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Abstract: Integration of a larger stiff system of initial value problems emerging from chemical kinetics
models requires a method that is both efficient and accurate, with a large absolute stability region.
To determine the solutions of the stiff chemical kinetics ordinary differential equations that help in
explaining chemically reactive flows, a numerical integration methodology known as the 3-point
variable step block hybrid method has been devised. An appropriate time step is automatically
chosen to give accurate results. To check the efficiency of the new method, the numerical integration
of a few renowned stiff chemical problems is evaluated such as Belousov–Zhabotinskii reaction and
Hires, which are widely used in numerical studies. The results generated are then compared with the
MATLAB stiff solver, ode15s.

Keywords: variable step hybrid block; stiff; chemical kinetics models; ode15s

1. Introduction

Stiff chemical kinetic models are required for the modeling of a practically real-world
chemical system, such as atmospheric chemistry, energy conversion and storage, chem-
ical engineering, the environment and materials, and biomedical and pharmaceutical
engineering [1–3].

The following Ordinary Differential Equations (ODEs) can be used to model a homo-
geneous chemical reaction system:

y′ = f (t, y), t0 ≤ t ≤ t f inal (1)

y(t0) = y0 (2)

The column vector of species concentration is represented by y = [y1, y2, . . . , yN ]
T and

N represents the total quantity of chemical species where t denotes the time, and the initial
and final time are symbolized as t0 and t f inal , respectively. The initial species concentrations
are indicated by the column vector y0. Numerical solutions for stiff ODE systems defined
by Equation (1) can be obtained using explicit or implicit ODE integrator [4–8]. Many ODEs
have been used for chemical kinetic models; however, they are stiff [9], and solving stiff
ODEs using an explicit technique necessitates very short time steps, making integration
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computationally intensive. Alternatively, implicit ODE integrators, such as the Backward
Differentiation Formula (BDF), can be employed. In general, the implicit methods usually
involve Newton Iteration for solving stiff systems of ODEs which is time-consuming
because it consists of a Jacobian matrix that needs to be solved for every integration step.
Therefore, it is still a research focus to deal with the Jacobian part for solving stiff system of
ODEs [10,11], which is a fundamental aspect of several reaction-diffusion systems, such as
in energy conversion, medicinal applications, and chemical engineering.

Although it is intricate to provide a clear description of the stiffness of the chemical
kinetic model, one of the conditions can be if different species have significantly different
time scales. Some fast-evolving organisms, for example, have very small time scales,
whereas others evolve slowly and take longer time scales. The computing cost of explicit
ODE integrators created for non-stiff problems against implicit ones, developed for stiff
problems on the application is a realistic way to quantify stiffness. The problem can also
be classified as very stiff if the computational cost of using an implicit ODE integrator is
significantly less than the cost of an explicit ODE integrator [12].

The backward differentiation formula (BDF), often known as Gear’s approach and
initially proposed in [13], is the foundation for many well-known strategies for addressing
stiff problems. Various researchers, such as [1,14–17], proposed methods to increase the
accuracy and computation time for stiff problems. Ref. [17] presented the idea of using
the Block Backward Differentiation Formula (BBDF) to solve first-order stiff problems and
since then the BBDF approach is increasingly being used to solve stiff ODEs. There are
many solvers based on the BBDF method that are used to solve stiff ODEs that have been
developed in the literature [18–20].

BDF has been extensively used because of its high stability properties. Based on the
classical BDF method, several block methods have been proposed. The BBDF is one of
the most prominent block approaches based on BDFs ([20–22]). r–point Block Backward
Differentiation Formula (r–BBDF) presented by [23], are used and expanded later. The
block method based on BDF is particularly efficient for solving stiff ODEs to reduce the
computational time and enhance the accuracy [24,25].

Despite having many advantages, the block method has the major drawback that the
order of interpolation points could not surpass the order of differential equations [26,27]. As a
result of this drawback, the addition of off-step points in the block was introduced and named
the Hybrid method. Hybrid block approaches for the solution of IVPs in ODEs were proposed
by [28–30]. Although this method is difficult to implement, it provides a better approximation
than the k−step method, specifically when the step length is shorter. The developed methods
provided improved stability properties and circumvented the Dahlquist stability constraint by
introducing off-step points [31]. Hybrid methods have also demonstrated improved stability,
particularly when the problem is stiff or oscillatory [32,33].

Motivated by the above literature reviews, this study is aimed to develop a 3–point
variable step block hybrid method (3–point VSBHM), by applying Lagrange polynomials
as the basis function. In addition, the variable step–BBDF with an increment of step sizes to
a factor of 1.6 and 1.9 has been studied by [17,34]. The proposed method will be employed
on stiff chemical kinetics modeling as shown in Equation (1). For the purpose of selecting
off–step points, several points have been observed and hence it is found that when the step
size of the off–step point is halved, the 3-point VSBHM is zero stable. The proposed method
has the advantage of the solutions being approximated at three points simultaneously
when compared with MATLAB stiff solver ode15s.

