
����������
�������

Citation: Park, J.; Lim, Y. Online

Service-Time Allocation Strategy for

Balancing Energy Consumption and

Queuing Delay of a MEC Server.

Appl. Sci. 2022, 12, 4539. https://

doi.org/10.3390/app12094539

Academic Editor: Agostino

Forestiero

Received: 11 March 2022

Accepted: 28 April 2022

Published: 29 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Online Service-Time Allocation Strategy for Balancing Energy
Consumption and Queuing Delay of a MEC Server

Jaesung Park 1 and Yujin Lim 2,*

1 School of Information Convergence, Kwangwoon University, Seoul 01897, Korea; jaesungpark@kw.ac.kr
2 Department of IT Engineering, Sookmyung Women’s University, Seoul 04310, Korea
* Correspondence: yujin91@sookmyung.ac.kr; Tel.: +82-2-2077-7305

Abstract: MEC servers (MESs) support multiple queues to accommodate the delay requirements of
tasks offloaded from end devices or transferred from other MESs. The service time assigned to each
queue trades off the queue backlog and energy consumption. Because multiple queues share the
computational resources of a MES, optimally scheduling the service time among them is important,
reducing the energy consumption of a MES and ensuring the delay requirement of each queue. To
achieve a balance between these metrics, we propose an online service-time allocation method that
minimizes the average energy consumption and satisfies the average queue backlog constraint. We
employ the Lyapunov optimization framework to transform the time-averaged optimization problem
into a per-time-slot optimization problem and devise an online service-time allocation method whose
time complexity is linear to the number of queues. This method determines the service time for each
queue at the beginning of each time slot using the observed queue length and expected workload.
We adopt a long short-term memory (LSTM) deep learning model to predict the workload that
will be imposed on each queue during a time slot. Using simulation studies, we verify that the
proposed method strikes a better balance between energy consumption and queuing delay than
conventional methods.

Keywords: mobile edge computing; online resource allocation; task arrival prediction; long short-
term memory; Lyapunov optimization

1. Introduction

A key characteristic of 5G systems is that most data are generated and consumed
locally [1]. To accommodate this characteristic, a multi-access edge computing (MEC)
system should be an integral part of 5G systems [2–4]. By enabling devices to offload their
tasks to nearby MEC servers (MESs) deployed at the edge of a network, a MEC system
is expected to reduce the task service delay. In addition, a MEC system can decrease the
traffic load to be imposed on the backhaul network if devices use a cloud server in a data
center located far from the devices.

The offloading decision problem that determines whether a device offloads a task to a
MES or processes it locally has drawn much attention from researchers. To save the energy
of a device and reduce the task completion time, various methods for a device to make
an offloading decision have been proposed [5–9]. After a device offloads a task to a MES,
it can move out of the service area of the MES. Then, the delay requirement of the task is
likely to be violated. To resolve this issue, task migration methods have been proposed in
the literature [10,11]. They attempt to overcome the limited coverage of a MES and support
the user mobility without task QoS degradation.

Once a MES receives tasks from devices or other MESs, the MES processes the tasks
by appropriately managing its computation and storage resources. The methods managing
the resources of a MES mainly focus on solving the MES congestion problem to increase
the utility of a MEC system. In other words, they attempt to prevent a MES from being
congested by balancing loads among MESs or transferring tasks from a congested MES

Appl. Sci. 2022, 12, 4539. https://doi.org/10.3390/app12094539 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12094539
https://doi.org/10.3390/app12094539
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8976-6480
https://orcid.org/0000-0002-3076-8040
https://doi.org/10.3390/app12094539
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12094539?type=check_update&version=2

Appl. Sci. 2022, 12, 4539 2 of 23

to a cloud server. The load-balancing methods proposed in [12,13] redistribute loads
among MESs by driving devices to offload their tasks to the MES that can serve them the
best. However, the load of a MES is influenced not only by the tasks offloaded directly
from devices, but also the tasks migrated from other MESs. Thus, in [14], the authors
attempted to balance the loads among MESs by moving the tasks in an overloaded MES
to an underloaded MES. A MES congestion problem can also be resolved by an efficient
collaboration between a MES and a cloud server [15,16]. A MES determines whether to
process a task or offload it to a cloud server to reduce overall energy consumption and
latency while satisfying the task’s service requirement [15]. The authors in [16] proposed
a task offloading method at a MES to minimize the task processing cost of a MES while
guaranteeing queue stability.

Previous works on MEC system resource management considered all the resources in
a path from a device to a MES. Thus, the formulated problem involves not only the local
information, but also the information of the other nodes. Sometimes, they even require
the system-wide global information. Then, it is assumed implicitly or explicitly that all
the information needed to resolve the formulated problem is known to a device or a MES
whenever it makes a resource management decision. However, in a practical MEC system,
the nodes in a MEC system are supposed to be autonomous. Thus, the state information
of one node is hardly known to the other node. For example, in cellular networks, user
devices do not exchange information among themselves. Moreover, a user device and
a MES are recommended not to exchange their state information for security reasons.
Therefore, to implement a practical MEC system, it is important for a node to make a
resource management decision by using only its local information.

As noted in [17], there are various MEC application scenarios and each application
task has its specific QoS requirements. It has been assumed in the literature that a MES
provides a separate FIFO queue for each device. A device may offload several tasks having
different QoS requirements. Then, to satisfy the specific QoS requirement of each task,
a MES has to maintain a separate queue for each task offloaded by each device and exert a
sophisticated computation scheduling method. Thus, the resource management burden
of a MES increases as the number of devices and the number of tasks with different QoS
requirements increase. To resolve such an issue, the class-based QoS concept has often
been adopted in wireless networks and the Internet. The basic idea of the class-based
QoS concept is to group various applications into a set of classes according to their QoS
characteristics and guarantee the QoS specified for each class, instead of handling the
specific QoS requirement of each application task separately. For example, the LTE network
assigns a QoS class identifier to each carrier type. Various application services are classified
according to their priority, packet error rate, and packet delay budget [18]. Applications
with similar QoS requirements in terms of the priority, packet error rate, and packet delay
budget are classified into the same class. A similar concept is adopted in the Internet as the
DiffServ service classes [19]. In this paper, we follow the class-based QoS concept. A MES
classifies tasks according to their delay requirements and manages a queue for each class.
A MES manages the service-time allocated to each queue to provide differentiated services
among the queues in terms of the average queuing latency.

Another important criterion that must be considered in devising a MES resource
management method is the energy consumption of a MES. The amount of energy consumed
by a MES to serve a set of class queues must be minimized to reduce both the operational
expenditure and the amount of carbon dioxide emissions. A MEC system is expected
to reduce the energy consumption of a device. Therefore, the issue of minimizing the
energy consumption of a device has been inspected thoroughly. However, comparatively,
the problem of minimizing the energy consumption of a MES has not been explored
extensively. Thus, in this paper, we address the service-time allocation problem of a
MES in the situation where the task input process to a MES varies in a probabilistic way
and its distribution is not known in advance. In this environment, we devise a service-
time allocation strategy by using only the task queue length and the recent sequences of

Appl. Sci. 2022, 12, 4539 3 of 23

the task input rates, which can be measured by a MES without any aid of other nodes.
Specifically, we aim to minimize the time-averaged energy consumption of a MES, which is
not overloaded while guaranteeing the average task queue length below a given threshold
for all the queues. The contributions of this study are as follows:

• We consider a service-time allocation problem at a MES. We formulate a time-averaged
energy-minimization problem with an average queuing delay constraint. The formu-
lated problem is complex because it involves information on the input dynamics for
future time slots when determining an optimal allocation strategy. Thus, using the
Lyapunov approach, we transform it into a per-time-slot optimization problem and
devise an online service time allocation method.

