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Abstract: Body mass index (BMI) plays a vital role in determining the health of middle-aged people,
and a high BMI is associated with various chronic diseases. This study aims to identify important
lifelog factors related to BMI. The sleep, gait, and body data of 47 middle-aged women and 71 middle-
aged men were collected using smartwatches. Variables were derived to examine the relationships
between these factors and BMI. The data were divided into groups according to height based on
the definition of BMI as the most influential variable. The data were analyzed using regression and
tree-based models: Ridge Regression, eXtreme Gradient Boosting (XGBoost), and Category Boosting
(CatBoost). Moreover, the importance of the BMI variables was visualized and examined using
the SHapley Additive Explanations Technique (SHAP). The results showed that total sleep time,
average morning gait speed, and sleep efficiency significantly affected BMI. However, the variables
with the most substantial effects differed among the height groups. This indicates that the factors
most profoundly affecting BMI differ according to body characteristics, suggesting the possibility of
developing efficient methods for personalized healthcare.

Keywords: lifelog; wearable device; smartwatch; body mass index; machine learning; SHapley
Additive Explanations; feature importance

1. Introduction

A lifelog is an integrated digital record consisting of personal data collected from
various digital sensors [1] such as activity, sleep information, weight change, body mass,
muscle mass, and fat mass. With the development of wearable devices, more accurate
and precise measurements are possible. Lifelog information obtained by wearable devices,
such as gait, sleep, and weight, is now used for chronic disease occurrence monitoring
and health care [2–4]. However, healthcare services using lifelogs are currently limited to
simple records or incomplete statistics. Even if they include exercise and lifestyle feedback
functions, the feedback provided is not personalized according to user characteristics.
Therefore, this study aims to identify factors that can be used to develop personalized
healthcare through lifelog analysis. This study interprets machine learning results using
an interpretable model rather than a black box model.

Most previous studies on the correlation between BMI and weight with disease
incidence have used medical data [5,6]. In contrast, we used lifelogs of sleep, steps,
and weight in daily life. Individual analysis was subsequently performed using machine
learning algorithms.

The rest of this paper is organized as follows. Section 2 describes the use and impor-
tance of lifelog data. Section 3 analyzes the association between lifelog data and BMI using
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regression machine learning algorithms. Section 4 details the method used, and Section 5
compares the results with prior research and relevant references.

2. Importance of Lifelog Analysis: Relationship between Lifelog and Diseases
2.1. Relationship between Walking and Disease

According to the U.S. Physical Activity Guidelines [7] and the U.K. Public Health
Agency [8], walking can be easily achieved by anyone in their daily and work lives to
help prevent cardiovascular and other diseases. According to a cohort study involving
menopausal women, walking significantly reduced the risk of developing cardiovascular
disease [9]. Moreover, among 10 cohort studies, five studies on walking showed that
individuals who did the most walking had a significantly lower risk of type 2 diabetes than
those who performed the least walking [10]. In addition, a study of men below and above
the age of 62 showed that a 3 min walk every 30 min helped to control blood sugar [11].

2.2. Relationship between Sleep and Disease

Sleep is essential for maintaining good health. Adults who do not sleep for 7–8 h
regularly have a higher risk of cardiovascular disease, diabetes, obesity, and mortality [5].
A previous study found that the risk of hypertension increased as sleep time decreased [12].
Body mass index (BMI) is also closely related to sleep. Sleeping for less than five hours
has increased the risk of obesity by 1.5 times, with BMI increasing by 0.35 kg/m2 for
every one-hour decrease in sleep time [13]. Some studies have shown that even more
than eight hours of sleep are associated with increased BMI and obesity [14,15]. Moreover,
the risk of type 2 diabetes has increased with less than six hours [16] and even with
more than nine hours of sleep [17]. Previous studies have also shown that sleep time
correlates with cancer incidence, with short sleep times increasing the risk of breast, colon,
and prostate cancer [18–21]. The risk of developing breast cancer is lower in women
who sleep for more than nine hours [22]. Furthermore, epidemiological studies have
shown that nightshift workers have an increased risk of developing breast, colon, prostate,
and endometrial cancer [23,24].