The organization of the paper is as follows; Section 2 briefly describes the formula-
tion of the method. Section 3 comprises of stability analysis of 3–point VSBHM with its
properties. Section 4 elaborates on the implementation of the derived method followed by
the step size strategy. A list of tested problems is presented in Section 5. Section 6 contains
results and a discussion of the tested problems. Finally, Section 7 is the conclusion.



Appl. Sci. 2022, 12, 4484 3 of 18

2. Formulation of 3–Point Variable Step Block Hybrid Method (3–Point VSBHM)

This section discusses the formulation of 3–point VSBHM. The three values of yn+1,
yn+2, and yn+3 with one off-step point yn+ 5

2
are calculated concurrently in a block using

earlier blocks with each block containing three points (refer to Figure 1). The computed
block contains 3h as the step size and rh pointed out the previous block where r shows the
step size ratio. To manage the step size, the step size ratio (r), is considered throughout the
derivation process. The values of r used in [17] were r = 1, 2, 5

8 even though r = 1, 2, 10
19

used in [5]. Hence, values r = 1, r = 2 and r = 10
19 are considered in this research as the

strategy to maintain, halve, or increase the step size by a factor of 1.9, respectively.

Figure 1. 3–Point Variable Step Block Hybrid Method (VSBHM).

The interpolating polynomial Pk(t) interpolates the values of a function f (t, y) in Equa-
tion (1) at k = 6 with interpolating points of (tn−1, yn−1), ( tn, yn), ( tn+1, yn+1), ( tn+2, yn+2),
( tn+ 5

2
, yn+ 5

2
) and (tn+3, yn+3). Lagrange polynomial Pk(t) is defined as:

Pk(t) = Lk,5/2(t)y(tn+5/2) +
k−2

∑
j=0

Lk,j(t)y
(
tn+3−j

)
(3)

where

Lk,j(t) =

∏ i = 0
i 6= j

t−tn+3−i
tn+3−j−tn+3−i

( t−t
n+ 5

2
tn+3−j−t

n+ 5
2

)
for each j = 0, 1, . . . , k− 2,

and Lk,5/2(t) = ∏k−2
i=0

t−tn+3−i
tn+5/2−tn+3−i

.

Let s = t−tn+1
h and replace y(t) in Equation (1) by a polynomial Equation (3). To

obtain the y′, the resultant polynomial in Equation (3) is differentiated for s at point t and
substitute dt by hds, so that

y′ = f (t, y)

hP′k(tn+1 + sh) = yn+3
3(3+r) [

1
2 (3 + 2s− 15s2 − 4s3 + 10s4 + r(3− 4s− 9s2 + 8s3))]

−
32y

n+ 5
2

15(5+2r) [5s4 − 4s3 − 9s2 + 2s + 2 + r(4s3 − 6s2 − 2s + 2)]

+ yn+2
(2+r) [3 + 5s− 9s2 − 6s3 + 5s4 + r(3− s− 15s2

2 + 4s3)]

− yn+1
3(1+r) [

1
2 (1 + 22s− 9s2 − 20s3 + 10s4) + r(7 + 8s− 21s2 + 8s3)]

+ yn
15r [−3 + 7s + 6s2 − 14s3 + 5s4 + r(−3 + 13s− 22s2

2 + 4s3)]

− yn−1
r(r+1)(r+2)(r+ 5

2 )(r+3)
[−3 + 7s + 6s2 − 14s3 + 5s4]

(4)
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By substituting s = 0, 1, 3
2 and 2 into Equation (4) we obtain,

h f (tn+1) =
(1+r)

2(3+r)yn+3 − 64(1+r)
15(5+2r)yn+ 5

2
+ 3(1+r)

2+r yn+2 − (1+7r)
6(1+r)yn+1

− 3(1+r)
15r yn +

3yn−1
r(r+1)(r+2)(r+ 5

2 )(r+3)

(5)

h f (tn+2) =
(−r−2)
3(3+r) yn+3 +

64(2+r)
15(5+2r)yn+ 5

2
− (3r+4)

2(2+r)yn+2 − (2+r)
3(1+r)yn+1

+ (2+r)
30r yn − 1

r(r+1)(r+2)(r+ 5
2 )(r+3)

yn−1

(6)

h f
(

tn+ 5
2

)
= (75+30r)

48(3+r) yn+3 +
2(55+16r)
15(5+2r) yn+ 5

2

− (75+30r)
16(2+r) yn+2

(25+10r)
48(1+r) yn+1 − (15+6r)

240r yn

− 15
16(r+1)(r+2)(r+ 5

2 )(r+3)
yn−1

(7)

h f (t) = (75+23r)
3(3+r) yn+3 − 32(18+6r)

15(5+2r) yn+ 5
2
+ (9+3r)

2+r yn+2 − (9+3r)
6(1+r)yn+1

+ (3+r)
15r yn − 3

r(r+1)(r+2)(r+ 5
2 )(r+3)

yn−1

(8)

On substituting r = 1, r = 2 and r = 10
19 into Equations (5)–(8) gives the coefficients

for 3-point VSBHM are presented as in Table 1. These r values are properly considered for
zero stability and computational efficiency.