• Unlike other Lyapunov-based methods that use only the observed queue length at the
beginning of a time slot, we explicitly consider the dynamics of an input process by
predicting the amount of workload that will be imposed on each queue during each
time slot. For the prediction, we use a long short-term memory (LSTM) model [20],
which is a deep learning model widely used in predicting time series data [21,22].
Through simulation studies, we show that we can strike a better balance between the
average energy consumption and average queuing delay than with a conventional
Lyapunov-based method.

• We devise a service-time allocation algorithm whose complexity is O(|N|), where N
is the set of queues managed by a MES. Most optimization-based methods use an
iterative process to resolve the formulated problem. However, the iterative process
requires time to converge. For example, the convergence time of a subgradient method
with a constant step size is known to be O(1/ε) [23], where 0 < ε� 1 is the difference
between the termination point and an optimal point. Thus, the time complexity of the
conventional method is O(|N|/ε), which is greater than that of ours.

• By providing a weight parameter on the importance of the energy consumption, our
method enables a MEC system operator to control the correct balance between the
energy consumption and queuing delay according to his/her operational purpose.

The remainder of this paper is organized as follows. In Section 2, we present the re-
lated works. In Section 3, we describe the system model and formally state the service-time
allocation problem. In Section 4, we present our online service-time allocation method. Af-
ter validating the proposed method by comparing its performance to those of conventional
methods in Section 5, we conclude the paper with future research directions in Section 6.
We present the notations used in this paper in Abbreviations for the readers’ convenience.

2. Related Works
2.1. Resource Management Methods in a MEC System

The resource management problem in a MEC system has been investigated in various
scenarios. In [6], the authors formulated a long-term system energy-minimization problem
with average end-to-end delay constraints in a MEC system composed of one MES, multiple
APs, and multiple devices, all exploiting low-power sleep mode. By using the Lyapunov
optimization framework, they separated the problem into a CPU scheduling problem at a
MES and a device–AP association problem at a device. They solved the first problem by an
iterative algorithm and the second problem based on multi-agent reinforcement learning
(MARL). In [7], an optimal secondary sensing strategy for saving the energy consumption
of a device was designed in an environment where devices opportunistically use a licensed
spectrum as the secondary users. A cost function was defined as the sum of the total energy
consumption of the devices and the total queue length, which is the sum of the queue
length of the devices and the queue length at a MES for each device. Each device employs a
deep Q network (DQN) agent to minimize the long-term average cost by making a sensing
decision for each channel and selecting both the local CPU frequency and the transmission
power. In [8], the authors studied the task offloading problem and the resource allocation
problem in multiple devices and a multi-edge network scenario. To reduce the resource
cost for task offloading and improve the utilization of server resources, they proposed an

Appl. Sci. 2022, 12, 4539 4 of 23

online predictive offloading algorithm based on deep reinforcement learning (DRL) and
LSTM. LSTM was used to predict the next arriving task, which was used by a DQN agent
in a device for making an offloading decision. When a device decides to offload a task,
the DQN agent also determines an optimal transmission power to minimize the offloading
cost. However, in these works [6–8], a deep learning agent resides in a device and jointly
determines its local decision parameters and the parameters related to the service-time
allocation in a MES. Therefore, a device requires the local information, the information in
a MES, and the global information to determine the optimal parameters. However, it is
not clear how an agent in a device acquires the information of the other nodes and how
the decision made by a device is transferred to a MES. In addition, they are device-centric
methods. Since decisions are made by a device, their main goal is not to minimize the
energy consumption of a MES, but to minimize the energy consumption of a device.

MES-centric methods were proposed in [9,16]. The authors in [16] considered a MEC
system composed of one cloud server, one MES, and multiple mobile devices. They focused
on the task offloading problem from a MES to a cloud server to minimize the time-averaged
penalty. They cast the resource allocation problem at a MES as a Lyapunov optimization
problem and proposed a DRL-based approach to solve the problem by incorporating the
queue stability constraint into the DRL formulation. They devised a DRL agent by using a
soft actor–critic (SAC) algorithm, which learns an optimal policy for resource allocation
at a MES while stabilizing the queues. By using the agent, a MES optimally determines
whether to offload a task to a cloud server or process the task by itself under the task queue
stability condition. Basically, the problem addressed by the authors is a MES congestion
resolution problem. In this paper, we deal with the energy consumption minimization
problem when a MES is not overloaded. However, we note that our method can work
with their method. When a MES detects an impending congestion while using our method,
it can invoke the DRL agent to offload some tasks to a cloud server. In [9], an optimal
scheduling problem was formulated, which aimed to minimize the long-term average
weighted sum of energy consumption and delay of all mobile devices in an environment
with one 5G small-cell BS with multiple antennas, one MES, and multiple mobile devices.
Since the formulated problem requires information that is generally not available in a
practical system, the authors proposed a DDPG-based solution that learns an optimal
task offloading decision from mobile devices to a MES, the transmission power of each
mobile device, and CPU frequencies allocated by a MES to each task. However, to lean
an optimal policy, an agent still needs system-wide information such as the tasks selected
by all mobile devices and the channel condition between a BS and all mobile devices.
In addition, the agent has to distribute the result of the offloading and resource allocation
decision to all the mobile devices so that they take actions accordingly. Since the signaling
overhead increases with the number of mobile devices, it may cause a scalability problem.
Furthermore, the signaling procedures between devices and a MES is not clear.

2.2. Technical Approaches

A resource management problem in a MEC system is often formulated as an opti-
mization problem with constraints. Although the specific system models are different,
the formulated optimization problems are often NP-hard or NP-complete. Various technical
approaches were adopted to reduce the complexity of the formulated problem. The authors
in [24] cast the virtual network function (VNF) instance deployment and user request
assignment problem as an integer linear programming problem and proposed two heuris-
tic algorithms with limited complexity. In [14], the authors proposed a task-redirection
method to balance the loads among MESs. By lexicographically minimizing the MES load
vector, they increased the resource efficiency of a MEC system and reduced the average task
blocking rate. In [25], a utility maximization problem was formulated to jointly optimize
the video segment cache, transcoding strategy, and wireless resource-allocation strategy.
Because this is a mixed-integer nonlinear programming problem, they decomposed the orig-
inal problem into multiple simpler subproblems and proposed a low-complexity heuristic

Appl. Sci. 2022, 12, 4539 5 of 23

method to resolve each subproblem. To simplify the objective function, auxiliary variables
were used in [26] to minimize the maximum task execution delay. Bilevel programming
and matching algorithms were used in [27] to optimize the task assignment, power allo-
cation, and user association jointly. To reduce the complexity of the formulated problem,
these methods transform the original problem into a more tractable form by simplifying
the objective function or decomposing it into multiple simpler subproblems. They then
devised an iterative process to find an optimal solution to the converted problem. However,
the iterative process requires time before finding an optimal solution. Thus, applying them
to make online resource-allocation decisions may be inappropriate.

Game theory is also used for resource management in MEC systems [28–30]. Methods
based on game theory are scalable and easily adapt to unexpected behaviors. However,
implementing a lightweight algorithm with limited complexity using theoretical game
models is not easy [31]. For example, a cooperative game requires information exchanges
among players, which incurs high signaling costs in a MEC system. Machine learning
models have been used to resolve resource management problems. In [32], three regression
models were used to obtain an optimal subcarrier allocation. However, because they
used an exhaustive search to find optimal labels when constructing training datasets,
the computational complexity of their method was high. In addition, they did not consider
the input load dynamics or queuing delay when making a resource allocation decision.
Therefore, the performance achieved using these methods is not expected to exceed a
certain threshold. In [33], a deep deterministic policy gradient (DDPG) managed the
available spectrum, computing, and caching resources for MEC-mounted base stations and
unmanned aerial vehicles. DDPG was also used in [34] to solve the optimal user association
and video quality selection problems. However, DDPG is sensitive to hyperparameters
and often converges to a poor solution [35]. The authors in [36] used the Lyapunov
optimization approach to optimally offload tasks in a dense cloud radio access network
(RAN). The methods using the Lyapunov approach manage resources using only the
observed queue length at the start of each time slot. However, because they do not consider
input dynamics, these methods are suboptimal, in particular when the input load changes
widely over time.