2.3. Relationship between Weight and Disease

Weight gain is known to be associated with an increased risk of type 2 diabetes,
coronary artery disease, high blood pressure [25], cholelithiasis [26], and several cancers [27].
A study that used cohort survey data from 92,837 women and 25,303 men in the U.S. to
investigate how weight changes from adolescence to middle age are associated with various
chronic diseases after the age of 55 years found that weight gain increased the risk of type
2 diabetes, hypertension, cardiovascular disease, obesity-related cancer, cholelithiasis,
severe osteoarthritis, and cataracts.

In this study, weight was used as an indicator of health status; sleep and gait were used
as independent variables related to weight. However, as each person’s physical characteris-
tics are unique, BMI was calculated and used as the response variable instead of weight.

3. The Association between Lifelog Data and BMI Using Regression Machine
Learning Algorithms

Existing relevant studies can generally be categorized as follows.

3.1. Digital Healthcare Research Using Machine Learning and Data Generated by Smartphones
and Smartwatches

One study proposed developing a severity score for Parkinson’s disease using smart-
phone sensor data and machine learning, which can provide helpful information for
the clinical management and treatment of patients with the disease [28]. Other stud-
ies have proposed a motion recognition model related to the user’s meal intake using a
smartwatch sensor [29].
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3.2. Research on Men and Women’s Health Using Machine Learning

One study proposed a predictive model using individual health data that affects the
mortality rate in women with breast cancer [30]; another study developed and tested
an early prediction model that could predict diabetes in women with an accuracy of
81.1% using a factor analysis that was highly correlated with diabetes [31]. Other stud-
ies have used machine learning predictive models to identify women at high risk of
postpartum depression [32].

3.3. Research on Weight and Weight Change Using Machine Learning

In a study that summarized the risk factors for obesity and overweight using machine
learning, age and gender were selected as significant relevant risk factor variables [33].
In addition, some studies have classified and predicted high, medium, and low weight loss
potential levels using machine learning algorithms and the dietary and exercise data of
obese patients [34].

4. Methods
4.1. Data Collection

Data on sleep, gait, and weight of 47 women and 71 men aged 35–59 years were
obtained using the GiVita Inc. app on Samsung Galaxy Watch Active2 smartwatches,
collected from 1 February to 9 August 2021. The age was set at 35 to 59; we targeted middle
age because the age at which health care begins is the age at which interest in health care
is greatest.

We collected the data for these six months because the app was updated compared
to the previous version, improving usability, stabilizing data, and reducing missing and
abnormal values. First, updating the app resulted in fewer errors, making data collection
more stable. Second, the user experience was significantly improved and rewards were
provided as an update. The data included the users’ bedtimes, wake-up times, steps
per minute and day, walking distance per minute and day, walking speed per minute and
day, and daily weight. Based on these records, data on daily sleep in minutes, daily steps
in minutes, and daily weight were created. The dataset sizes were 6223 rows of sleep data
collected by day, 241,068 rows of sleep data collected by minute, 1,797,590 rows of step
data collected per day, 6380 rows of step data collected by minute, and 6729 rows of body
weight data collected by day.

4.2. Data Preprocessing

To find the optimal variables explaining individual BMI variance, several variables,
such as total daily sleep time and sleep efficiency, were generated using daily sleep data
and sleep data in minutes. Likewise, derivative variables, such as the total number of
steps per day and average walking speed in the morning, were generated using the daily
step data and step data in minutes. Additionally, the users’ body data, such as height and
weight, were integrated with each day’s step and sleep data. The derivative variables are
shown in Appendix A: Table A1.