Table 1. Variable Step Size Ratio Formulae.

Step Size Ratio Block Points Formulae 3-Point VSBHM

r = 1

yn+1
3
56 yn−1 − 3

5 yn + 3yn+2 − 64
35 yn+ 5

2
+ 3

8 yn+3 − 3
2 h fn+1

yn+2 − 1
98 yn−1 +

3
35 yn − 3

7 yn+1 +
384
245 yn+ 5

2
− 3

14 yn+3 − 6
7 h fn+2

yn+ 5
2

− 75
9088 yn−1 +

147
2272 yn − 1225

4544 yn+1 +
3675
2272 yn+2 − 3675

9088 yn+3 +
105
142 h fn+ 5

2

yn+3
3

343 yn−1 − 16
245 yn + 12

49 yn+1 − 48
49 yn+2 +

3072
1715 yn+ 5

2
+ 12

49 h fn+3

r = 2

yn+1
1

150 yn−1 − 9
25 yn + 27

10 yn+2 − 128
75 yn+ 5

2
+ 9

25 yn+3 − 6
5 h fn+1

yn+2 − 1
675 yn−1 +

4
75 yn − 16

45 yn+1 +
1024
675 yn+ 5

2
− 16

75 yn+3 − 4
5 h fn+2

yn+ 5
2

− 5
3712 yn−1 +

81
1856 yn − 225

928 yn+1 +
6075
3712 yn+2 − 405

928 yn+3 +
45
58 h fn+ 5

2

yn+3
1

726 yn−1 − 5
121 yn + 25

121 yn+1 − 225
242 yn+2 +

640
363 yn+ 5

2
+ 30

121 h fn+3

r = 10
19

yn+1
7,428,297
27,429,800 yn−1 − 2523

2225 yn + 2523
712 yn+2 − 107,648

51175 yn+ 5
2
+ 2523

5963 yn+3 − 174
89 h fn+1

yn+2 − 2,476,099
59,212,925 yn−1 +

192
1325 yn − 768

1537 yn+1 +
49,152
30,475 yn+ 5

2
− 768

3551 yn+3 − 48
53 h fn+2

yn+ 5
2

− 7,428,297
239,750,656 yn−1 +

1587
15424 yn − 66,125

223,648 yn+1 +
198,375
123,392 yn+2 − 198,375

516,704 yn+3 +
345
482 h fn+ 5

2

yn+3
7,428,297

220,777,000 yn−1 − 4489
41,375 yn + 13,467

47,995 yn+1 − 13,467
13,240 yn+2 +

1,723,776
951,625 yn+ 5

2
+ 402

1655 h fn+3
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3. Stability Analysis of 3–Point VSBHM with Its Properties

The practical significance of a method is dependent on its region of absolute stability
that ensures solving at least slightly stiff problems [35]. The stability properties of the
proposed methods are examined in this section to illustrate their use in resolving stiff
problems. For a method to be stable, some definitions will be provided to support the
practical criterion in addressing stiff problems.

3.1. Zero-Stability

Definition 1. (Zero-stable). “The Linear Multistep Method (LMM) is said to be zero-stable if no
root of the first characteristic polynomial, p(t) has modulus greater than one, and if every root with
modulus one is simple”.

Definition 2. (A-stable). “A method is said to be A-stable if all numerical approximations tend to
zero when it is applied to the differential equation y′ = λy with a fixed positive h and a complex
constant λ with negative real part”.

Ref. [36] proposed the scalar test to determine the stability of the method for Table 1 as

y′ = λy, λ < 0, (9)

where λ represents the complex constant with Re(λ) < 0. Equation (9) is substituted in
Table 1, therefore it precedes for r = 1 as,

yn+1 = 3
56 yn−1 − 3

5 yn + 3yn+2 − 64
35 yn+ 5

2
+ 3

8 yn+3 − 3
2 hλyn+1

yn+2 = − 1
98 yn−1 +

3
35 yn − 3

7 yn+1 +
384
245 yn+ 5

2
− 3

14 yn+3 − 6
7 hλyn+2

yn+ 5
2
= − 75

9088 yn−1 +
147

2272 yn − 1225
4544 yn+1 +

3675
2272 yn+2 − 3675

9088 yn+3 +
105
142 hλyn+ 5

2

yn+3 = 3
343 yn−1 − 16

245 yn +
12
49 yn+1 − 48

49 yn+2 +
3072
1715 yn+ 5

2
+ 12

49 hλyn+3

(10)

Equation (10) is then inscribed into the matrix form to attain the matrix as follows