3. System Model and Problem Formulation

Figure 1 shows the system model that we consider in this paper. Tasks arriving at
a MES can be classified into two groups. One group is composed of the tasks offloaded
directly from devices, and the other group comprises the tasks sent by other MESs by means
of the task migration and the load-balancing. In this paper, we focus on the service-time
allocation problem occurring when a MES serves the received tasks. Therefore, we do
not distinguish the former from the latter. We assumed that once a MES receives a task,
it classifies the task according to its type and buffers its workload in a queue arranged
for that type of task. To devise an efficient service-time allocation strategy in a MES, we
considered a MES that supports a set N of task classes. The time is divided into equally
sized slots. We denote τ as the length of a time slot and fmes as the CPU frequency of a MES.
A task imposes a workload in terms of the number of CPU cycles required to complete
the task. For each task class i, a MES maintains a queue i, which stores the workloads
imposed by the class tasks i. We assumed a stochastic fluid queue for each class [37]. That
is, we considered the workload imposed by a task to be a continuous fluid, although the
workload is a discrete unit. Thus, we do not delineate task boundaries in each queue. We
denote the workload stored in queue i at the start of time slot t as Qi(t).

Appl. Sci. 2022, 12, 4539 6 of 23

Figure 1. System model.

During each time slot t, the CPU of a MES is shared by the set of queues. If we denote
the proportion of time that a MES serves a queue i during a time slot t as αi(t), the number
of CPU cycles used to serve a queue i becomes

bi(t) = αi(t)τ fmes, 0 ≤ αi(t) ≤ 1, ∀i ∈ N, ∀t > 0. (1)

We adopted a popular cubic model to quantify the energy consumption of a MES [38].
Thus, during time slot t, the amount of energy consumed by a MES to serve queue i is

ei(t) = αi(t)τκ f 3
mes, (2)

where κ denotes the effective switching capacity of the processor. Therefore, the amount of
energy consumed by a MES during time slot t is obtained as:

E(t) = ∑
i∈N

ei(t). (3)

If we denote the workload newly imposed on queue i during time slot t as wi(t),
the dynamics of Qi(t) can be described as

Qi(t + 1) = max{0, Qi(t)− bi(t) + wi(t)}. (4)

According to Little’s law, if the data arrival rate to a stationary queuing system is
given as w̄i = E[wi(t)/τ], the long-term time-averaged queuing latency is given as

L̄i = lim
T→∞

1
T

T

∑
t=1

E[Qi(t)
w̄i

]. (5)

L̄i is proportional to the long-term time-averaged queue length. To provide differ-
entiated services among the queues in terms of the queuing latency, the long-term time-
averaged queue length should be maintained under the queue length threshold δi = w̄i L̄i.
That is,

lim
T→∞

1
T

T

∑
t=1

E[Qi(t)] ≤ δi, ∀i ∈ N. (6)

Since δi is determined by the delay characteristics of the tasks belonging to the class i,
we assumed that δi is pre-defined for each class queue.

Appl. Sci. 2022, 12, 4539 7 of 23

As seen in Equations (2) and (4), ei(t) increases with αi(t), while Qi(t) decreases
as αi(t) increases. Thus, to strike the correct balance between energy consumption and
queuing delay, we require a systematic method to determine αi(t). To address the trade-off
between the energy consumption and queuing delay, we intend to minimize the long-term
time-averaged energy consumption of a MES while satisfying the queue length constraint
in Equation (6) by optimally controlling the proportion of time that a MES serves each
queue. We formulated our problem as the following optimization problem.

P1 : min lim
T→∞

1
T

T

∑
t=1

E[E(t)] (7)

s.t. lim
T→∞

1
T

T

∑
t=1

E[Qi(t)] ≤ δi, ∀i ∈ N. (8)

0 ≤ αi(t) ≤ 1, ∀i ∈ N. (9)

∑
i∈N

αi(t) ≤ 1. (10)

Problem P1 is difficult to solve because we cannot know the statistics of the task
arrivals for all time slots when we must determine αi(t)s. To tackle this difficulty, we
adopted the Lyapunov optimization framework and a deep learning model to devise
an online service-time allocation method that determines Ω(t) = {αi(t) : i ∈ N} at the
beginning of each time slot t.

4. Online Resource Allocation Method

In this section, we convert Problem P1 into a per-time-slot optimization problem using
the Lyapunov optimization framework. We then design an online service-time allocation
strategy that can solve the converted problem in O(|N|).

4.1. Per-Time-Slot Optimization Problem

To control the delay constraint in P1, we define the virtual queue Zi(t) for each task
queue that evolves as follows:

Zi(t + 1) = max[0, Zi(t) + Qi(t + 1)− δi], ∀i ∈ N. (11)

A virtual queue is said to be mean rate stable if

lim
T→∞

E[Zi(T)]
T

= 0. (12)

From the Lyapunov optimization framework in [39], the delay constraint in P1 is
satisfied when the virtual queue is mean rate stable. To guarantee the mean rate stability of
the virtual queue, we define the following Lyapunov function:

L(Z(t)) =
1
2 ∑

i∈N
Zi(t)2, ∀t. (13)

We also define the Lyapunov drift, which is the conditional expected changes in the
Lyapunov function over one time slot.

∆L(Z(t)) = E[L(Z(t + 1))− L(Z(t))|Z(t)]. (14)

By minimizing ∆L(Z(t)) for each time slot, we can make Zi(t)s mean rate stable.
However, minimizing only ∆L(Z(t)) may result in unnecessary energy consumption. Thus,

Appl. Sci. 2022, 12, 4539 8 of 23

following the approach in [39], we define the drift-plus-penalty function ∆pL(Z(t)) to
consider the energy consumption of a MES.

∆pL(Z(t)) = ∆L(Z(t)) + VE[E(t)|Z(t)], (15)

where V is a weight parameter that controls the importance of the MES energy consump-
tion on ∆pL(Z(t)). For example, as V increases, the energy consumption becomes more
important than the delay constraint for each queue. From the concept of opportunistically
minimizing the expectation, our problem becomes minimizing ∆pL(Z(t)) for each time
slot. To achieve this goal, we introduce Proposition 1, which provides the upper bound of
∆pL(Z(t)).

Proposition 1. ∆pL(Z(t)) is upper bounded by

∆pL(Z(t)) ≤ B +E[∑
i∈N

bi(t)2 − bi(t)(2Qi(t) + 2wi(t) + Zi(t)) + Vbi(t)κ f 3
mes|Z(t)], (16)

where bi(t) = αi(t)τ fmes and B = ∑i∈N Qi(t)2 + wi(t)2 + 2Qi(t)wi(t) + Zi(t)(Qi(t) + wi(t)) +
δ2

i is a positive constant irrelevant to αi(t)s.

Proof. Since Zi(t+ 1) = max[0, Zi(t) + Qi(t+ 1)− δi], Zi(t) ≤ Zi(t)2 + 2Zi(t)(Qi(t+ 1)−
δi) + (Qi(t + 1)− δi)

2. Let ∆Zi(t) =
1
2 (Zi(t + 1)2 − Zi(t)2). Then,

∆Zi(t) ≤
(Qi(t + 1)− δi)

2

2
+ Zi(t)(Qi(t + 1)− δi).