4.3. Feature Selection

If all 55 derived variables (Table A1) were used as inputs in the model, there would
be a risk of overfitting. Therefore, feature selection was performed to remove unnecessary
variables. This study selected features using the Boruta SHapley Additive exPlanations
(BorutaSHAP) method, which combines the Boruta feature selection algorithm with SHAP
values [35]. The execution procedure of the Boruta algorithm can be summarized as
follows [36], and Figure 1 shows the procedure of Boruta feature selection.
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1. Create a replicated random variable called “shadow features” for all features.
2. Randomly mix and combine the original and replicated data to remove possible

correlations between dependent variables and features.
3. Create a random forest on the combined data and calculate the variable’s importance.
4. Calculate the Z-score.
5. Search for the maximum Z-score among shadow attributes (MZSA).
6. For raw data, if the Z-score is greater than the MZSA, it is an important variable.
7. Repeat the above process as often as the random forest is performed, or until each

variable is marked as either important or non-significant.

In previous studies, algorithm experiments on multiple datasets have shown that the
Boruta method is better at feature selection than the Chi-Square method [37]. Boruta is a
method of selecting variables based on a random forest. In addition, the BorutaSHAP pro-
cess uses the Light Gradient Boosting Machine (LGBM), Category Boosting (CatBoost)
(which robustly addresses categorical variables, as well as random forests), or other
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boosting-type models, such as eXtreme Gradient Boosting (XGBoost), to calculate feature
importance. BorutaSHAP provides flexibility in model selection and allows visualization
of the selected features by applying the SHAP [35].

Therefore, the BorutaSHAP algorithm was used in this study for flexible model selec-
tion and convenient visualization of the key selected variables. This method extracts impor-
tant features using thresholds and t-tests on data with random shadow variables added.

As there are few categorical variables in this study, and the feature importance com-
puted using random forest can be biased in some cases [38], to calculate the feature im-
portance, the XGBoost model was selected instead [39]. The strengths of the BorutaSHAP
algorithm are the consistency of feature importance [40] and the use of intuitive colors to
visualize the feature importance.

As shown in Figure 2, most of the sleep variables in the variable list extracted using
BorutaSHAP, except for the total number of hours of sleep per day, are in red and do
not significantly influence the generation of rules related to BMI prediction. These steps
can directly affect BMI. Most of the variables are green and can be identified as primary
variables. In addition, height, which is very closely related to BMI, was also identified
as a significant variable. The four blue boxes represent the minimum, median, mean,
and maximum attributes. The yellow box means tentative, the importance of which is
difficult to determine. The reason is that this corresponding provisional attribute appears
near the maximum attribute, which is challenging to identify in the basic random forest
execution of the Boruta algorithm.
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Figure 2 shows the feature importance obtained by the BorutaSHAP method for all
data. The following features were selected: AVG_SPD, DIST_STD, DISTANCE, LNC_AVG_SPD,
TOTAL_SLEEP_TIME_HOUR, STEP_COUNT, CALORIE, NT_AVG_SPD, LNC_WALK_DIST,
NT_WALK_TIME, TOTAL_SLEEP_TIME_VARIABILITY, HEIGHT, and STEP_STD.

4.4. Data Modeling

The final features obtained using BorutaSHAP were learned using three models: XG-
Boost, CatBoost, and Ridge Regression. Table 1 shows the hyperparameters found by
GridSearchCV in the Scikit-Learn (Sklearn) library and used in the three models. Train-
ing and test data were divided 8:2, and a 5-fold cross-validation was used for more
accurate verification.

Table 1. Hyperparameters for XGBoost, CatBoost, and Ridge Regression.

XGBoost

colsample_bylevel 0.88

Gamma 0.5

colsample_bytree 1

learning_rate 0.04

max_depth 6

min_child_weight 3

n_estimators 1000

reg_alpha 0.7

Subsample 0.89

CatBoost

Depth 4

Iterations 800

learning_rate 0.05

Objective MAE

Ridge regression

model__alpha 0.01

In this study, data were not normalized to remove outliers from data preprocessing
and to facilitate the interpretation of the study results. Thus, we used ridge regression and
tree-based machine learning models, such as XGBoost and CatBoost, which can operate
relatively robustly without regularization.