− 3
8

64
35 −3 1 + 3

2 hλ

3
14 − 384

245 1 + 6
7 hλ 3

7

3675
9088 1− 105

142 hλ − 3675
2272

1225
4544

1− 12
49 hλ − 3072

1715
48
49 − 12

49




yn+3
yn+ 5

2
yn+2
yn+1

=



− 3
5 0 3

56 0

3
35 0 − 1

98 0

147
2272 0 − 75

9088 0

− 16
245 0 3

343 0




yn

yn− 1
2

yn−1
yn−2



whereas,
which is equivalent to,

C =



− 3
8

64
35 −3 1 + 3

2 hλ

3
14 − 384

245 1 + 6
7 hλ 3

7

3675
9088 1− 105

142 hλ − 3675
2272

1225
4544

1− 12
49 hλ − 3072

1715
48
49 − 12

49


, D =



− 3
5 0 3

56 0

3
35 0 − 1

98 0

147
2272 0 − 75

9088 0

− 16
245 0 3

343 0


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CYN = DYN−1, (11)

where C and D in Equation (11) are appropriately selected m×m matrix coefficients and N
represent the number of blocks (note that the evaluation presented here is only for r = 1.
For (r = 2, 10/19), the same procedure is considered). H = hλ is replaced in the matrices
which are obtained by Equation (10). The stability polynomials Rr(t, H) correlated with
Table 1 are attained by solving the characteristic equations |Ct− D| using different step
size ratios

(
r = 1, 2, 10

19

)
.

R1(t, H) = −9t2

48,706 + 27Ht2

97,412 + 9H2t2

97,412 −
23,076t3

24,353 −
24,462Ht3

24,353 −
9279H2t3

24,353

− 2889H3t3

48,706 + 41,616t4

48,706 −
179,199Ht4

97,412 + 159,417H2t4

97,412

− 40,851H3t4

48,706 + 810H4t4

3479

(12)

R2(t, H) = − 2t2

87,725 + 3Ht2

87,725 + H2t2

87,725 −
49,614t3

87,725 −
47,203Ht3

87,725 −
16,897H2t3

87,725

− 534H3t3

17,545 + 49,616t4

87,725 −
20,104Ht4

17,545 + 94,716H2t4

87,725 − 954H3t4

1595

+ 648H4t4

3509

(13)

R10/19(t, H)= − 44,569,782t2

47,034,975,875 + 66,854,673Ht2

47,034,975,875 + 22,284,891 H2t2

47,034,975,875

− 74,668,516,218t3

47,034,975,875 −
97,422,580,953Ht3

47,034,975,875

− 40,170,428,271 H2t3

47,034,975,875 − 231,953,814H3t3

1,881,399,035 + 597,704,688 t4

376,279,807

− 5,555,509,848 Ht4

1,881,399,035 + 4,692,538,692H2t4

1,881,399,035 − 2,257,808,634H3t4

1,881,399,035

+ 115,833,888H4t4

376,279,807

(14)

The zero stability is determined from the stability polynomial in Equations (12)–(14)
by substituting H = hλ = 0 into Equations (12)–(14), generating

R1(t, H) =
−9t2

48, 706
− 23, 076t3

24, 353
+

41, 616t4

48, 706
(15)

R2(t, H) = − 2t2

87, 725
− 49, 614t3

87, 725
+

49, 616t4

87, 725
(16)

R10/19(t, H) = − 44, 569, 782 t2

47, 034, 975, 875
− 74, 668, 516, 218 t3

47, 034, 975, 875
+

597, 704, 688t4

376, 279, 807
(17)

By equating Equations (15)–(17) = 0, the roots of stability polynomial can be obtained.
Table 2 presents the roots for variable step sizes.
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Table 2. Roots for Variable Step Size Ratio.

Step Size Ratio Roots

r = 1 t = 0.00019497, t = 0, t = 0, t = 1.

r = 2 t = −0.000040309, t = 0, t = 0 and t = 1.

r = 10
19 t = −0.000596546, t = 0, t = 0 and t = 1.

Since all the roots lie within |t| ≤ 1 described in Definition 1, hence, the method
3–point VSBHM is determined as a zero stable.

3.2. Stability Regions

Stability regions of the system are plotted in this section, using the stability polynomi-
als given in Equations (12)–(14). The set of points defined by t = eiθ , 0 ≤ θ ≤ 2π describes
the boundary of the stability region. To determine the boundary of the stability region,
the condition of roots (|t| ≤ 1) of the stability polynomial must be tested at multiple grid
points. Using variable step size ratios, Figure 2 illustrates the regions of absolute stability.
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is derived. The general forms of the 3-point VSBHM as in Equation (18) ݕ௡ାଵ = ௡ାଶݕଶ,ଵߪ + 52+݊ݕ52,1ߪ + ௡ାଷݕଷ,ଵߪ + ଵ,ଵℎߙ ௡݂ାଵ + ௡ାଶݕ 1߰ = ௡ାଵݕଵ,ଶߪ + 52+݊ݕ52,2ߪ + ௡ାଷݕଷ,ଶߪ + ଶ,ଶℎߙ ௡݂ାଶ + ௡ା52ݕ 2߰ = ௡ାଵݕଵ,52ߪ + 2+݊ݕଶ,52ߪ + ௡ାଷݕଷ,52ߪ + 52,52ℎ݂௡ା52ߙ + ௡ାଷݕ 52߰ = ௡ାଵݕଵ,ଷߪ + 2+݊ݕଶ,ଷߪ + ௡ା52ݕ52,3ߪ + ଷ,ଷℎߙ ௡݂ାଷ + ߰3 
(18) 

Figure 2. Stability region of 3–Point VSBHM.