Since (x + y)2 ≤ 2x2 + 2y2,

∆Zi(t) ≤ Qi(t + 1)2 + Zi(t)Qi(t + 1) + δ2
i . (17)

Because Qi(t + 1) = max[0, Qi(t) − bi(t) + wi(t)], Qi(t + 1)2 ≤ Qi(t)2 + bi(t)2 +
wi(t)2 + 2Qi(t)(wi(t)− bi(t))− 2wi(t)bi(t). By rearranging the terms, we obtain

Qi(t + 1)2 ≤ Bi(t) + bi(t)2 − 2bi(t)(Qi(t) + wi(t)), (18)

where Bi(t) = Qi(t)2 + wi(t)2 + 2Qi(t)wi(t) is a positive constant unrelated to bi(t).
By placing Equation (18) into Equation (17), we obtain

∆Zi(t) ≤ Bi(t) + bi(t)2 − 2bi(t)(Qi(t) + wi(t)) + Zi(t)(Qi(t)− bi(t) + wi(t)) + δ2
i . (19)

If we let Ci(t) = Bi(t) + Zi(t)(Qi(t) + wi(t)) + δ2
i , we obtain:

∆Zi(t) ≤ Ci(t) + bi(t)2 − bi(t)(2Qi(t) + 2wi(t) + Zi(t)). (20)

As ∆L(Z(t)) = E[L(Z(t + 1))− L(Z(t))|Z(t)] = E[∑i∈N ∆Zi(t)|Z(t)],

∆L(Z(t)) ≤ ∑
i∈N

Ci(t) +E[∑
i∈N

bi(t)2 − bi(t)(2Qi(t) + 2wi(t) + Zi(t))|Z(t)]. (21)

Recall that bi(t) = αi(t)τ f 3
mes and ei(t) = αi(t)τκ f 3

mes = bi(t)κ f 2
mes. Because E(t) =

∑i∈N ei(t) = ∑i∈N bi(t)κ f 2
mes, we obtain:

VE[E(t)|Z(t)] = VE[∑
i∈N

bi(t)κ f 2
mes|Z(t)]. (22)

Appl. Sci. 2022, 12, 4539 9 of 23

From Equations (21) and (22), the ∆pL(Z(t)) is upper bounded as

∆pL(Z(t)) ≤ B +E[∑
i∈N

bi(t)2 − bi(t)(2Qi(t) + 2wi(t) + Zi(t)) + Vbi(t)κ f 2
mes|Z(t)],

where B = ∑i∈N Ci(t) is a positive constant unrelated to bi(t).

Note that the space defined in Equation (10) is the subset of the space defined by
Equation (9). Then, from Proposition 1 and the concept of opportunistically minimizing
the expectation, we can translate Problem P1 as the following per-time-slot optimization
problem.

P2 :argminΩ(t)={αi(t):i∈N}E[∑
i∈N

bi(t)2 − bi(t)(2Qi(t) + 2wi(t) + Zi(t)) + Vbi(t)κ f 2
mes].

s.t. ∑
i∈N

αi(t) ≤ 1. (23)

4.2. Online Service Time Allocation Method

Problem P2 is a quadratic programming problem with a constraint that is not a
separable inequality. Therefore, we may use a projected subgradient method to obtain the
solution. However, ref. [23] showed that the convergence time of a subgradient method
with a constant step size is O(1/ε), where 0 < ε � 1 is the difference between the
termination point and the optimal point. Thus, the time complexity of the subgradient
method is O(|N|/ε), which may be too long for online decisions. Therefore, in this section,
we propose a heuristic algorithm that determines Ω(t) in O(|N|) time at the beginning
of each time slot and is optimal while the sum of the determined αi(t)s is not larger than
1. Let us denote gi(t) = bi(t)2 − (2Qi(t)2 + 2wi(t)2 + Zi(t) − Vκ f 2

mes)bi(t) and ignore
Constraint (23). Because min(∑i∈N gi(t)) ≥ ∑i∈N min(gi(t)), we can obtain a solution to
Problem P2 by finding an αi(t) that satisfies ∂gi(t)

∂αi(t)
= 0 for all i ∈ N. As bi(t) = αi(t)τ fmes,

∂gi(t)
∂αi(t)

= 2τ2 f 2
mesαi(t)− τ fmes(2Qi(t) + 2wi(t) + Zi(t)−Vκ f 2

mes). Therefore, if we denote an
αi(t) that minimizes ∂gi(t)/∂αi(t) as xi(t), it becomes

xi(t) =
2Qi(t) + 2wi(t) + Zi(t)−Vκ f 2

mes
2τ fmes

. (24)

A MES must decide αi(t)s at the start of each time slot. However, xi(t) involves
wi(t), which a MES knows only at the end of the time slot t. To resolve this, we adopted
an LSTM model to predict wi(t) at the beginning of a time slot t. To train the LSTM
model for each queue, a MES measures the workload imposed during each time slot.
At the start of each time slot k, a MES maintains h past workload arrival histories hi(k) =
{wi(k− h), . . . , wi(k− 1)} for each queue i and feeds hi(k) to the LSTM model to obtain
ŵi(k) as its output. Because a MES can measure wi(k) at the end of time slot k, it updates
the LSTM model using (wi(k)− ŵi(k))2 as the loss function. Once a MES finishes training
the LSTM model, it uses the model to predict the amount of workload that will be imposed
on each queue during a time slot t at the beginning of time slot t. Specifically, at the start of
a time slot t, a MES feeds (wi(t− h), . . . , wi(t− 1)) to the LSTM and obtains ŵi(t) as the
workload to be imposed on the queue i during time slot t.

By replacing wi(t) with ŵi(t) in Equation (24), we obtain:

x̂i(t) =
2Qi(t) + 2ŵi(t) + Zi(t)−Vκ f 2

mes
2τ fmes

. (25)

Appl. Sci. 2022, 12, 4539 10 of 23

Let us denote the fraction of time that a MES allocates to each queue during a time
slot t as α∗i (t). Because 0 ≤ αi(t) ≤ 1, when ∑i∈N α∗i (t) ≤ 1, α∗i (t) is determined as follows.

α∗i (t) =

1, 1 ≤ x̂i(t)
x̂i(t), 0 < x̂i(t) < 1
0, x̂i(t) ≤ 0

(26)

If ∑i∈N α∗i (t) > 1, then the optimal solution to P2 is outside the space defined by the
constraint in Equation (23). That is, because the workload imposed on queue i (i.e., Qi(t) +
wi(t)) is temporarily larger than the capacity of a MES, a MES cannot make Qi(t + 1) < δi.
Because the MES resource is insufficient to handle the total workload imposed on it, we
adjust the fraction of time assigned to each queue in proportion to α∗i (t)s in Equation (26).
Specifically,

α∗∗i (t) =
α∗i (t)

∑j∈N α∗j (t)
, ∀i ∈ N. (27)

From Equations (26) and (27), a MES determines αi(t)s at the start of each time slot t
as follows.

αi(t) =

{
α∗i (t), ∑i∈N α∗i (t) ≤ 1
α∗∗i (t), otherwise

(28)

We summarize our online resource allocation method in Algorithm 1.

Algorithm 1 Online service time allocation algorithm

1: At the start of each time slot t:
2: Observe Qi(t)s, ∀i ∈ N.
3: Predict ŵi(t) using an LSTM, ∀i ∈ N.
4: y = 0.
5: while i ≤ |N| do

6: x̂i(t) =
2Qi(t)+2ŵi(t)+Zi(t)−Vκ f 2

mes
2τ fmes

.

7: α∗i (t) =

1, 1 ≤ x̂i(t)
x̂i(t), 0 < x̂i(t) < 1
0, x̂i(t) ≤ 0

8: y += α∗i (t)
9: i ++

10: if y ≤ 1 then
11: αi(t) = α∗i (t)
12: else
13: while i ≤ |N| do αi(t) =

α∗i (t)
∑j∈N α∗j (t)

4.3. Properties

We state the characteristics of our algorithm as Proposition 2.

