
����������
�������

Citation: Pei, W.; Jiang, Y.; Li, S. An

Efficient Parallel Implementation of

the Runge–Kutta Discontinuous

Galerkin Method with Weighted

Essentially Non-Oscillatory Limiters

on Three-Dimensional Unstructured

Meshes. Appl. Sci. 2022, 12, 4228.

https://doi.org/10.3390/app12094228

Academic Editor: Artur Tyliszczak

Received: 16 March 2022

Accepted: 20 April 2022

Published: 22 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Efficient Parallel Implementation of the Runge–Kutta
Discontinuous Galerkin Method with Weighted Essentially
Non-Oscillatory Limiters on Three-Dimensional
Unstructured Meshes
Weicheng Pei, Yuyan Jiang and Shu Li *

School of Aeronautics Science and Engineering, Beihang University, 37 Xueyuan Road, Haidian District,
Beijing 100191, China; weicheng.pei@icloud.com (W.P.); jiang.yu.yan@icloud.com (Y.J.)
* Correspondence: lishu@buaa.edu.cn

Abstract: In computational fluid dynamics, high-order solvers suitable for three-dimensional unstruc-
tured meshes are attractive but are less developed than other methods. In this article, we provide
the formulation and a parallel implementation of the Runge–Kutta discontinuous Galerkin finite
element method with weighted essentially non-oscillatory limiters, which are compact and effective
for suppressing numerical oscillations near discontinuities. In our experiments, high-order solvers
do outperform their low-order counterparts in accuracy and the efficient parallel implementation
makes the time cost affordable for large problems. Such high-order parallel solvers are efficient tools
for solving conservative laws including the Euler system that models inviscid compressible flows.

Keywords: high-order CFD solvers; discontinuous Galerkin methods; WENO limiters; three-dimensional
unstructured meshes; distributed memory parallelization

1. Introduction

Most of the computational fluid dynamics (CFD) solvers currently used in aerospace
engineering are based on schemes using finite volume (FV) methods, which are more
suitable than schemes using finite difference (FD) methods for unstructured meshes. How-
ever, FV schemes usually have only second-order spatial accuracy, due to the difficulty
of handling irregular local stencils, whose sizes grows rapidly as the order of accuracy
increases. In high-order FV schemes, the local stencil of a cell is made up of the cell and
the cell’s neighbors, and the neighbors’ neighbors, and so on. To ease the development of
high-order schemes for unstructured meshes, it is better to use finite element (FE) methods
whose local stencils are much more compact than those of FV schemes. One family of such
compact high-order schemes suitable for unstructured meshes are called the discontinuous
Galerkin (DG) methods, which assume continuous approximation in each cell (like classic
FE methods), but allow discontinuities to exist on cell boundaries (like classic FV methods).
Such an assumption gives scheme designers more freedom on choosing the basis for each
cell, such as orthogonal functions which lead to modal DG methods, and Lagrange poly-
nomials which lead to nodal DG methods [1]. The original DG method was introduced
by Reed and Hill [2] for solving the neutron transport equation, which is a linear problem
contains only first-order spatial derivatives. For nonlinear conservation laws, Chavent and
Salzano [3] made the first attempt of using a DG method to discretize in space and using
the explicit Euler method for time discretization. This scheme is second-order accurate in
space but only first-order accurate in time. To improve the accuracy of time discretization,
Cockburn and Shu [4] replace the first-order Euler method with a special second-order
Runge–Kutta (RK) method [5,6], which is explicit and total variation diminishing (TVD).
This is the first successful Runge–Kutta discontinuous Galerkin (RKDG) method, which
is high-order accurate both in space and time, for scalar conservation laws. This RKDG

Appl. Sci. 2022, 12, 4228. https://doi.org/10.3390/app12094228 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12094228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12094228
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12094228?type=check_update&version=1

Appl. Sci. 2022, 12, 4228 2 of 22

method was soon extended to one-dimensional system case [7], multi-dimensional scalar
case [8] and multi-dimensional system case [9], which includes the Euler system that models
inviscid compressible flows. Nearly the same time (late 1990s), the DG methods were also
extended to the Navier–Stokes system that governs viscous flows. Bassi and Rebay [10]
made the first attempt to apply the DG idea to both the unknowns and their gradients for
solving the Navier–Stokes equations. This method was then generalized by Cockburn and
Shu [11] to the family of local discontinuous Galerkin (LDG) methods, which extends the
RKDG methods from conversation laws to convection-dominated problems. One may refer
to [12], which is a comprehensive review article on this topic. In the rest of this article, we
will only study the RKDG methods for conservation laws that are purely hyperbolic. In
Sections 2.1 and 2.3, we will give a matrix formed formulation of the RKDG method for
solving three-dimensional conservation law systems.

When solving hyperbolic problems, limiting procedures, or limiters for short, are
necessary for suppressing numerical oscillations that might occur near discontinuities
(known as the Gibbs phenomenon [13]). For FD and FV schemes, there is the monotonic
upstream-centered scheme for conservation laws (MUSCL) [14–17], which could achieve
third-order accuracy when used with caution. However, it is not directly applicable to
FE schemes. Besides the RKDG formulations, there is another important contribution
made by [8,9], which is proposing the generalized slope limiters for multi-dimensional
problems. These minmod type limiters, together with TVD RK methods, makes the high-
order solutions free from non-physical oscillation, but tend to reduce the order of accuracy
in smooth regions. To overcome this drawback, the essentially non-oscillatory (ENO) [18]
and weighted ENO (WENO) [19] limiting procedures were introduced. Both of them
can maintain high-order accuracy in smooth regions but essentially suppress spurious
oscillations near discontinuities. The first attempt of making such limiters suitable for
unstructured meshes was to incorporate a WENO reconstruction procedure into high-order
FV schemes [20]. Similar ideas were later adopted for DG methods [21,22] at the cost of
sacrificing the compactness of DG methods. Compact versions of WENO limiters suitable
for DG methods only occurred in the last ten years [23–25] and most of them are only
formulated for two-dimensional meshes. In Section 2.2, we will give a unified formulation
of some compact WENO limiters for both two- and three-dimensional RKDG methods on
unstructured meshes.