The stability region corresponding to the 3–point VSBHM is presented in Figure 2.
The stability region is outside of the bounded region. The method is A-stable because the
majority of the region is on the left half-plane, as defined by Definition 2. Thus, it can be
implied that the developed 3–point VSBHM is appropriate for stiff problems.
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4. Implementation of the 3–Point VSHBM and Selection of Step Size
4.1. Implementation of the 3–Point VSBHM

Throughout this section, the Newton-type scheme to find the approximation solutions
of yn+1, yn+2, and yn+3 with one off-step point yn+ 5

2
instantaneously at every step is

derived. The general forms of the 3-point VSBHM as in Equation (18)

yn+1 = σ2,1yn+2 + σ5
2 ,1yn+ 5

2
+ σ3,1yn+3 + α1,1h fn+1 + ψ1

yn+2 = σ1,2yn+1 + σ5
2 ,2yn+ 5

2
+ σ3,2yn+3 + α2,2h fn+2 + ψ2

yn+ 5
2
= σ1, 5

2
yn+1 + σ2, 5

2
yn+2 + σ3, 5

2
yn+3 + α 5

2 , 5
2
h fn+ 5

2
+ ψ 5

2

yn+3 = σ1,3yn+1 + σ2,3yn+2 + σ5
2 ,3yn+ 5

2
+ α3,3h fn+3 + ψ3

(18)

with ψ1, ψ2, ψ 5
2
, and ψ3 are back values. Writing Equation (18) in the matrix-vector form as

(I − A)Yn+1,n+2,n+ 5
2 ,n+3 = hBF + ζn+1,n+2,n+ 5

2 ,n+3 (19)

with I =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


,Yn+1,n+2,n+ 5

2 ,n+3 =



yn+1

yn+2

yn+5/2

yn+3


,

A =



0 σ2,1 σ5
2 ,1 σ3,1

σ1,2 0 σ5
2 ,2 σ3,2

σ1, 5
2

σ2, 5
2

0 σ3, 5
2

σ1,3 σ2,3 σ5
2 ,3 0


, B =



α1,1 0 0 0

0 α2,2 0 0

0 0 α 5
2 , 5

2
0

0 0 0 α3,3


,

Fn+1,n+2,n+ 5
2 ,n+3 =


fn+1
fn+2

fn+5/2
fn+3

 and ζn+1,n+2,n+ 5
2 ,n+3 =


ψ1
ψ2

ψ5/2
ψ3

.

By letting Equation (19)

F̂n+1,n+2,n+ 5
2 ,n+3 = (I − A)Yn+1,n+2,n+ 5

2 ,n+3 − hBFn+1,n+2,n+ 5
2 ,n+3 − ζn+1,n+2,n+ 5

2 ,n+3 = 0 (20)

the generalized Newton iteration formula is then defined as

Y(i+1)
n+1,n+2,n+ 5

2 ,n+3
= Y(i)

n+1,n+2,n+ 5
2 ,n+3

−
F̂n+1,n+2,n+ 5

2 ,n+3

F̂′n+1,n+2,n+ 5
2 ,n+3

. (21)
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By applying Newton’s iteration of Equation (21) to the Equation (20) to approximate
the solution,

Y(i+1)
n+1,n+2,n+ 5

2 ,n+3
−Y(i)

n+1,n+2,n+ 5
2 ,n+3

= −
[
(I − A)− hB ∂F

∂Y

(
Y(i)

n+1,n+2,n+ 5
2 ,n+3

)]−1

[
(I − A)Y(i)

n+1,n+2,n+ 5
2 ,n+3

− hBF
(

Y(i)
n+1,n+2,n+ 5

2 ,n+3

)
− ζn+1,n+2,n+ 5

2 ,n+3

]
(22)

(i) and (i + 1) represent the previous and current iterations. The term ∂F
∂Y

(
Y(i)

n+1,n+2,n+ 5
2 ,n+3

)
is the Jacobian matrix of F for Y. Equation (22) is separated into three different matrices
denoted as,

E(i+1)
1,2, 5

2 ,3
= Y(i+1)

n+1,n+2,n+ 5
2 ,n+3

−Y(i)
n+1,n+2,n+ 5

2 ,n+3
, (23)