Proposition 2. If the drift function satisfies the drift condition for all time slots and all possible
Z(t) and the expected penalty function E[E(t)] is lower bounded by a finite value ζmin, the long-
term time-averaged expected energy a MES consumes when it uses our online service time allocation
algorithm satisfies

lim
T→∞

1
T

T−1

∑
t=0

E[E(t)] ≤ ζopt +
B
V

, (29)

Appl. Sci. 2022, 12, 4539 11 of 23

where ζopt is the optimal time-averaged penalty value and B a positive constant. In addition,
the long-term time-averaged expected virtual queue length satisfies

lim
T→∞

1
T

T−1

∑
t=0

∑
i∈N

E[|Zi(t)|] ≤
B + V(ζopt − ζmin)

ε
, (30)

where ε is a non-negative constant.

Proof. We followed the approach in [39]. Suppose there are constants B > 0 and ε ≥ 0
such that the following drift condition holds for all time slots and possible Z(t)s:

∆L(Z(t)) ≤ B− ε ∑
i∈N
|Zi(t)|. (31)

Let us assume that the expected penalty function E[E(t)] is lower bounded by a finite
value ζmin. Then, for all time slots and all possible resource allocation actions, we have

E[E(t)] ≥ ζmin. (32)

We denote the optimal time-averaged penalty value as ζopt. That is, for all time slots
and all possible resource allocation actions, we obtain

E[E(t)] ≤ ζopt. (33)

Then, for a time slot t, the following inequality holds.

∆L(Z(t)) + VE[E(t)] ≤ B + Vζopt − ε ∑
i∈N
|Zi(t)|. (34)

Taking expectations on both sides and applying the law of iterated expectations for
t = 0, . . . , T − 1, we have

E[L(Z(T))]−E[L(Z(0)] + V
T−1

∑
t=0

E[E(t)] ≤ T(B + Vζopt)− ε
T−1

∑
t=0

∑
i∈N
|Zi(t)|. (35)

Dividing both side of Equation (35) by TV, we obtain

∑T−1
t=0 E[E(t)]

T
≤ ζopt +

B
V

+
E[L(Z(0))]−E[L(Z(T)]

TV
. (36)

Then, by taking T → ∞, we obtain

lim
T→∞

1
T

T−1

∑
t=0

E[E(t)] ≤ ζopt +
B
V

.

Because 0 ≤ V ∑T−1
t=0 E[E(t)] ≤ ∞ and 0 ≤ L(Z(T)) ≤ ∞, by dividing both sides of

Equation (35) by εT and rearranging terms, we also obtain the following inequality.

1
T

T−1

∑
t=1
|Zi(t)| ≤

B + Vζopt

ε
+

V ∑T−1
t=0 E[E(t)]

εT
+

E[L(Z(0))−E[L(Z(T))]
εT

(37)

≤
B + Vζopt

ε
+

VTζmin
εT

+
E[L(Z(0))]

εT
(38)

=
B + V(ζopt − ζmin)

ε
+

E[L(Z(0))]
εT

. (39)

Appl. Sci. 2022, 12, 4539 12 of 23

By taking T → ∞, we obtain

lim
T→∞

1
T

T−1

∑
t=1
|Zi(t)| ≤

B + V(ζopt − ζmin)

ε
. (40)

5. Performance Evaluation

In this section, we evaluate the performance of the proposed method using simulation
studies. The default parameter values are as follows, if not specified otherwise. A MES is
equipped with a fmes = 1.0 GHz CPU core, whose effective switching capacity is κ = 10−27.
The length of a time slot is τ = 1 s and V = 1015. A MES supports |N| = 3 classes, whose
delay requirement is configured as δi = 10i ms for each i ∈ N. To emulate the task arrival
process for each class, we used the traffic traces from a cellular network containing the time
that a device generates a call. We used the dataset that results from a computation over the
call detail records (CDRs) generated by the Telecom Italia cellular network for nine days
from the city [40]. Assuming that the call generation pattern of a device is similar to the
task offloading pattern of the device, we divided the real traffic traces into time slots and
calculated the number of tasks generated during each time slot. The workload imposed by
a task is influenced by the applications to which a task belongs [41]. In this study, for each
task class i, the workload imposed by a task is randomly selected in [wmin

i , wmax
i] according

to the uniform distribution. For each class i ∈ N, we set [wmin
i , wmax

i] = [i× 10.0, i× 31.6]
kilocycles. To focus on the service-time allocation problem at a MES, we considered the
situation where a MES is not overloaded such that limT→∞ 1/T ∑T

t=1 ∑i∈N wi(t) < τ fmes.

5.1. Task Arrival Prediction Using LSTM

To predict the number of tasks arriving at each queue during a time slot, we used
a single-layer LSTM with five hidden units for a given sequence input. We add Table 1,
which shows the important parameters and their values used for the LSTM training.

Table 1. The parameters for LSTM training.

Parameters Values

Learning rate 0.01
Number of epochs 3000

Input size 3 to 5
Hidden size 5

Activation function ReLU
Optimization function Adam

To compare the prediction performance according to the length of the input sequence
(i.e., h), we measured the prediction error in terms of ζi(t) = ((wi(t) − ŵi(t))/wi(t))2.
Then, we compared the mean and the standard deviation of the root-mean-squared (RMS)
prediction error in Table 2. If we denote the number of time steps used to calculate the RMS

as n, the RMS for a class i queue is calculated as
√

1
n ∑n

t=1 ζi(t).
We observe in Table 2 that the best performance is obtained when the input size is four.

Figure 2 shows the differences in the actual and predicted values over time for each class
when the input size is four. The accuracy of the predicted values is quite high compared to
the actual values.

Appl. Sci. 2022, 12, 4539 13 of 23

Table 2. Performance comparison of LSTM prediction in terms of RMS.

Class 1 Class 2 Class 3

Avg. Std. Dev. Avg. Std. Dev. Avg. Std. Dev.

h = 3 0.1022 0.0875 0.1182 0.1069 0.0738 0.0662
h = 4 0.0957 0.0767 0.1152 0.1016 0.0889 0.0795
h = 5 0.1057 0.0836 0.1249 0.0948 0.0931 0.0709

Figure 2. Comparison between actual and predicted values.

5.2. Performance Comparisons

We compared the performance of the proposed method with those of three alternatives.
The first alternative is EVEN, which determines αi(t) = 1/|N|. The second alternative
determines αi(t) in proportion to the queue-length threshold δi. Specifically, if we denote
ηi = 1/δi, the second alternative determines αi(t) = ηi/ ∑j∈N ηj. Henceforth, we refer
to this as TPRA. The third alternative, WoPred, is similar to our method in that it uses
a Lyapunov optimization framework. However, WoPred uses only the observed queue
length without considering the input workload dynamics when determining αi(t)s at the
start of each time slot. We also show the results obtained when our method uses wi(t)s
instead of ŵi(t)s, which indicate the upper performance bound of our method.

First of all, we analyzed the time complexity of these methods. Algorithm 1 describes
our online resource allocation method. The method is composed of two main parts—
the prediction of the workload to be imposed on the queue i during time slot t and the
determination of the time fraction that a MES allocates to each queue during a time
slot t. To analyze the time complexity of the workload prediction, we considered the
time consumed by the LSTM deep learning model to predict the workload. Since the
deep learning technique is used for prediction after going through the training phase,
the required time for the prediction is O(1). Next, the time complexity of the time fraction
determination is O(N), which is proportional to the set of queues managed by a MES.
Therefore, the time complexity of our method is O(N). Meanwhile, in the case of the ideal
method, the time complexity is O(N) because it has only the time fraction determination
process. In EVEN, TPRA, and WoPred, only the time fraction determination process is
included. However, the difference among these three methods is in how they determine
the fraction of the time that a MES allocates to each queue during a time slot t (α∗i (t)). Since
EVEN and TPRA allocate α∗i (t)s statically, their time complexity is O(1). In contrast, since
WoPred dynamically allocates service-time at each time slot by calculating α∗i (t)s, its time
complexity is O(N).