The two-dimensional version of the algorithms described in Sections 2.1–2.3 has been
proposed for nearly ten years, but few three-dimensional or real engineering applications
have been reported so far. One reason is that the amount of computational resources cost
by each cell grows rapidly as the order of accuracy or the dimension of space increases.
Fortunately, both RKDG methods and WENO limiters use highly compact stencils and
there is no global algebraic equation to be solved (as in FD and FV schemes). Based on these
facts, parallel computing using domain decomposition can be applied for accelerating com-
putation in a very natural way. Currently, we have not seen any parallel implementation of
RKDG methods with WENO limiters for three-dimensional unstructured meshes. However,
there are some frequently referenced works existing in the literature, which measured the
parallel efficiencies of their DG methods. Biswas, Devine and Flaherty [26] performed some
tests of their one- and two-dimensional DG solvers for linear scalar problems on uniform
structured meshes. They achieved excellent parallel efficiencies, which were over 99% for
pure solution time (without I/O) and at least 89% for total running time. Bey, Patra and
Oden [27] tested their DG solvers for linear conservation laws on both structured (uniform)
and unstructured (hp-adaptive) meshes. They obtained nearly optimal speedups when
the number of interior elements is sufficiently larger than that of subdomain boundary
elements. Recently, Chalmers et al. [28] implemented their DG solver for two-dimensional
Navier–Stokes equations using MPI/OpenMP hybrid parallelism and achieved good scala-
bility on a uniform mesh with only quadrilateral elements. None of them show the parallel
performance of DG solvers on three-dimensional unstructured meshes. In this article, we
incorporate unstructured mesh partitioning and message passing into the algorithms and

Appl. Sci. 2022, 12, 4228 3 of 22

implement them on top of publicly available libraries to support parallel execution. To
partition a three-dimensional unstructured mesh, we use the application programming
interface (API) provided by the METIS library [29]. To send and receive messages, we
use the message passing interface (MPI) [30], which is the de facto industry standard of
distributed memory parallelization. We will give the details of these parallel programming
techniques in Section 2.4.

2. Methods
2.1. Spatial Discretization

The differential form of a conservation law system in a three-dimensional space could
be written as

∂tU + ∂xFx + ∂yFy + ∂zFz = O (1)

in which

• ∂t, ∂x, ∂y, ∂z represent ∂
∂t , ∂

∂x , ∂
∂y , ∂

∂z , respectively;

• U is a K× 1 matrix of unknowns, each row of which is a scalar function depending on
position ~x and time t;

• Fµ (where µ = x, y, z) is also a K × 1 matrix, which is the dot-product of the flux
~F (whose value depends on U) and ~eµ (which is an unit vector along the positive
direction of the µ-axis);

• O is a K× 1 matrix of 0’s.

This differential equation could be turned into an integral equation, by multiplying
both sides with an arbitrary function V(~x) and integrating the product on an arbitrary
control volume Ω: ˆ

Ω

(
∂tU +∇ · ~F

)
V = O.

To weaken the smoothness requirements on ~F, we apply integral by parts and Gauss’s
divergence theorem to it, which will lead to the weak form of Equation (1):

ˆ
Ω

(
∂tU − ~F · ∇V

)
+

ˆ
∂Ω

(
~ν · ~F

)
V = O, (2)

where~ν is the outer normal unit vector of the control surface ∂Ω (which is the boundary of Ω).
To introduce spatial discretization for Equation (2), we choose the linear space spanned

by polynomials up to the p-th degree over Ω, denoted as V p(Ω), as the approximation
space. Let φ(~x) =

[
φ1(~x) · · · φL(~x)

]
be a basis of V p(Ω), in this article, we choose

φ1(~x) = 1,

φ2(~x)
φ3(~x)
φ4(~x)

 =

x− x0
y− y0
z− z0

,



φ5(~x)
φ6(~x)
φ7(~x)
φ8(~x)
φ9(~x)
φ10(~x)

 =



(x− x0)(x− x0)
(x− x0)(y− y0)
(x− x0)(z− z0)
(y− y0)(y− y0)
(y− y0)(z− z0)
(z− z0)(z− z0)

, . . . ,

in which (x0, y0, z0) is the geometric center of Ω. Then U and V could be approximated as

U(~x, t) ≈ Uh(~x, t) =
L

∑
l=1

Ûl(t) φl(~x), V(~x) ≈ Vh(~x) =
L

∑
l=1

V̂l φl(~x),

where each Ûl(t) is a K× 1 matrix of temporal functions, and each V̂l is a constant num-
ber (which is arbitrary since V(~x) is arbitrary). Substitute them into the weak form
(Equation (1)), we obtain

Appl. Sci. 2022, 12, 4228 4 of 22

∑
l

V̂l

[
∑
k

(ˆ
Ω

φlφk

)
dÛk
dt

+

ˆ
Ω
(∇φl) · ~F

(
Uh
)
+

˛
∂Ω

φl Fν
(

Uh
I , Uh

O

)]
= O (3)

where ~ν · ~F =: Fν is the normal flux on ∂Ω, whose value could be solved from Uh
I (the

approximated inner-side state) and Uh
O (the approximated outer-side state). We implement

this procedure as an independent module called the Riemann solver of the conservation
law (Equation (1)), see [31] for details.

Recall the arbitrariness of
{

V̂l
}L

l=1 and adopt the inner-product notation

〈 f |g〉 :=
ˆ

Ω
f (~x) g(~x),

we could turn Equation (3) into a system of ordinary differential equations:

dÛK×L
dt

= BK×L A−1
L×L =: RK×L (4)

in which

Û(t) =

〈U1|φ1〉 · · · 〈U1|φL〉
...

. . .
...

〈UK|φ1〉 · · · 〈UK|φL〉


K×L

is the matrix of temporal functions (which will be solved in Section 2.3), and

A =

〈φ1|φ1〉 · · · 〈φ1|φL〉
...

. . .
...

〈φL|φ1〉 · · · 〈φL|φL〉


L×L

is a constant matrix for a given Ω, and

B =

ˆ
Ω

[
Fx Fy Fz]

K×3

∂xφ

∂yφ

∂zφ


3×L

−
˛

∂Ω
Fν

K×1 φ
1×L

(5)

is a variable matrix depending on Û, so is the residual matrix R = B A−1. By applying the
Gram–Schmidt orthonormalization to φ, the constant matrix A could be an identity matrix,
which would lead to R = B. The integrals in B would be evaluated by Gaussian quadrature
rules. For triangular and tetrahedral cells, we used the quadrature rules given in [32].