Â = (I − A)− hB
∂F
∂Y

(
Y(i)

n+1,n+2,n+ 5
2 ,n+3

)
, (24)

B̂ = −
[
(I − A)Y(i)

n+1,n+2,n+ 5
2 ,n+3

− hBF
(

Y(i)
n+1,n+2,n+ 5

2 ,n+3

)
− ζn+1,n+2,n+ 5

2 ,n+3

]
(25)

An approximate solution to Equation (1) is obtained using a two-stage Newton-type
iteration. Thus, the corresponding linear system to be solved is ÂE(i+1)

1,2, 5
2 ,3

= B̂, where E1,2, 5
2 ,3

is the increment, Â and B̂ are defined as

Â =



1− α1,1h
(

∂ fn+1
∂yn+1

)
σ2,1 − α1,1h

(
∂ fn+1
∂yn+2

)
σ5

2 ,1 − α1,1h
(

∂ fn+1
∂y

n+ 5
2

)
σ3,1 − α1,1h

(
∂ fn+1
∂yn+3

)

σ1,2 − α2,2h
(

∂ fn+2
∂yn+1

)
1− α2,2h

(
∂ fn+2
∂yn+2

)
σ5

2 ,2 − α2,2h
(

∂ fn+2
∂y

n+ 5
2

)
σ3,2 − α2,2h

(
∂ fn+2
∂yn+3

)

σ1, 5
2
− α 5

2 , 5
2
h
(

∂ f
n+ 5

2
∂yn+1

)
σ2, 5

2
− α 5

2 , 5
2
h
(

∂ f
n+ 5

2
∂yn+2

)
1− α 5

2 , 5
2
h
(

∂ f
n+ 5

2
∂y

n+ 5
2

)
σ3, 5

2
− α 5

2 , 5
2
h
(

∂ f
n+ 5

2
∂yn+3

)

σ1,3 − α3,3h
(

∂ fn+3
∂yn+1

)
σ2,3 − α3,3h

(
∂ fn+3
∂yn+2

)
σ5

2 ,3 − α3,3h
(

∂ fn+3
∂y

n+ 5
2

)
1− α3,3h

(
∂ fn+3
∂yn+3

)


and

B̂ =



−y(i)n+1 + σ2,1y(i)n+2 + σ5
2 ,1y(i)

n+ 5
2
+ σ3,1y(i)n+3 + α1,1h f (i)n+1 + ψ1

σ1,2y(i)n+1 − y(i)n+2 + σ5
2 ,2y(i)

n+ 5
2
+ σ3,2y(i)n+3 + α2,2h f (i)n+2 + ψ2

σ1, 5
2
y(i)n+1 + σ2, 5

2
y(i)n+2 − y(i)

n+ 5
2
+ σ3, 5

2
y(i)n+3 + α 5

2 , 5
2
h f (i)

n+ 5
2
+ ψ 5

2

σ1,3y(i)n+1 + σ2,3y(i)n+2 + σ5
2 ,3y(i)

n+ 5
2
− y(i)n+3 + α3,3h f (i)n+3 + ψ3


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To ensure efficiency, a full Jacobian evaluation is only performed after a step failure, as
part of the implementation of the method [17]. To reduce the computational time, a few
strategies are presented below for minimizing the Jacobian evaluation.

(1) When a successful step occurs, a new step size will be determined. This new step size
be either increased (r = 10

19 ) or remain as in the previous step size (r = 1). Each time
the step size h is increased, the new matrix Equations (24) and (25) are evaluated. If
the step size h remains as (r = 1), there will be no calculations of new matrices Â and
B̂. Hence, it will skip the Jacobian evaluation process and the previous matrices Â
and B̂ will be used to solve Y(i+1)

n+1,n+2,n+ 5
2 ,n+3

. This process is called partial Jacobian

evaluation.
(2) When a failure step occurs, the next step size will be half of the previous step size

(r = 2). Here the matrices Â and B̂ need to be updated with the new evaluations of
the Jacobian matrix. This process is called full Jacobian evaluation.

4.2. Selection of Step Size

Reduction in computation time and the number of iterations can be achieved by
choosing the step size properly. Throughout the process, a tolerance level (TOL) needs to
be specified. If local truncation error (LTE) is less than the tolerance limit, then the values
( xn+1, yn+1), ( xn+2, yn+2), ( xn+ 5

2
, yn+ 5

2
) and (xn+3, yn+3) are acceptable. The LTE can be

obtained as,
LTE = y(p)

n+3 − y(p−1)
n+3

y(p)
n+3 is the (p)th order of the method and y(p−1)

n+3 is the (p− 1)th order of the method.
If the LTE > TOL then the values of yn+1, yn+2, yn+ 5

2
and yn+3 are rejected, then the step is

repeated by halving the current step size (r = 2). After a successful step (LTE < TOL), the
step size increment is given by

hnew = c ∗ hold ∗
(

TOL
LTE

) 1
p

and if
hnew > 1.9 ∗ hold then hnew = 1.9 ∗ hold

Safety factor c is set as 0.8 to make sure that the failure steps are being reduced, p
shows the order of the method and hold is the step size from the previous block.