4.5. Evaluation

This study mainly used five evaluation indicators: Explained Variance Score,
R-squared score, adjusted-R-squared score, Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE).

The description and calculation formulas of the performance indicators for each are
as follows:

R2 = 1 − SSR
SST

SSR =
n
∑

i=1

(
yi − yp

)2, SST =
n
∑

i=1
(yi − y)2, yi is the actual value, yp is the predicted

value, and y is the average of the actual values.

Adj. R2 = 1 −
SSR

n−k−1
SST
n−1
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where n is the number of samples and k is the number of explanatory variables.
The Explained Variance Score is 1—((Sum of Squared Residuals—Mean Error)/Total

Variance). The only difference between the Explained Variance Score (EVS) and the
R-squared score is that the R-squared score subtracts the mean error from the Sum of
Squared Residual (SSR). If the mean error is not close to zero, and a negative or positive
value is obtained, the error is biased to one side and, thus, the model is biased. In other
words, if the R-squared and the explanatory variance score are different, the error is biased,
and there is a high possibility of incorrect fitting.

MAE =

∣∣(yi − yp
)∣∣

n

RMSE =

√
∑
(
yi − yp

)2

n

Compared to MAE, RMSE has the advantage of giving a sizable penalty for a signifi-
cant error value difference and is strong.

5. Results

This study made predictions on the test dataset using a model based on the entire
training data. The BMI values predicted by the model were analyzed using SHAP. Figure 2
shows the feature importance in XGBoost model using SHAP, which indicates that height
is a highly importance feature. However, according to the BMI calculation formula, height
already had a high correlation with BMI, regardless of model performance. It may not
be possible to measure the influence of other variables correctly. Therefore, a clustering
method was used to divide the data according to height, and the relationships between the
variables and BMI were examined in each height group.

The reason for dividing the groups based on height was to accurately identify the
degree of influence of the changeable activity variable on the BMI of users in the same
group, as height is an immutable variable. According to the National Statistical Office
of Korea and previous studies, the average heights of women in their 30s, 40s, and 50s
in Korea are 161.59, 159.91, and 157.23 cm, respectively; the average heights of men in
their 30s, 40s, and 50s in Korea are 174.05, 172.15, and 169.39 cm, respectively [41,42].
Figure 3 also shows that height was an important feature. Based on height, we divided
the women’s data into two groups, 150–160 cm and 160–170 cm, and the men’s data into
three groups, 165–170 cm, 170–175 cm, and 175–180 cm. To reduce the imbalance in the
data due to excessive grouping, we divided the men’s data by 5 cm. For females, we formed
two groups because the amount of data in a given group became too small when divided
by 5 cm, resulting in performance problems.
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Tables 2 and 3 summarize the performance indicators of the three models in each
cluster for men and women, respectively.

Table 2. Comparison of the Performance Indicators of the XGBoost, CatBoost, and Ridge Regression
Machine Learning Algorithms for each height group.

Men Model Explained Variance Score R Squared Adjusted R Squared MAE RMSE

Group 1

XGBoost 0.600 0.589 0.568 1.173 1.569

CatBoost 0.611 0.605 0.574 1.240 1.641

Ridge −0.040 −20.487 −22.171 11.807 12.104

Group 2

XGBoost 0.570 0.568 0.560 1.131 1.455

CatBoost 0.319 0.316 0.295 1.305 1.850

Ridge −0.013 −1.434 −1.510 2.871 3.490

Group 3

XGBoost 0.546 0.546 0.533 1.336 1.943

CatBoost 0.538 0.533 0.532 1.346 2.076

Ridge 0.316 −107.124 −134.390 38.207 38.328

Table 3. Comparison of the performance indicators of the XGBoost machine learning algorithms for
each height group.