2.2. Limiting Procedures

The limiters we used in this article was originally designed by [23,24]. Zhong [23]
gives the formulation for two-dimensional structured meshes, and Zhu [24] extends it for
two-dimensional unstructured meshes. Here we present a unified formulation for both
two- and three-dimensional unstructured meshes. To simplify subscripts, we denote ψ|Ei
(the restriction of function ψ on element Ei) as ψi, and 〈ψ〉Ei (the average value of ψ on
Ei) as 〈ψ〉i. Let Ki be the index set of Ei’s neighbors (those elements adjacent to Ei), and
K+

i := Ki ∪ {i}.

2.2.1. The ScalarWeno Limiter

To reconstruct a scalar-valued function ψ on Ei, we first borrow the expression of ψ
from Ek to Ei

ψk→i(~x) := ψk(~x)− 〈ψk〉i + 〈ψi〉i (6)

for each k ∈ K+
i . The key idea of WENO limiters is to build a convex combination of these

borrowed functions:

Appl. Sci. 2022, 12, 4228 5 of 22

ψnew
i (~x) := ∑

k∈K+
i

wk→i ψk→i(~x). (7)

The non-negative weight wk→i should be determined from the smoothness of ψk→i, so
we then calculate the smoothness of ψk→i for each k ∈ Ki:

βk→i =
p

∑
|α|=1

l2|α|
i
|Ei|

ˆ
Ei

(
∂|α|ψk→i

∂xα1
1 · · · ∂xαd

d

)2

, |α| := α1 + · · ·+ αd (8)

in which |Ei| :=
´

Ei
1 is the measure (i.e., “area” for d = 2, “volume” for d = 3) of Ei, and

li := d
√
|Ei| is the approximated length of Ei’s edges. Once we have these β’s, the weight

for each ψk→i could be constructed as

wk→i =
wβ

k→i

∑k∈K+
i

wβ
k→i

, wβ
k→i :=

w?
k→i

(ε0 + βk→i)
2 , (9)

in which

w?
k→i =

{
ε1 k 6= i
1−∑j∈Ki

ε1 k = i
(10)

are called the ideal weights. The ε’s in Equations (9) and (10) are artificial parameters
and we use ε0 = 10−6 and ε1 = 10−3 as suggested by [23,24]. This limiting procedure for
scalar-valued functions is independent from the conservation laws to be solved, so it can be
programmed as an independent module, which we would like to name as the ScalarWeno
limiter.

2.2.2. The EigenWeno Limiter

For a conservation law system (Equation (1)), the value of the conservative variable U
is a column matrix, for which the following limiter is recommended. The first step is to
obtain the ν-split form of Equation (1) on the interface shared by Ei and its neighbor Ek (for
each k ∈ Ki):

∂tU + ∂νFν = O, (11)

where ∂ν := ~ν · ∇ is the directional derivative operator and Fν := ~ν · ~F is the normal flux
(as in Equation (3)). It can be treated as a one-dimensional conservation law system whose
flux Jacobian can be approximated by the average value of U:

Aν =
∂Fν

∂U

∣∣∣∣
〈U〉i

. (12)

For a hyperbolic system, it is guaranteed that the K× K matrix Aν has K real eigenval-
ues and has the eigenvalue decomposition

Aν = R

λ1
. . .

λK

R−1, R :=
[
r1 · · · rK

]
, (13)

where rk (the k-th column of R) is an eigenvector corresponding to the k-th eigenvalue
λk (for k = 1, . . . , K). Once obtaining the R, the original conservative variable U can be
projected into the space spanned by the r’s, which gives the characteristic variable

V := R−1 U, (14)

Appl. Sci. 2022, 12, 4228 6 of 22

The next step is then to apply the ScalarWeno limiter (Equations (6)–(10)) on each
scalar component of V, which gives Vnew. After obtaining the reconstructed characteristic
variable Vnew, it can be turned back into the original conservative variable

Unew
k→i := R Vnew, (15)

in which the subscript k→ i means that it is a function defined on Ei, which is constructed
with the help of Ek. The final step is to weight these reconstructed conservative variables
by the measure of the corresponding adjacent element:

Unew
i :=

∑k∈Ki
Unew

k→i |Ek|
∑k∈Ki

|Ek|
. (16)

Since the eigenvalue decomposition (Equation (13)) plays a central role in this limiting
procedure, we would like to name it as the EigenWeno limiter.

2.2.3. The LazyWeno Limiter

The EigenWeno limiter (Equations (11)–(16)) works well on two-dimensional meshes
in [23,24] and on three-dimensional meshes in this article. However, it depends on the
conservation law system to be solved and thus is not applicable if the eigenvalue decompo-
sition (Equation (13)) is not easily computable, or the task is to design a limiter for general
matrix-valued functions (not necessarily the conservative variable of a conservation law
system). In either case, one could simply apply the ScalarWeno limiter (Equations (6)–(9))
to each scalar component of U, which is a matrix-valued function. Since this limiting
procedure requires less derivation and computational resources, we would like to name it
as the LazyWeno limiter.

2.3. Temporal Discretization

Equation (4) is a typical nonlinear ordinary differential equation system, which can
be solved by various numerical methods, such as the Runge–Kutta methods (see [33]).
However, to preserve the total variation diminishing (TVD) property of the solution,
the method itself should be TVD [34] and some kind of limiters (already discussed in
Section 2.2) should be carefully incorporated into it. In this article, we follow the practice
of [23,24], which use the explicit third-order TVD Runge–Kutta method:

Ûn+1/3
= Ûn

+ Rn∆t

Ûn+2/3
=

3
4

Ûn
+

1
4

(
Ûn+1/3

+ Rn+1/3∆t
)

Ûn+1 ≡ Ûn+3/3
=

1
3

Ûn
+

2
3

(
Ûn+2/3

+ Rn+2/3∆t
) (17)

in which, integers in superscripts are the marks of time steps, and fractions in superscripts
represent intermediate stages. The values of the right hand side (RHS) expressions are
not guaranteed to be TVD, so limiting procedures must be applied before assigning them
the the left hand side (LHS). To make it more clear, we introduce a nonlinear operator L
(stands for limiter) into the RHS of Equation (17), which gives

Ûn+1/3
= L

[
Ûn

+ Rn∆t
]

Ûn+2/3
= L

[
3
4

Ûn
+

1
4

(
Ûn+1/3

+ Rn+1/3∆t
)]

Ûn+1 ≡ Ûn+3/3
= L

[
1
3

Ûn
+

2
3

(
Ûn+2/3

+ Rn+2/3∆t
)] (18)

This notation clearly emphasize the application of limiters.