5. Test Problems

In this section, some stiff chemical kinetics problems are presented. These test problems
are solved using the 3–point VSBHM and compared with the numerical results with ode15s.
Graphical representations of results are presented in Section 6.

Example 1. Belousov–Zhabotinskii reaction.

The following system of homogeneous chemical reactions can be used to illustrate the
Belousov–Zhabotinskii reaction [2],

A + Y → X, k1 = 4.72s−1

X + Y → P, k2 = 3× 109s−1

B + X → 2X + Z, k3 = 1.5× 104s−1

2X → Q, k4 = 4× 107s−1

Z → Y, k5 = 1s−1

The letters A, . . . , Z represent the species involved in the reactions, while the constants
ki stands for the reaction rates. We just need to analyze the fluctuations in concentrations
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over time t, since the Belousov–Zhabotinskii reaction is homogeneous (all species are
evenly distributed in the reaction space). The reaction rate constant characterizes each
reaction step. The rate constants differ by several orders of magnitude, indicating that the
associated ODE system is likely to be stiff. The initial conditions are determined by the
species concentrations at t = 0:

A = B = 0.066, Y = X = P = Q = 0, Z = 0.002.

The reaction scheme is modeled by the following system of ODEs:

dA
dt

= y′1 = −k1y1y2

dY
dt

= y′2 = −k1y1y2 − k2y3y2 + k5y6,

dX
dt

= y′3 = −k2y3y2 + k3y3y5 − 2k4y2
3 + k1y1y2,

dP
dt

= y′4 = k2y3y2,

dB
dt

= y′5 = −k3y5y3,

dZ
dt

= y′6 = −k3y5y3 − k5y6,

dQ
dt

= y′7 = −k4y2
3,

where the initial concentrations of the species are [A0] = y1(0) = 0.066M, [Y0] = y2(0) =
0M, [X0] = y3(0) = 0M, [P0] = y4(0) = 0M,[B0] = y5(0) = 0.066M,[Z0] = y6(0) =
0.002M and [Q0] = y7(0) = 0M (1M = 1mol.L−1) at the time interval in seconds t ∈ [0, 40].

Example 2. Stiff Chemical Problem.

Consider a non-linear system of differential equations of one of the chemical kinetic
problems [37]:

y′1 = λy1 + y2
2,y′2 = −y2

where λ = 10, 000. The exact solution is y1(x) = −e−2x

(λ+2) and y2(x) = e−x.

Example 3. HIRES.

This HIRES (High Irradiance Responses) problem is a first-order differential equation
system of mild stiffness. It is a chemical process that simulates how light influences plant
morphogenesis. Schäfer [38] hypothesized this chemical process involving eight reactants
to explain plant tissue development and differentiation in the absence of photosynthesis at
high levels of light irradiance. It was previously used as a test case for a block–oriented
simulation system by Gottwald [39].
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The corresponding differential equations are:

y′1 = −k1y1 + k2y2 + k3y3 + k4,

y′2 = k1y1 − k5y2,

y′3 = −k6y3 + k2y4 + k7y5,

y′4 = k3y2 + k8y3 − k9y4,

y′5 = −k10y5 + k2y6 + k2y7,

y′6 = −k11y6y8 + k12y4 + k8y5 − k2y6 + k12y7,

y′7 = k11y6y8 − k13y7,

y′8 = −y′7,

Here k1 = 1.71s−1, k2 = 0.43s−1, k3 = 8.32s−1, k4 = 0.0007s−1, k5 = 8.75s−1,
k6 = 10.03s−1, k7 = 0.035s−1, k8 = 1.71s−1, k9 = 1.12s−1, k10 = 1.745s−1,
k11 = 280s−1, k12 = 0.69s−1 and k13 = 1.81s−1 are kinetic constants with the initial values
y1 = 1 mol·L−1, y2 = y3 = y4 = y5 = y6 = y7 = 0 mol·L−1 and y8 = 0.0057 mol·L−1 at
the time interval t ∈ [0, 50] in minutes [40,41].

6. Results and Discussion

In this section, we present the results of numerical experiments obtained by the 3–point
VSBHM as described in Section 3. This method is applied to chemical kinetics problems to
confirm the competence of proposed stepsize changing strategies and to show the efficiency
of the method. A comparison of the results is made with MATLAB stiff solver ode15s.

When integrating systems of ODEs, choosing initial conditions is typically not easy,
specifically when the equations are stiff, and therefore the result is not easily predicted. In
our opinion, the 3–point VSBHM allows for convergence in terms of approximate solutions
is rather important. The shown Figures 3–7 represent the approximate results of 3–point
VSBHM when the error tolerance is less than 10−8, 10−4 and 10−6 for Problems 1, 2, and 3,
respectively.

