section 5, which handles data
problems and guarantees that the data used in the next phase have quality and liability;
and (ii) the alarmistic model, with the IF algorithm as the backbone of the model, to analyze
and identify possible consumption anomalies in the hotel.

Figure 16. Proposal of architecture for the intelligent system to detect consumption anomalies in a hotel.

In more detail, the hotel sensoring provides a stream of data that passes through the
data correction module before being stored in a data center. Then, the alarming system
looks for new entries and runs the anomaly detection model to find anomalous readings.
If found, those anomalous readings trigger an alarm in the control center. We should
notice that changes made by the correction module also trigger alarms in the control center,
as some actions can be activated from them (e.g., correct malfunctioning installations).

To illustrate the results obtained by the proposed system working under real con-
ditions, in Figure 17, two detections of anomalous scenarios are represented, which are
associated with two meters of a hotel. These situations were reported by the promoter and
validated by the system. In the first scenario (top image), the detected drop in consumption
was associated with a machinery failure, and after some days, another abnormal event
(not specified) was also detected. In the bottom image, an increase in consumption was
also detected, associated with a water pump of the hotel, which started working at a new
unnecessary regime.
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Figure 17. Real anomaly detection scenarios detected by the proposed system. The first scenario (top)
is associated with a machinery failure, and the second one (bottom) is related to one water pump
that started working on a new unnecessary regime.

8. Conclusions and Future Work

This case study aimed to compare IF and VAE algorithms and to choose the best
approach to develop and implement an anomaly detection system for hotel consumption.
This system is intended to avoid unnecessary consumption or even detect malfunctions in
the installations.

During the study carried out on the data, there were some problems in the provided
readings, which could interfere with the performance of the platform, such as: (i) problem-
atic and (ii) missing readings. The solution found was the data correction module with
statistical approaches, like the IQR method and LWMA.

To evaluate the performance of the detection of anomalies in an unsupervised time
series by IF and VAE algorithms, a performance metric was defined. Comparing the results
obtained between the two algorithms, it was concluded that generally, the IF algorithm
gave a better answer to the problem in the study, as it obtained a better balance in the test
results compared to the VAE. For example, the average of the S f inal of the IF algorithm
was 0.89, while that of the VAE was 0.83. VAE, on the other hand, proved to be able to
provide good detection results, including better results than IF in two situations, which
may indicate the potential to solve problems, where generalization, the easy adaptability
of the algorithm, and limited computational resources are not considered. In conclusion,
the IF algorithm belongs to the ML algorithms of the unsupervised type, which means
that it performs an analysis of unclassified data. This algorithm was able to answer the
specific needs of this problem, demonstrating its capacity to detect artificially introduced
anomalies, to have computationally less undemanding training, and to be very adaptable
to the different types of variables that are available for analysis.

In the future, it will be interesting to further explore the data processing component,
evaluating new approaches and improving the actual solution to remove the problematic
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readings. Furthermore, testing alternative anomaly detection approaches could provide
more accurate methods. For example, it could be interesting to employ active learning to
overcome the unlabeled problem of the datasets, or use attention mechanisms in the deep
learning approach to focus on the relevant parts of the time series sequences. Furthermore,
the metric proposed to evaluate anomaly detection algorithms using unlabeled time series
datasets has space to be improved.
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