In Figure 3, we show how each method changes Qi(t)s over time. We can see in
Figure 3a that WoPred makes Q1(t) fluctuate widely and does not make Q1(t) < δ1 most
of thetime. We also observe similar behaviors in Figure 3b,c. This is because WoPred
uses only the current queue length when it allocates service-time for each queue. When

Appl. Sci. 2022, 12, 4539 14 of 23

EVEN and TPRA are used, Q1(t) is maintained under δ1. However, Q2(t) and Q3(t) are
not always maintained below δ2 and δ3. This is attributed to the fact that they statically
allocate service-time. If the workloads imposed on the Class 2 queue and Class 3 queue are
temporarily larger than the service-time allocated to them, Q2(t) and Q3(t) rise sharply.
In this figure, we can observe that our method makes Qi(t) < δi for all i all the time by
dynamically allocating service-time to each queue according to the current queue length
and the expected amount of workload.

(a)

(b)

(c)

Figure 3. Comparison of Qi(t) for three classes. (a) Q1(t) over time, (b) Q2(t) over time, and (c) Q3(t)
over time.

To further examine this phenomenon, we show the changes in αi(t)s over time in
Figure 4.

Appl. Sci. 2022, 12, 4539 15 of 23

(a)

(b)

(c)

Figure 4. Comparison of αi(t) for three classes. (a) α1(t) over time, (b) α2(t) over time, and (c) α3(t)
over time.

When the workload arriving at each queue is small and the length of each queue is
small, all methods maintain Qi(t) < δi (∀i ∈ N). However, when the workload fed to
a queue i is small and the workload arriving at another queue j is high, the MES must
decrease αi(t) and increase αj(t) to avoid the temporal overload of queue j. However,
EVEN and TPRA statically assign αi(t)s without considering the input workload dynamics
and states of the queues. Because they cannot adjust the amount of CPU resources allocated
to each queue, they cannot prevent the temporal overload of the queue. By contrast, our
method dynamically adjusts αi(t)s according to Qi(t)s, wi(t)s, and δi. Because our method
can increase αj(t) more than that allocated by TPRA and decrease αi(t) less than that
allocated by TPRA, it can maintain the queue length below its target threshold.

In Figure 5, we compare ei(t)s over time. We observe that the energy consumed by a
MES is high when static methods (EVEN and TPRA) are used. The results are attributed to
the manner in which each method determines αi(t)s. We observe in Figure 4 that the static

Appl. Sci. 2022, 12, 4539 16 of 23

methods assign more service time to each queue than the dynamic methods (our method
and WoPred) during times when the queues are not temporarily overloaded. That is, static
methods make a MES in an active state unnecessarily longer than dynamic methods. A MES
in an active state consumes energy, even when a queue is empty. According to [42], the idle
energy consumed by a MES corresponds to 50∼70% of the peak power consumption when
a MES is fully used. In contrast, our method and WoPred dynamically determine αi(t)s at
the start of each time slot by considering Qi(t)s, reflecting the historical resource allocations.
Therefore, a MES can be turned into a low-power mode for (1−∑i∈N αi(t))τ. Thus, they
consume less energy than the static methods.

(a)

(b)

(c)

Figure 5. Comparison of ei(t) for three classes. (a) e1(t) over time, (b) e2(t) over time, and (c) e3(t)
over time.

Because WoPred does not consider a workload arrival process (i.e., ŵi(t)), it determines
αi(t)s in a reactive manner. Thus, when we examine the αi(t)s obtained by WoPred, the
αi(t)s lag because WoPred reacts only to the previous situation reflected in Qi(t)s. That

Appl. Sci. 2022, 12, 4539 17 of 23

is, WoPred allocates the αi(t)s using only Qi(t)s without considering ŵi(t)s. Thus, the
αi(t)s determined by WoPred may be larger or smaller than the αi(t)s required to maintain
Qi(t + 1) ≤ δi. Note that Qi(t + 1) is affected by wi(t). Because WoPred considers wi(t)
when it determines αi(t+ 1) using Qi(t+ 1), WoPred reacts to wi(t). In contrast, our method
predicts wi(t) at the beginning of a time slot t and considers ŵi(t) when it determines αi(t).
Thus, by considering Qi(t) and ŵi(t) at the start of time slot t, our method can determine
αi(t)s more optimally than WoPred, which results in smaller Qi(t)s and ei(t)s than WoPred.

5.3. Parameter Effect

In Figures 6 and 7, we show the average MES energy consumption and an average
queue length after the 140th time slot with different Vs. These two figures show the
influence of V, which trades off energy consumption and queue length. V determines the
importance of the penalty term (i.e., a MES energy consumption) in the drift-plus-penalty
function. Thus, as V increases, the amount of energy consumed by a MES dominates
∆pL(Z(t)). As V increases, our method attempts to further reduce the energy consumption.
That is, the service time allocated to each queue decreases as V increases. Thus, the average
queue length increases, whereas the amount of energy consumed by a MES decreases
with V. Therefore, by controlling V during the service-time allocation process, a MES
operator can balance the energy consumption and queuing delay. In these figures, we also
observe that, compared to WoPred, our method both consumes less energy and achieves
a smaller average queue length for all Vs because our method considers the previous
workload history reflected in Qi(t) and the workload expected during the current time slot
ŵi(t) when determining αi(t)s. In addition, the average energy consumption and average
queue length obtained using our method are comparable to those achieved in an ideal case,
in which wi(t) is known in advance.

Figure 6. Average energy consumption of a MES with different V when N = 3.

(a)

Figure 7. Cont.

Appl. Sci. 2022, 12, 4539 18 of 23

(b)

(c)

Figure 7. Average queue length with different V. The average length of the Class 3 queue obtained by
TPRA is more than 2100 megacycles, which is much larger than those achieved by other methods.
Therefore, in Figure 7c, we omit the case when TPRA is applied to show the differences among the
other methods visually. (a) Class 1, (b) Class 2, and (c) Class 3.

5.4. Scalability

In Figures 8 and 9, we show the average queue lengths of the different methods
when the number of task classes (N) is 6 and 9, respectively. When N = 6, the average
queue lengths obtained by TPRA are much larger than those achieved by other methods in
Classes 4–6. For example, the average queue lengths obtained by TPRA are 11–25-times
larger than those achieved by EVEN or WoPred. Moreover, in Class 6, the average queue
length obtained by EVEN is much larger than those achieved by other methods. Therefore,
in these subfigures, we omit the cases when TPRA and EVEN are applied to show the
differences among the other methods visually. When N = 9, the average queue lengths
obtained by TPRA are much larger than those achieved by other methods in Classes 7–9.
Thus, in Classes 7–9, we omit the cases when TPRA is applied to show the differences
among the other methods visually. In these figures, we also observe that the average queue
lengths obtained by our method look identical to those obtained by the ideal method that
knows wi(t)s in advance. This is because they achieve similar average queue lengths for
all Vs. For example, when N = 6 and log10V = 16 (i.e., V = 1016), the differences in
the average queue length between our method and the ideal method ranges from 0.0053
to 0.097. When N = 9 and V = 1016, the differences range from 0.0027 to 0.073. From
Figures 8 and 9, we can observe that unlike the other methods, our method guarantees the
average queue length below a given threshold for all the queues.

Appl. Sci. 2022, 12, 4539 19 of 23

(a)

(b)

(c)

Figure 8. Average queue length with different Vs when the number of classes is 6. In Classes 4–6,
the average queue lengths obtained by TPRA are much larger than those achieved by other methods.
Therefore, in Classes 4–6, we omit the case when TPRA is applied and adjust the range of the x-axis to
show the differences among the other methods visually. We also note that since the results obtained
by the proposed method are almost identical to those obtained by the ideal case, they look the same
in these figures. (a) Classes 1 and 2, (b) Classes 3 and 4, and (c) Classes 5 and 6.