Appl. Sci. 2022, 12, 4228 7 of 22

2.4. Parallel Programming

Both the flux integrals (Equation (5)) in the DG method and the function borrowing
(Equation (6)) in WENO limiters put a requirement on each cell to access its neighbors inO(1)
time, which is not supported by commonly used mesh formats. For this reason, we do not parti-
tion the input mesh directly using the METIS_PartMeshDual(...) function as in traditional fi-
nite element methods, but convert the mesh to its dual graph by the METIS_MeshToDual(...)
function, and then partition the graph using the METIS_PartGraphKway(...) function. The
METIS_MeshToDual(...) function stores the cell adjacency information in dynamically allo-
cated arrays pointed by raw pointers, which should then be the released exactly once by some
caller in the call stack. To avoid memory bugs, we suggest to wrap such raw pointers into
some smart pointers, such as those provided by the standard library of modern C++ [35].

Once we obtain the partitioning, each part of the mesh should then be load by a
process, which holds and updates local data sequentially and shares data on inter-part
boundaries with neighbors when necessary. This is a typical scenario of the distributed
memory parallelization, which achieves acceleration by solving relatively equal-sized
subproblems simultaneously on multiple cores. Compared with this, the shared memory
parallelization, which provides a global memory address space shared by multiple threads,
is generally easier to program but less scalable. The price we paid for scalability is the
explicit management of message passing for sharing data between processes. Thanks
to the publicly available implementations of the MPI standard, such as MPICH (https:
//www.mpich.org) and Open-MPI (https://www.open-mpi.org), the code for doing this
is much simpler than it used to be. To improve readability and maintainability of our code,
we wrap these communication operations in functions names as ShareSomething(...),
which share the same code structure:

1. For each destination, put the data to be sent into a sending buffer and register a
request of sending by calling the MPI_Isend(...) function.

2. For each source, allocate a receiving buffer for the data to be received and register a
request of receiving by calling the MPI_Irecv(...) function.

3. Performed other computations that can be conducted without communications.
4. Block the process until all its requests complete by calling the the MPI_Waitall(...)

function.

The third step is optional but may help to improve parallel efficiency, since it allows
computations to overlap with communications.

3. Results

In this section, we give the results of various numerical experiments to show the
accuracy and performance of the methods described in Section 2. Even though all these
experiments can be carried out on one- or two-dimensional structured meshes, we intention-
ally solve them on three-dimensional unstructured meshes. In this way, the applicability of
our solvers for real engineering problems could be demonstrated.

3.1. Linear Conservation Laws

The first group of problems to be solved is the linear version of Equation (1):

∂tU + Ax ∂xU + Ay ∂yU + Az ∂zU = O (19)

with certain boundary and initial conditions. These problems are mathematically simple in
the sense that they can be solved analytically. The existence of analytic solutions gives us
a good way to measure the accuracy of our numerical solvers. In this subsection, we use
tetrahedral meshes generated in a [0, 4]× [0, 1]× [0, 0.5] box.

3.1.1. Scalar Case

This is the simplest case of Equation (19):

https://www.mpich.org
https://www.mpich.org
https://www.open-mpi.org

Appl. Sci. 2022, 12, 4228 8 of 22

Problem 1. In Equation (19), let U consists only one component and each A consists a single number:

U(~x, t) =
[
U(x, y, z, t)

]
, Ax =

[
−10

]
, Ay = Az =

[
0
]
.

The following boundary conditions

U(x = 0, y, z, t) =
[
−10

]
=: UL, U(x = 4, y, z, t) =

[
+10

]
=: UR,

and the initial condition
U(x, y, z, t = 0) = UL

are applied.

The analytic solution of Problem 1 is:

U(x, y, z, t) =

{
UL x− 4 < −10t
UR x− 4 > −10t

which can be interpreted as a left-running plane wave, whose profile is a jump initially
positioned at the right end (x = 4). To compare the accuracy of various schemes, we
plot the meshes and the numerical solutions at the same moment (t = 0.2) in Figures 1–4.
The white-colored regions in these figures are continuous transition layers, which are
inevitable due to the dissipation of numerical schemes. The thickness of such transition
layer, however, can then be used as an indicator of the scheme’s accuracy. Ideally, the
thickness should be infinitesimal, as in the analytic solution. The differences between these
results are more obvious in Figures 5 and 6, in which we plot the values on 1001 uniformly
distributed sample points along the longitudinal axis (on which y = 0.5 and z = 0.25) for
each solver.

Figure 1. Third-order solution of Problem 1 on medium (h ≈ 2−3) cells.

Appl. Sci. 2022, 12, 4228 9 of 22

Figure 2. First-order solution of Problem 1 on small (h ≈ 2−4) cells.

Figure 3. First-order solution of Problem 1 on tiny (h ≈ 2−5) cells.

Figure 4. Third-order solution of Problem 1 on big (h ≈ 2−2) cells.

Appl. Sci. 2022, 12, 4228 10 of 22

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

10

5

0

5

10

U

Analytic Solution
p = 3, h 2 4

p = 3, h 2 3

p = 3, h 2 2

Figure 5. Comparison between solutions of Problem 1 given by running the same solver on
different meshes.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
X

10

5

0

5

10

U

Analytic Solution
p = 3, h 2 3

p = 2, h 2 3

p = 1, h 2 3

Figure 6. Comparison between solutions of Problem 1 given by running different solvers on the
same mesh.

In Table 1, we show the measured error and time cost of each solver/mesh pair. The
seconds consumed by first-order solutions are somewhat exaggerated, since we use the
same high-order quadrature rules for both first- and third-order solvers, which is necessary
to integrate non-constant errors. If we did not have to measure the errors, then low-order
numerical integrators could be used, which might save some time.

Table 1. Accuracy and time cost of each solver–mesh (p–h) pair.