Women Model Explained Variance Score R Squared Adjusted R Squared MAE RMSE

Group 1 XGBoost 0.540 0.538 0.531 1.353 1.684

Group 2 XGBoost 0.541 0.532 0.527 1.793 2.520

For modeling women’s data, it was decided to use only XGBoost based on the men’s
data analysis results. The XGBoost algorithm is generally similar to or superior to Ridge
Regression and CatBoost algorithms. The benefits of using CatBoost are limited because
the features used for analysis have few categorical features.

The main relevant variables for women’s group 1 were calories burned, distance,
number of steps, time walked at night, and total sleep time per day (Figure 4).
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A figure illustrating the data of women’s group 2 can be found in the Appendix A
(Figure A1). The main variables of women’s group 2 were calories burned by walking, total
sleep time per day, total sleep time variability, gait variability, and average walking speed
at night.
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The men’s data were analyzed in the same way. The main variables of men’s group 1
were average morning walking speed, calories burned, total sleep time variability, daily
average walking speed, and daily total sleep time. Considering the accumulated SHAP
values for this group, we found that average walking speed in the morning based on the
approximate distance lowered BMI and that total sleep time influenced increases in BMI
(Figure 5).
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Figure A4 in the Appendix A summarizes the data on women’s group 2. In this group,
the number of calories consumed, total sleep time, bedtime, step variability, and average
speed walking at night affected a reduction in BMI. In contrast, total sleep time variability
and average walking speed increased BMI.

Similarly, men’s group 1 data showed that step variability, total sleep time, average
morning walking speed, and overall daily average walking speed affected a reduction in
BMI. In contrast, variability in the length of time spent walking in the morning and total
sleep time affected increasing BMI (Figure 7).
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Figures illustrating the data from men’s groups 2 and 3 can be found in the Appendix A
(Figures A5 and A6). An interpretation of the data for men’s group 2 showed that calorie
consumption, number of steps walked per day, and distance walked affected a reduction
in BMI. Step variability and distance walked in the morning affected the increase in BMI.
For men’s group 3, the number of steps walked per day, step variability, step calorie
consumption through walking, and amount of time walking at night affected a reduction
in BMI. In contrast, total sleep time affected the increase in BMI.

6. Discussion

This study aims to identify the lifelog variable with the most decisive influence on
BMI, closely related to health, by utilizing changeable gait and sleep lifelogs. The variables
related to increases or decreases in BMI were also analyzed and specified.

Although lifelog data have recently been collected more efficiently and constantly
by wearable devices, there are still limitations in the accuracy and quality of sleep data.
Data collection can be unstable due to various external factors, such as battery and Wi-Fi
communication. In addition, the accuracy of the data can be low because it is difficult for
users to wear the devices continuously.

To improve the quality of sleep data, the study attempted to complement the limita-
tions in accuracy by minimizing bias and anomalies. Various preprocessing and derivative
variables such as total daily sleep time, variability in sleep time compared to the previous
day, and daily sleep efficiency were generated. Further complementary research on sleep
and accurate data collection and preprocessing of lifelogs is needed.

To determine the influence of each variable more accurately on BMI, we divided the
data into two groups of women and three groups of men, and we compared the data
using the representative machine learning regression models Ridge Regression, XGBoost,
and CatBoost. We also used the highly effective SHAP method for explainable artificial
intelligence to visualize the relative importance of variables to BMI changes. The predicted
results were interpreted by combining the machine learning model and SHAP. In the case of
a deep learning model, also known as a black box model, the performance of the prediction
can be high, but the interpretation can be difficult.

Therefore, a SHAP-based interpretable machine learning model was used in this study.
The advantages over the black box model include the following:

1. Improved confidence in the machine learning model, providing a clear explanation of
the results of the inference path.

2. Deriving insights by interpreting the results: extracting associations and patterns.
3. Improving overall problem solving and eliminating bias errors: debugging the way

predictions are performed can increase predictive power, and the cause of bias can be
analyzed and improved.

The integrated lifelog data analysis of walking, sleep, and weight with machine learn-
ing revealed the key variables and how walking and sleep affect body weight.
For middle-aged individuals, lifelogs can inform specifically and individually tailored
health analyses beyond simple predictions, and they can influence weight regulation
through interpretable techniques and visualization.