Appl. Sci. 2022, 12, 4539 20 of 23

(a)

(b)

(c)

Figure 9. Average queue length with different Vs when the number of classes is 9. In Classes 7–9,
the average queue lengths obtained by TPRA are much larger than those achieved by other methods.
Therefore, in Classes 7–9, we omit the case when TPRA is applied to show the differences among
the other methods visually. We also note that since the results obtained by the proposed method are
almost identical to those obtained by the ideal case, they looks the same in these figures. (a) Classes 1,
2, and 3, (b) Classes 4, 5, and 6, and (c) Classes 7, 8, and 9.

In Figure 10, we show the average energy consumption of a MES when N = 6
(Figure 10a) and N = 9 (Figure 10b) with different Vs. We can see that the energy consumed
by our method is comparable to that consumed by the ideal method. Moreover, we can
observe that our method consumes the least energy. We can also observe that there is a
trade-off between the average energy consumption and the average queue length, which
we can control by using the parameter V.

(a) (b)

Figure 10. Average energy consumption of a MES with different Vs when N = 6 and N = 9.
(a) N = 6 classes, and (b) N = 9 classes.

Appl. Sci. 2022, 12, 4539 21 of 23

6. Conclusions and Future Works

In this study, we proposed an online service-time allocation method that can reduce
the energy consumption of a MES while guaranteeing the queuing latency requirement
for each class queue. We combined the Lyapunov optimization framework with a deep
learning model and devised a lightweight algorithm that can quickly determine an optimal
solution at the beginning of each time slot using the observed queue length and predicted
workload. Using simulation studies, we verified that the proposed method is superior to
conventional methods in reducing the energy consumption of a MES while maintaining
the queuing delay below a given threshold value.

Since our method deals with the service-time allocation problem when a MES is not
overloaded, it can complement a MES congestion resolution method and a task migration
method. If a MES detects that the average queue length cannot be guaranteed because the
task input rate to a MES exceeds the capacity of the MES, it can invoke a MES congestion
resolution method to move some tasks to the other MESs or to a cloud server. In addition,
when a MES detects that a device moves out of its service area, it invokes a task migration
method to move tasks to other MESs.

As a future work, we plan to extend our resource management method into more
complex scenarios where MESs migrate tasks and the backhaul network capacity is limited.
To further improve the system performance and QoS requirements of tasks, we will jointly
optimize a service-time allocation strategy, a MES congestion resolution policy, and a task
migration algorithm.

Author Contributions: Conceptualization, J.P. and Y.L.; methodology, J.P.; software, Y.L.; formal. All
authors have read and agreed to the published version of the manuscript.

Funding: The present research has been conducted by the Research Grant of Kwangwoon University
in 2021. This work was supported by the National Research Foundation of Korea(NRF) grant funded
by the Korea government(MSIT) (No. 2021R1F1A1047113).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

N A set of task classes
fmes The CPU frequency of a MES
τ The length of a time slot
Qi(t) The workload stored in queue i at the start of time slot t
αi(t) The proportion of time that a MES serves a queue i during a time slot t
bi(t) The number of CPU cycles used to serve a queue i during a time slot t
ei(t) The amount of energy consumed by a MES to serve queue i during a time slot t
E(t) The amount of energy consumed by a MES during time slot t
wi(t) The workload newly imposed on queue i during time slot t
L̄i The long-term time-averaged queuing latency
δi The queue length threshold of queue i
Zi(t) The virtual queue i during time slot t

References
1. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective. IEEE

Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]
2. Spinelli, F.; Mancuso, V. Toward Enabled Industrial Verticals in 5G: A Survey on MEC-Based Approaches to Provisioning and

Flexibility. IEEE Commun. Surv. Tutor. 2021, 23, 596–630. [CrossRef]
3. Sarrigiannis, I.; Ramantas, K.; Kartsakli, E.; Mekikis, P.-V.; Antonopoulos, A.; Verikoukis, C. Online VNF Lifecycle Management

in an MEC-Enabled 5G IoT Architecture. IEEE Internet Things J. 2020, 7, 4183–4194. [CrossRef]
4. Siriwardhana, Y.; Porambage, P.; Liyanage, M.; Ylianttila, M. A Survey on Mobile Augmented Reality with 5G Mobile Edge

Computing: Architectures, Applications, and Technical Aspects. IEEE Internet Things J. 2021, 23, 1160–1192. [CrossRef]

http://doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/COMST.2020.3037674
http://dx.doi.org/10.1109/JIOT.2019.2944695
http://dx.doi.org/10.1109/COMST.2021.3061981

Appl. Sci. 2022, 12, 4539 22 of 23

5. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surv. Tutor.
2017, 19, 1628–1656. [CrossRef]

6. Sana, M.; Merluzzi, M.; Pietro, N.d.; Strinati, E.C. Energy Efficient Edge Computing: When Lyapunov Meets Distributed
Reinforcement Learning. In Proceedings of the IEEE International Conference on Communications Workshops (ICC Workshops),
Montreal, QC, Canada, 14–23 June 2021.

7. Zhang, X.; Pal, A.; Debroy, S. Deep Reinforcement Learning Based Energy-efficient Task Offloading for Secondary Mobile Edge
Systems. In Proceedings of the IEEE 45th LCN Symposium on Emerging Topics in Networking (LCN Symposium), Sydney,
Australia, 16–19 November 2020.

8. Tu, Y.; Chen, H.; Yan, L.; Zhou, X. Task Offloading Based on LSTM Prediction and Deep Reinforcement Learning for Efficient
Edge Computing in IoT. Future Internet 2022, 14, 30. [CrossRef]

9. Nath, S.; Wu, J. Dynamic Computation Offloading and Resource Allocation for Multi-user Mobile Edge Computing. In
Proceedings of the IEEE Global Communications Conference (GLOBECOM), Taipei, Taiwan, 7–11 December 2020.

10. Wang, S.; Xu, J.; Zhang, N.; Liu, Y. A Survey on Service Migration in Mobile Edge Computing. IEEE Access 2018, 6, 23511–23528.
[CrossRef]

11. Liu, C.; Tang, F.; Hu, Y.; Li, K.; Tang, Z.; Li, K. Distributed Task Migration Optimization in MEC by Extending Multi-Agent Deep
Reinforcement Learning Approach. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 1603–1614. [CrossRef]

12. Zhang, W.-Z.; Elgendy, I.A.; Hammad, M.; Iliyasu, A.M.; Du, X.; Guizani, M.; El-Latif, A.A.A. Secure and Optimized Load
Balancing for Multitier IoT and Edge-Cloud Computing Systems. IEEE Internet Things J. 2021, 8, 8119–8132. [CrossRef]

13. Zhang, F.; Wang, M.M. Stochastic Congestion Game for Load Balancing in Mobile-Edge Computing. IEEE Internet Things J. 2021,
8, 778–790. [CrossRef]

14. Park, J.; Lim, Y. Balancing Loads among MEC Servers by Task Redirection to Enhance the Resource Efficiency of MEC Systems.
Appl. Sci. 2021, 11, 7589. [CrossRef]

15. Huang, M.; Liu, W.; Wang, T.; Liu, A.; Zhang, S. A Cloud–MEC Collaborative Task Offloading Scheme with Service Orchestration.
IEEE Internet Things J. 2020, 7, 5792–5805. [CrossRef]

16. Sohee, B.; Seungyul, H.; Youngchul, S. A Reinforcement Learning Formulation of the Lyapunov Optimization: Application to
Edge Computing Systems with Queue Stability. arXiv 2020, arXiv:2012.07279.

17. Porambage, P.; Okwuibe, J.; Liyanage, M.; Ylianttila, M.; Taleb, T. Survey on Multi-Access Edge Computing for Internet of Things
Realization. IEEE Commun. Surv. Tutor. 2018, 20, 2961–2991. [CrossRef]

18. 3GPP TS 23.203. Technical Specification Group Services and System Aspects; Policy and Charging Control Architecture,
V17.2.0., 3GPP. 2021. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?
specificationId=810 (accessed on 15 February 2022).