L1-Error with Respect to the Analytic Solution

p h 2−2 2−3 2−4 2−5

1 2.858 2.095 1.524 1.108
2 1.258 0.771 0.463 0.275
3 1.021 0.590 0.341

Time Cost (in Seconds) Measured on a Single Core Whose Main Frequency Is 2.7 GHz

p h 2−2 2−3 2−4 2−5

1 0.373 1.129 16.533 306.293
2 1.580 14.894 253.821 4986.391
3 4.147 61.425 906.914

The following conclusions can be drawn from both Figures 1–6 and Table 1:

• Both mesh refinement (decreasing h) and order increment (increasing p) can help to
improve accuracy.

Appl. Sci. 2022, 12, 4228 11 of 22

• The solver of the highest order (p = 3) on the coarsest (h ≈ 2−2) mesh defeats the
solver of the lowest order (p = 1) on the finest (h ≈ 2−5) mesh in accuracy but saves
quite a lot of time.

• High-order schemes are better than low-order ones in the sense of getting the same
level of accuracy with less time cost.

3.1.2. System Case

Problem 2. In Equation (19), let U consists two components and each A be a 2× 2 matrix:

U(~x, t) =
[

U1(x, y, z, t)
U2(x, y, z, t)

]
, Ax =

[
6 −2
−2 6

]
, Ay = Az =

[
0 0
0 0

]
,

The following boundary conditions

U(x = 0, y, z, t) =
[

0
0

]
=: UL, U(x = 4, y, z, t) =

[
12
−4

]
=: UR,

and the initial condition
U(x, y, z, t = 0) = UR

are applied.

To solve this problem analytically, we first obtain the eigenvalue decomposition of Ax,
which is [

6 −2
−2 6

]
︸ ︷︷ ︸

Ax

=

[
1 1
−1 1

]
︸ ︷︷ ︸

Rx

[
8

4

]
︸ ︷︷ ︸

Λx

[
1/2 −1/2
1/2 1/2

]
︸ ︷︷ ︸

(Rx)−1

By introducing the characteristic variable V := (Rx)−1U, which means[
V1
V2

]
:=
[

1/2 −1/2
1/2 1/2

][
U1
U2

]
=

1
2

[
U1 −U2
U1 + U2

]
,

the boundary conditions become

VL = (Rx)−1UL =

[
0
0

]
, VR = (Rx)−1UR =

[
8
4

]
,

and the system can be decoupled:[
∂t + 8∂x

∂t + 4∂x

][
V1
V2

]
=

[
0
0

]
.

We can then solve these two scalar problems independently, which gives

V1(x, y, z, t) =

{
0 x < 8t
8 x > 8t

, V2(x, y, z, t) =

{
0 x < 4t
4 x > 4t

.

The solution of Problem 2 can be obtained by U = Rx V, which gives

U(~x, t) =
[

V2 + V1
V2 −V1

]
=


UL x/t < 4
UM x/t ∈ (4, 8)
UR x/t > 8

, (20)

where

UL =

[
0
0

]
, UM =

[
4
4

]
, UR =

[
12
−4

]
.

Appl. Sci. 2022, 12, 4228 12 of 22

With this analytic solution, we can evaluate the accuracy of our numerical solvers.
Four solver–limiter pairs are tested on the same mesh (h ≈ 2−3) used in Figure 1.

We plot the contour of U(x, y, z, t = 0.3) with the underlying mesh in Figures 7 and 8 and
compare the results along the longitudinal axis at t = 0.3 with the analytic solution in
Figures 9 and 10. It is clear that both LazyWeno and EigenWeno (see Section 2.2) can essen-
tially suppress non-physical oscillations in each component. Figure 11 shows that higher-order
(p = 3) solvers still outperforms lower-order (p = 2) solvers in accuracy and the EigenWeno
limiter generally works better than its LazyWeno counterpart. For this reason, we will use
EigenWeno limiters exclusively in the rest of this section.

Figure 7. Third-order solution of U1(t = 0.3) in Problem 2.

Figure 8. Third-order solution of U2(t = 0.3) in Problem 2.

Appl. Sci. 2022, 12, 4228 13 of 22

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0

2

4

6

8

10

12

U
1

Analytic Solution
p = 2, LazyWeno
p = 2, EigenWeno
p = 3, LazyWeno
p = 3, EigenWeno

Figure 9. Comparison between solutions of U1(t = 0.3) in Problem 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

4

2

0

2

4

U
2

Analytic Solution
p = 2, LazyWeno
p = 2, EigenWeno
p = 3, LazyWeno
p = 3, EigenWeno

Figure 10. Comparison between solutions of U2(t = 0.3) in Problem 2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x

0

2

4

6

8

Ab
so

lu
te

 E
rro

rs

1.4 1.6 1.8 2.0 2.2

0.0

0.2

0.4

Analytic Solution
p = 2, LazyWeno
p = 2, EigenWeno
p = 3, LazyWeno
p = 3, EigenWeno

Figure 11. Comparison between absolute errors of numerical solutions in Figures 9 and 10.

3.2. Inviscid Compressible Flows

The second group of problems to be solved is the three-dimensional Euler system:

∂t


ρ

ρux
ρuy
ρuz
ρe0

+ ∂x


ρux

ρuxux + p
ρuyux
ρuzux
ρh0ux

+ ∂y


ρuy

ρuxuy
ρuyuy + p

ρuzuy
ρh0uy

+ ∂z


ρuz

ρuxuz
ρuyuz

ρuzuz + p
ρh0uz

 =


0
0
0
0
0

 (21)

Appl. Sci. 2022, 12, 4228 14 of 22

with certain boundary and initial conditions. These problems are genuinely nonlinear which
cannot be solved analytically in general. However, their exact or high-order solutions in
lower-dimensional spaces are well known in CFD studies, which can still be used to test
our three-dimensional solvers.

For this system, the Aν defined in Equation (12) depends on U, so do the R−1 in
Equation (14) and the R in Equation (15). Fortunately, these matrices can be explicitly formulated:

R(U) =


1 1 0 0 1

ux − aνx ux σx πx ux + aνx
uy − aνy uy σy πy uy + aνy
uz − aνz uz σz πz uz + aνz

h0 − uνa
u2

x+u2
y+u2

z
2 uσ uπ h0 + uνa

,

uν

uσ

uπ

 =

νx σx πx
νy σy πy
νz σz πz

−1ux
uy
uz

,

L(U) =



1
2
(

B2 +
uν
a
) −1

2
(

B1ux +
νx
a
) −1

2

(
B1uy +

νy
a

)
−1
2
(

B1uz +
νz
a
) 1

2 B1

1− B2 B1ux B1uy B1uz −B1
−uσ σx σy σz 0
−uπ πx πy πz 0

1
2
(

B2 − uν
a
) −1

2
(

B1ux − νx
a
) −1

2

(
B1uy −

νy
a

)
−1
2
(

B1uz − νz
a
) 1

2 B1

,

in which B1 := (γ− 1)/a2 and B2 := B1(u2
ν + u2

σ + u2
π).