From the given Figures 4, 5 and 7, it is clear that the convergence of the 3–point
VSBHM approach provides a good approximation to the solution.

The concentrations of seven chemical reactions are displayed in Figure 3. The trend
of concentration with respect to time demonstrates the decay of chemical reaction in
Figure 3a,b,f for the solution values of y1, y2, and y6 as time increases. This demonstrates
that concentration has a constant behavior and does not change with respect to time.
Figure 3b shows an initial quick transient phase, but as time increases, the reactions show
stable behavior. Figure 3c depicts the concentration for y3, with the points fluctuating as
time increases. In comparison to the previous Figure 3a,b,f, Figure 3d exhibits that y4 has
a distinct behavior. It shows that as time increases, there is a noticeable increase in the
concentration of y4. Figure 3e depicts the y5 concentration decreases at a steady rate as time
increases. On the other hand, the graphical representation of Figure 3g demonstrates that
there is a quick transient phase at first, but after a few seconds, the concentration displays
constant behavior.
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Figure 3. Concentration of A, B, X, Y, P, Q, and Z computed using the 3− Point VSBHM for Prob-
lem 1. From left to right and top to bottom, Figure (a–g) shows the numerical solution of the Belousov–
Zhabotinskii reaction for t∈ [0, 40] in seconds for the concentrations (y1− y7 ) with the error tolerance 10−8.
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Figure 4. Comparison graphs with the solution from ode15s for Problem 1 with tol = 10−8 for
3–point VSBHM.

Figure 5. Comparison graphs with the solution from ode15s for Problem 2.



Appl. Sci. 2022, 12, 4484 15 of 18

Figure 6. Concentration of eight species using 3–point VSBHM for Problem 3. From left to right and
top to bottom, Figure (a–h) shows the numerical solution of the HIRES problem for t ∈ [0, 50] in
minutes for the concentrations (y1 − y8) with the error tolerance 10−6.



Appl. Sci. 2022, 12, 4484 16 of 18

Figure 7. Comparison graphs using 3–point VSBHM and ode15s for Problem 3.

Figure 4 displays the comparisons of the concentrations by using the 3–point VSBHM
and ode15s. The 3–point VSBHM can approximate the solution of stiff Problem 1. From
Figure 4, it is shown that the 3–point VSBHM converges and approximates well the solution
of the Belousov–Zhabotinskii reaction.

The results for Problem 2 is displayed in Figure 5 at tol = 10−4 for 3–point VSBHM.
Figure 5 elaborates the comparison of solution values with stiff solver ode15s and 3–
point VSBHM from which a clear sketch for the proposed method is drawn as it almost
approaches the solution values given by MATLAB stiff solver ode15s. Hence, it is shown
that the 3–point VSBHM also converges and approximates well the solution for this stiff
chemical problem.

Figure 6 portrays the attention towards the results for Problem 3. For the components
y1, y2, y3, y4, y5 y6, y7, and y8, we have chosen the interval [0, 50] in minutes. In Figure 6a,
the plot shows the chemical solution for the species y1. The solution shows a quick decrease
in concentration values for the first 5 min and shows a stable behavior after approximately
10 min. Figure 6b–d show the rapid change in the concentration values for the first 10 min
and become stable after 10 min. Figure 6e,f show a similar pattern of increasing the
concentration at the initial phase and keep decreasing in low values as the time increases.
Whereas, Figure 6g shows a rapid increase in the concentration of y7 at the beginning of
5 min and remains constant in behavior at its highest value with the increment in time.
Figure 6h depicts totally inverse reactions to Figure 6g. The problem is made up of eight
elements, which could be considered a significant number. The proposed approach also
converges to the solution of ode15s as shown in Figure 7.

This chemical solution agrees well with the data reported by MATLAB in Figure 7.
As seen in Figure 7, the stiffness of this problem is due to a large difference in the kinetic
constants ki, which results in a very rapid initial transient. Initially, some very rapid
transient reactions occur for some species such as y1, y2, y3, y4, y7 and y8 then stay almost
constant. Hence from Figure 7, it can be concluded that because of the convergence of the
developed 3–point VSBHM with ode15s, it can be used as an appropriate stiff solver for the
numerical solutions of stiff chemical kinetics problems.
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7. Conclusions

For the solution of the stiff chemical kinetics model, a 3–point VSBHM has been
derived as shown in Section 3. The derived method shows an extensive region of stability
which can be seen in Figure 2. Few IVPs originating from chemical kinetics comprised of
large systems of stiff ODEs have been effectively implemented in the 3–point VSBHM, such
as the Belousov–Zhabotinskii reaction and HIRES. Their results have been compared with
MATLAB stiff solver ode15s. From the combined graphical representation of the problems,
it can be concluded that the 3–point VSBHM techniques work appropriately and can be
used as a stiff solver for the solutions of stiff chemical kinetics problems.
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