19. IETF RFC 4594, Configuration Guidelines for DiffServ Service Classes, IETF. 2006. Available online: https://www.rfc-editor.org/
info/rfc4594 (accessed on 15 February 2022).

20. Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural
Netw. Learn. Syst. 2015, 28, 2222–2232. [CrossRef]

21. Schmidhuber, J.; Wierstra, D.; Gomez, F. Evolino: Hybrid Neuroevolution/Optimal Linear Search for Sequence Learning. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Edinburgh, UK, 30 July–5 August 2005.

22. Zhao, Z.; Chen, W.; Wu, X.; Chen, P.C.Y.; Liu, J. LSTM Network: A Deep Learning Approach for Short-term Traffic Forecast. IET
Intell. Transp. Syst. 2017, 11, 68–75. [CrossRef]

23. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
24. Ma, Y.; Liang, W.; Huang, M.; Xu, W.; Guo, S. Virtual Network Function Service Provisioning in MEC via Trading Off the

Usages between Computing and Communication Resources. IEEE Trans. Cloud Comput. 2020, 2020, 1–15. [CrossRef]
25. Huang, X.; He, L.; Wang, L.; Li, F. Towards 5G: Joint Optimization of Video Segment Caching, Transcoding and Resource

Allocation for Adaptive Video Streaming in a Multi-Access Edge Computing Network. IEEE Trans. Veh. Technol. 2021, 70,
10909–10924. [CrossRef]

26. Guo, C.; He, W.; Li, G.Y. Optimal Fairness-Aware Resource Supply and Demand Management for Mobile Edge Computing. IEEE
Wirel. Commun. Lett. 2021, 10, 678–682. [CrossRef]

27. Liu, B.; Liu, C.; Peng, M. Resource Allocation for Energy-Efficient MEC in NOMA-Enabled Massive IoT Networks. IEEE J. Sel.
Areas Commun. 2021, 39, 1015–1027. [CrossRef]

28. Feng, L.; Li, W.; Lin, Y.; Zhu, L.; Guo, S.; Zhen, Z. Joint Computation Offloading and URLLC Resource Allocation for Collaborative
MEC Assisted Cellular-V2X Networks. IEEE Access 2020, 8, 24914–24926. [CrossRef]

29. Wang, K.; Ding, Z.; So, D.K.C.; Karagiannidis, G.K. Stackelberg Game of Energy Consumption and Latency in MEC Systems with
NOMA. IEEE Trans. Commun. 2021, 69, 2191–2206. [CrossRef]

30. Yang, X.; Luo, H.; Sun, Y.; Zou, J.; Guizani, M. Coalitional Game-Based Cooperative Computation Offloading in MEC for Reusable
Tasks. IEEE Internet Things J. 2021, 8, 12968–12982. [CrossRef]

31. Moura, J.; Hutchison, D. Game Theory for Multi-Access Edge Computing: Survey, Use Cases, and Future Trends. IEEE Commun.
Surv. Tutor. 2019, 21, 260–288. [CrossRef]

http://dx.doi.org/10.1109/COMST.2017.2682318
http://dx.doi.org/10.3390/fi14020030
http://dx.doi.org/10.1109/ACCESS.2018.2828102
http://dx.doi.org/10.1109/TPDS.2020.3046737
http://dx.doi.org/10.1109/JIOT.2020.3042433
http://dx.doi.org/10.1109/JIOT.2020.3008009
http://dx.doi.org/10.3390/app11167589
http://dx.doi.org/10.1109/JIOT.2019.2952767
http://dx.doi.org/10.1109/COMST.2018.2849509
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=810
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=810
https://www.rfc-editor.org/info/rfc4594
https://www.rfc-editor.org/info/rfc4594
http://dx.doi.org/10.1109/TNNLS.2016.2582924
http://dx.doi.org/10.1049/iet-its.2016.0208
http://dx.doi.org/10.1109/TCC.2020.3043313
http://dx.doi.org/10.1109/TVT.2021.3108152
http://dx.doi.org/10.1109/LWC.2020.3046023
http://dx.doi.org/10.1109/JSAC.2020.3018809
http://dx.doi.org/10.1109/ACCESS.2020.2970750
http://dx.doi.org/10.1109/TCOMM.2021.3049356
http://dx.doi.org/10.1109/JIOT.2021.3064186
http://dx.doi.org/10.1109/COMST.2018.2863030

Appl. Sci. 2022, 12, 4539 23 of 23

32. Zhang, Y.; Zhou, X.; Teng, Y.; Fang, J.; Zheng, W. Resource Allocation for Multi-User MEC System: Machine Learning Approaches.
In Proceedings of the International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV,
USA, 12–14 December 2018.

33. Peng, H.; Shen, X.S. DDPG-based Resource Management for MEC/UAV-Assisted Vehicular Networks. In Proceedings of the
IEEE Vehicular Technology Conference (VTC), Victoria, BC, Canada, 18 November–16 December 2020.

34. Chou, P.-Y.; Chen, W.-Y.; Wang, C.-Y.; Hwang, R.-H.; Chen, W.-T. Deep Reinforcement Learning for MEC Streaming with Joint
User Association and Resource Management. In Proceedings of the IEEE International Conference on Communications (ICC),
Dublin, Ireland, 7–11 June 2020.

35. Matheron, G.; Perrin, N.; Sigaud, O. The Problem with DDPG: Understanding Failures in Deterministic Environments with
Sparse Rewards. arXiv 2019, arXiv:1911.11679.

36. Zhang, Q.; Gui, L.; Hou, F.; Chen, J.; Zhu, S.; Tian, F. Dynamic Task Offloading and Resource Allocation for Mobile-Edge
Computing in Dense Cloud RAN. IEEE Internet Things J. 2020, 7, 3282–3299. [CrossRef]

37. Vijayashree, K.V.; Anjuka, A. Fluid Queue Driven by an Queue Subject to Bernoulli-Schedule-Controlled Vacation and Vacation
Interruption. Hindawi Adv. Oper. Res. 2016, 2016, 1–11. [CrossRef]

38. Burd, T.D.; Brodersen, R.W. Processor Design for Portable Systems. J. Vlsi Signal Process. Syst. Signal Image Video Technol. 1996, 13,
203–221. [CrossRef]

39. Neely, M.J. Stochastic Network Optimization with Application to Communication and Queuing Systems; Morgan & Claypool: San Rafael,
CA, USA, 2010.

40. Telecom Italia. Telecommunications—SMS, Call, Internet—MI, Havard Dataverse. 2015. Available online: https://dataverse.
harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EGZHFV (accessed on 10 January 2022)

41. Qiu, X.; Zhang, W.; Chen, W.; Zheng, Z. Distributed and Collective Deep Reinforcement Learning for Computation Offloading: A
Practical Perspective. IEEE Trans. Parallel Distrib. Syst. 2021, 32, 1085–1101. [CrossRef]

42. Wang, S.; Zhang, X.; Yan, Z.; Wang, W. Cooperative Edge Computing with Sleep Control under Nonuniform Traffic in Mobile
Edge Networks. IEEE Internet Things J. 2019, 6, 4295–4306. [CrossRef]

http://dx.doi.org/10.1109/JIOT.2020.2967502
http://dx.doi.org/10.1155/2016/2673017
http://dx.doi.org/10.1007/BF01130406
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EGZHFV
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/EGZHFV
http://dx.doi.org/10.1109/TPDS.2020.3042599
http://dx.doi.org/10.1109/JIOT.2018.2875939

	Introduction
	Related Works
	Resource Management Methods in a MEC System
	Technical Approaches

	System Model and Problem Formulation
	Online Resource Allocation Method
	Per-Time-Slot Optimization Problem
	Online Service Time Allocation Method
	Properties

	Performance Evaluation
	Task Arrival Prediction Using LSTM
	Performance Comparisons
	Parameter Effect
	Scalability

	Conclusions and Future Works
	References