3.2.1. Shock Tube Problems

These problems are usually defined as one-dimensional problems, but we treat them
as three-dimensional ones. All these problems are considered in a [0.0, 5.0]× [0.0, 1.0]×
[0.0, 0.5] box with all boundaries closed but the left and right ends open. Although no
analytic solutions exist, we can still use the method described in [31], which solves nonlinear
algebraic equations numerically, to obtain their exact solutions. To test the numerical
methods described in Section 2, we use the unstructured hexahedral mesh in Figure 12, in
which h ≈ 1/10.

Figure 12. Mesh for Problems 3–5.

Problem 3 (Sod). Solve the Euler system (Equation (21)) for t ∈ [0.0, 1.0] with the initial condition

[
ρ u vs. w p

]
t=0 =


[
1.000 0.000 0.000 0.000 1.000

]
x < 2[

0.125 0.000 0.000 0.000 0.100
]

x > 2

Appl. Sci. 2022, 12, 4228 15 of 22

Problem 4 (Lax). Solve the Euler system (Equation (21)) for t ∈ [0.0, 0.6] with the initial condition

[
ρ u vs. w p

]
t=0 =


[
0.445 0.698 0.000 0.000 3.528

]
x < 2[

0.500 0.000 0.000 0.000 0.571
]

x > 2

Problem 5 (Vacuum). Solve the Euler system (Equation (21)) for t ∈ [0.0, 0.3]with the initial condition

[
ρ u vs. w p

]
t=0 =


[
1.0 −4.0 0.0 0.0 0.4

]
x < 2[

1.0 +4.0 0.0 0.0 0.4
]

x > 2

In Figures 13–15, we plot the density contours given by the same third-order solver
with an EigenWeno limiter. In Figures 13–18, we plot the density distributions along the
longitudinal axis (on which y = 0.5 and z = 0.25) of the box. All these results show
that higher-order (p = 3) solvers with EigenWeno limiters are better than lower-order
(p = 1) solvers at capturing discontinuities (shocks, contacts, expansions), which may occur
frequently in compressible flows.

Figure 13. Third-order solution of ρ(t = 1.0) in Problem 3.

Figure 14. Third-order solution of ρ(t = 0.6) in Problem 4.

Appl. Sci. 2022, 12, 4228 16 of 22

Figure 15. Third-order solution of ρ(t = 0.3) in Problem 5.

0 1 2 3 4 5
x

0.2

0.4

0.6

0.8

1.0 Exact
p = 1
p = 2
p = 3

Figure 16. Comparison between solutions of ρ(t = 1.0) in Problem 3.

0 1 2 3 4 5
x

0.4

0.6

0.8

1.0

1.2
Exact
p = 1
p = 2
p = 3

Figure 17. Comparison between solutions of ρ(t = 0.5) in Problem 4.

Appl. Sci. 2022, 12, 4228 17 of 22

0 1 2 3 4 5
x

0.0

0.2

0.4

0.6

0.8

1.0

Exact
p = 1
p = 2
p = 3

Figure 18. Comparison between solutions of ρ(t = 0.3) in Problem 5.

3.2.2. Double Mach Reflection Problem

This is a classical two-dimensional problem originally proposed in [36], which we
redefine here as a three-dimensional one:

Problem 6. Solve the Euler system (Equation (21)) in the region defined in Figure 19, in which
x0 = 1/6. The initial condition is given as a moving shock wave:

[
ρ u vs. w p

]
t=0 =


[
1.4 0.0 0.0 0.0 1.0

]
y <
√

3(x− x0)[
8.0 uA vA 0.0 116.5

]
y >
√

3(x− x0)
, (22)

in which uA = 4.125
√

3 and vA = −4.125 are the velocity components after the shock wave. The
boundary conditions are given as following:

• The x = 0 surface is open as an inlet;
• The x = 4 surface and the x < x0 part of the y = 0 surface are open as outlets;
• The x > x0 part of the y = 0 surface is closed as a solid wall;
• The y = 1 surface has the following prescribed state:

[
ρ u vs. w p

]
=


[
1.4 0.0 0.0 0.0 1.0

]
1 <
√

3(x− (x0 + uAt))[
8.0 uA vA 0.0 116.5

]
1 >
√

3(x− (x0 + uAt))
,

which is consistent with the initial condition (Equation (22)).

As a common practice, we plot the density contour at t = 0.2 in a [0, 3]× [0, 1] rectangle
(on the z = 0 surface) for each solver in Figures 20–22. It is clear that as the accuracy order
increases, the thickness of each discontinuity decreases and the rolled-up vortex structure
becomes more clear.

Before concluding this section, we provide the measured performance of our third-
order solver that produces Figure 22 in Table 2, in which

• P means the number of processes (one process per core).
• Tn means the wall clock time to finish the first n step.
• P Tm+m−Tn

m is the core time per step. The total core time of all steps is often used as an
index for charging by high performance computing centers.

Appl. Sci. 2022, 12, 4228 18 of 22

x

y

0

1

2

3

4

0

1

u⊥ = 8.25

u⊥ = 8.25

x0

π/3

π/3

Figure 19. A schematic diagram of Problem 6. The rectangle bounded by four dashed lines and a
solid line is the computational domain. The thick red line represents the initial shock wave, which is
at an angle of π/3 relative to the x-axis.

Figure 20. First-order solution of ρ(x, y, z = 0, t = 0.2) in Problem 6 (h ≈ 1/200).

Since parallel I/O operations require many collective communications, we write one
frame every 100 steps. Thus, the difference between the values in the last two columns
is the amortized core time of writing per step. We have to admit that this cost is growing
as the number of cores increases. If the number of cores keeps increasing, this may be a
bottleneck of maintaining scalability.

The community of parallel computing usually use the speedup (S) and efficiency (E)
defined as

S =
Tserial

Tparallel
, E =

S
P
× 100%,

Appl. Sci. 2022, 12, 4228 19 of 22

to assess the performance a parallel program. We follow this practice, calculate these values
based on the measured data given in Table 2 and plot them in Figures 23 and 24. These
figures show again that the I/O operations have adverse effects on the parallel performance.

Figure 21. Second-order solution of ρ(x, y, z = 0, t = 0.2) in Problem 6 (h ≈ 1/200).

Figure 22. Third-order solution of ρ(x, y, z = 0, t = 0.2) in Problem 6 (h ≈ 1/200).

Table 2. Performance of the same solver running on different number of cores.

P T100 T199 T200 P T199−T100
99 P T200−T100

100

1 17,652.2 35,324.5 35,519.3 178.508 178.671
20 960.443 1912.365 1926.584 192.307 193.228
40 491.070 971.710 983.933 194.198 197.145
60 335.651 666.548 676.930 200.544 204.767
80 251.548 494.541 504.951 196.358 202.722

100 202.789 397.641 408.126 196.820 205.337

The efficiency values given in Figure 24 fluctuate around 90%, which are not as good as
those above 99% in [26]. One source of such gap is the imperfect load balancing of our tests.
Since we are using a three-dimensional unstructured mesh, it can hardly be partitioned
uniformly, which is an NP-hard problem. On the other hand, their meshes are one- and two-
dimensional structured, on which uniform partitioning can be trivially achieved. Figure 25
gives the distribution of cells of the 100-part mesh partitioning (Figure 26) used in this
section, which shows a 3% fluctuation.

Appl. Sci. 2022, 12, 4228 20 of 22

0 20 40 60 80 100
Number of Cores

0

20

40

60

80

100

Sp
ee

du
p

Ideal
I/O excluded
I/O included

Figure 23. Speedup of the third-order solver for generating Figure 22.

0 20 40 60 80 100
Number of Cores

88

90

92

94

96

98

100

Ef
fic

ie
nc

y
(%

)

I/O excluded
I/O included

Figure 24. Parallel efficiency of the third-order solver for generating Figure 22.

0 20 40 60 80 100
Core Index

0

500

1000

1500

2000

Nu
m

be
r o

f C
el

ls

Figure 25. Distribution of cells in the mesh partitioning given in Figure 26.

Appl. Sci. 2022, 12, 4228 21 of 22

Figure 26. A 100-part mesh partitioning of the unstructured mesh used for generating Figures 20–22.

4. Discussion

In this article, we have formulated the RKDG methods and the WENO limiters for
three-dimensional unstructured meshes. The algorithms have been implemented on top
of the MPI standard, which supports distributed memory parallelization. The numerical
experiments have shown that increasing a solver’s accuracy order helps more to produce
better results than just refining the mesh it uses. The efficient parallel implementation has
made the time cost affordable for large problems, as long as the solvers can be executed on
sufficiently large number of cores. Extending the methods to Navier–Stokes equations and
applications of these high-order parallel solvers to real engineering problems are ongoing
works. Further optimization of the parallel I/O module may be conducted to achieve better
parallel performance.

Author Contributions: Conceptualization, W.P. and S.L.; methodology, W.P.; software, W.P. and Y.J.;
validation, W.P. and Y.J.; formal analysis, W.P. and Y.J.; investigation, W.P.; resources, W.P.; data
curation, W.P.; writing—original draft preparation, W.P.; writing—review and editing, W.P., Y.J. and
S.L.; visualization, W.P.; supervision, S.L.; project administration, S.L.; funding acquisition, S.L. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National High-tech R&D Program of China (863 Program)
grant number 2012AA112201.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this article are all generated from the source
code publicly available in our Git repository https://github.com/pvc1989/miniCFD accessed on
15 March 2022 (or the mirror site https://gitee.com/pvc1989/miniCFD, accessed on 15 March 2022).

Acknowledgments: The authors would like to express the deepest appreciation to Zhou Yukai for
his professional assistance with typesetting and graphing.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Hesthaven, J.S.; Warburton, T. Nodal Discontinuous Galerkin Methods; Springer: New York, NY, USA, 2008. [CrossRef]
2. Reed, W.H.; Hill, T.R. Triangular Mesh Methods for the Neutron Transport Equation; Technical Report LA-UR-73-479; Los Alamos

Scientific Lab.: Los Alamos, NM, USA, 1973.
3. Chavent, G.; Salzano, G. A finite-element method for the 1-D water flooding problem with gravity. J. Comput. Phys. 1982,

45, 307–344. [CrossRef]
4. Cockburn, B.; Shu, C.W. The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conser-

vation laws. In Proceedings of the 1st National Fluid Dynamics Conference, Cincinnati, OH, USA, 25–28 July 1988; American
Institute of Aeronautics and Astronautics: Reston, VA, USA, 1988. [CrossRef]

5. Shu, C.W.; Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 1988,
77, 439–471. [CrossRef]

https://github.com/pvc1989/miniCFD
https://gitee.com/pvc1989/miniCFD
http://doi.org/10.1007/ 978-0-387-72067-8
http://dx.doi.org/10.1016/0021-9991(82)90107-3
http://dx.doi.org/10.2514/6.1988-3797
http://dx.doi.org/10.1016/0021-9991(88)90177-5

Appl. Sci. 2022, 12, 4228 22 of 22

6. Shu, C.W.; Osher, S. Efficient implementation of essentially non-oscillatory shock-capturing schemes, II. J. Comput. Phys. 1989,
83, 32–78. [CrossRef]

7. Cockburn, B.; Lin, S.Y.; Shu, C.W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation
laws III: One-dimensional systems. J. Comput. Phys. 1989, 84, 90–113. [CrossRef]

8. Cockburn, B.; Hou, S.; Shu, C.W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation
laws. IV. The multidimensional case. Math. Comput. 1990, 54, 545–581. [CrossRef]

9. Cockburn, B. An introduction to the Discontinuous Galerkin method for convection-dominated problems. In Lecture Notes in
Mathematics; Springer: Berlin/Heidelberg, Germany, 1998; pp. 150–268. [CrossRef]

10. Bassi, F.; Rebay, S. A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible
Navier–Stokes Equations. J. Comput. Phys. 1997, 131, 267–279. [CrossRef]

11. Cockburn, B.; Shu, C.W. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems. SIAM J.
Numer. Anal. 1998, 35, 2440–2463. [CrossRef]

12. Cockburn, B.; Shu, C.W. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems. J. Sci. Comput.
2001, 16, 173–261. [CrossRef]

13. Gottlieb, D.; Shu, C.W. On the Gibbs Phenomenon and Its Resolution. SIAM Rev. 1997, 39, 644–668. [CrossRef]
14. Leer, B.V. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal

compressible flow. J. Comput. Phys. 1977, 23, 263–275. [CrossRef]
15. Leer, B.V. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. J. Comput. Phys.

1977, 23, 276–299. [CrossRef]
16. van Leer, B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method. J. Comput.

Phys. 1979, 32, 101–136. [CrossRef]
17. van Leer, B.; Nishikawa, H. Towards the ultimate understanding of MUSCL: Pitfalls in achieving third-order accuracy. J. Comput.

Phys. 2021, 446, 110640. [CrossRef]
18. Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S.R. Uniformly High Order Accurate Essentially Non-oscillatory Schemes, III. J.

Comput. Phys. 1997, 131, 3–47. [CrossRef]
19. Jiang, G.S.; Shu, C.W. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys. 1996, 126, 202–228. [CrossRef]
20. Hu, C.; Shu, C.W. Weighted Essentially Non-oscillatory Schemes on Triangular Meshes. J. Comput. Phys. 1999, 150, 97–127.

[CrossRef]
21. Qiu, J.; Shu, C.W. Runge–Kutta Discontinuous Galerkin Method Using WENO Limiters. SIAM J. Sci. Comput. 2005, 26, 907–929.

[CrossRef]
22. Zhu, J.; Qiu, J.; Shu, C.W.; Dumbser, M. Runge–Kutta discontinuous Galerkin method using WENO limiters II: Unstructured

meshes. J. Comput. Phys. 2008, 227, 4330–4353. [CrossRef]
23. Zhong, X.; Shu, C.W. A simple weighted essentially nonoscillatory limiter for Runge–Kutta discontinuous Galerkin methods. J.

Comput. Phys. 2013, 232, 397–415. [CrossRef]
24. Zhu, J.; Zhong, X.; Shu, C.W.; Qiu, J. Runge–Kutta discontinuous Galerkin method using a new type of WENO limiters on

unstructured meshes. J. Comput. Phys. 2013, 248, 200–220. [CrossRef]
25. Mazaheri, A.; Shu, C.W.; Perrier, V. Bounded and compact weighted essentially nonoscillatory limiters for discontinuous Galerkin

schemes: Triangular elements. J. Comput. Phys. 2019, 395, 461–488. [CrossRef]
26. Biswas, R.; Devine, K.D.; Flaherty, J.E. Parallel, adaptive finite element methods for conservation laws. Appl. Numer. Math. 1994,

14, 255–283. [CrossRef]
27. Bey, K.S.; Patra, A.; Oden, J.T. hp-version discontinuous Galerkin methods for hyperbolic conservation laws: A parallel adaptive

strategy. Int. J. Numer. Methods Eng. 1995, 38, 3889–3908. [CrossRef]
28. Chalmers, N.; Agbaglah, G.; Chrust, M.; Mavriplis, C. A parallel hp-adaptive high order discontinuous Galerkin method for the

incompressible Navier-Stokes equations. J. Comput. Phys. X 2019, 2, 100023. [CrossRef]
29. Karypis, G.; Kumar, V. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM J. Sci. Comput. 1998,

20, 359–392. [CrossRef]
30. Message Passing Interface Forum. MPI: A Message-Passing Interface Standard, 4th ed.; University of Tennessee: Knoxville, TN,

USA, 2021.
31. Toro, E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2009. [CrossRef]
32. Zhang, L.; Cui, T.; Liu, H. A Set of Symmetric Quadrature Rules on Triangles and Tetrahedra. J. Comput. Math. 2009, 27, 89–96.
33. Quarteroni, A.; Sacco, R.; Saleri, F. Numerical Mathematics; Springer: New York, NY, USA, 2007. [CrossRef]
34. Gottlieb, S.; Shu, C.W. Total variation diminishing Runge-Kutta schemes. Math. Comput. 1998, 67, 73–85. [CrossRef]
35. Meyers, S. Effective Modern C++; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015.
36. Woodward, P.; Colella, P. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 1984,

54, 115–173. [CrossRef]

http://dx.doi.org/10.1016/0021-9991(89)90222-2
http://dx.doi.org/10.1016/0021-9991(89)90183-6
http://dx.doi.org/10.1090/s0025-5718-1990-1010597-0
http://dx.doi.org/10.1007/bfb0096353
http://dx.doi.org/10.1006/jcph.1996.5572
http://dx.doi.org/10.1137/S0036142997316712
http://dx.doi.org/10.1023/A:1012873910884
http://dx.doi.org/10.1137/S0036144596301390
http://dx.doi.org/10.1016/0021-9991(77)90094-8
http://dx.doi.org/10.1016/0021-9991(77)90095-X
http://dx.doi.org/10.1016/0021-9991(79)90145-1
http://dx.doi.org/10.1016/j.jcp.2021.110640
http://dx.doi.org/10.1006/jcph.1996.5632
http://dx.doi.org/10.1006/jcph.1996.0130
http://dx.doi.org/10.1006/jcph.1998.6165
http://dx.doi.org/10.1137/S1064827503425298
http://dx.doi.org/10.1016/j.jcp.2007.12.024
http://dx.doi.org/10.1016/j.jcp.2012.08.028
http://dx.doi.org/10.1016/j.jcp.2013.04.012
http://dx.doi.org/10.1016/j.jcp.2019.06.023
http://dx.doi.org/10.1016/0168-9274(94)90029-9
http://dx.doi.org/10.1002/nme.1620382209
http://dx.doi.org/10.1016/j.jcpx.2019.100023
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1007/b79761
http://dx.doi.org/10.1007/b98885
http://dx.doi.org/10.1090/S0025-5718-98-00913-2
http://dx.doi.org/10.1016/0021-9991(84)90142-6

	Introduction
	Methods
	Spatial Discretization
	Limiting Procedures
	The ScalarWeno Limiter
	The EigenWeno Limiter
	The LazyWeno Limiter

	Temporal Discretization
	Parallel Programming

	Results
	Linear Conservation Laws
	Scalar Case
	System Case

	Inviscid Compressible Flows
	Shock Tube Problems
	Double Mach Reflection Problem

	Discussion
	References