In this study, the most common influential variables were calories burned, number of
steps per day, distance walked per day, and sleep quality. These findings are consistent with
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those of previous studies, indicating that the number of steps [43], walking speed [44,45],
and sleep quality [46,47] affect BMI.

The analysis highlights daily calorie consumption as an essential variable for predict-
ing BMI. In the case of women’s group 1 (150–160 cm), calories burned per day, the number
of steps per day, distance walked per day, and amount of time walking at night had the
most significant effect on BMI. In women’s group 2 (160–170 cm), daily calorie consumption
by walking, total sleep time, total sleep time variability, and step variability had the highest
impact on BMI.

For men’s group 1 (165–170 cm), average morning walking speed, calorie consumption
per day, and total sleep variability had the most substantial effects on BMI. In men’s group
2 (170–175 cm), calories burned per day, distance walked per day, and the number of steps
per day had the greatest impact on BMI. Finally, in the case of men’s group 3 (175–180 cm),
gait variability, calorie consumption per day, and average walking speed had the most
significant effects on BMI.

Thus, factors such as height, diet, physical activity may affect physical changes and the
incidence of diseases in different ways [48–50]. In addition, the effects of training methods
may vary according to BMI and weight (body type) [51,52]. Experiments have found that
different variables, including walking variables, may affect each group differently.

These findings provide evidence that the factors with the most decisive influence
on BMI depend on the height and lifelog of an individual, suggesting the possibility of
developing an efficient method for personalized healthcare in the future. Although this
study has proposed various sleep and gait variables that affect BMI, it would be valuable
for a follow-up study to determine specific values or ranges for each variable to support a
healthy BMI.
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Appendix A

Table A1. Description of Variables and Derived Variables.

Name of Variables Description

AFT_AVG_SPD Average walking speed in the afternoon (4:00 p.m.–8:00 p.m.) per day

AFT_REAL_WALK_TIME The total length of time spent walking in the afternoon calculated based on the distance

AFT_WALK_DIST Distance walked in the afternoon per day

AFT_WALK_TIME The total length of time spent walking in the afternoon calculated by a Samsung
Galaxy Watch

AGE Age of user

AGE_CATEGORY_10 Age group categorized in 10 years

AGE_CATEGORY_5 Age group categorized in 5 years

AVG_SPD Average walking speed per day

BED_TIME Time when going to sleep

BED_TIME_AT_10PM_TO_12PM_FLAG Whether BED_TIME is between 10:00 p.m. and 00:00 a.m.
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Table A1. Cont.

Name of Variables Description

BED_TIME_VARIANCE The change in BED_TIME compared to the previous day

BED_TIME_VARIANCE_FLAG Whether BED_TIME_VARIANCE is less than 2 h

BMI BMI measured by a scale

BMI_INDEX Category by BMI

BMI_STATUS Weight status using BMI (underweight, normal, overweight, or obese)

CALORIE Calorie consumption per day

DATE Date

DEEP_SLEEP_RATE Deep sleep (N3 sleep) ratio

DIST_STD Standard deviation of distance walked per day

DISTANCE Distance walked per day

FAT Fat mass measured by a scale

GENDER Gender of user

HEIGHT Height of user

HEIGHT_CATEGORIZE_10 Height group categorized in 10 cm

HEIGHT_CATEGORIZE_5 Height group categorized in 5 cm

HOLIDAY Whether it is a holiday or not

LNC_AVG_SPD Average walking speed during lunchtime (11:00 a.m.–3:00 p.m.) per day

LNC_REAL_WALK_TIME The total length of time spent walking in lunchtime calculated based on the distance

LNC_WALK_DIST Distance walked during lunchtime per day

LNC_WALK_TIME The total length of time spent walking during lunchtime calculated by a Samsung
Galaxy Watch

MOR_AVG_SPD Average walking speed in the morning(6:00 a.m.–10:00 a.m.) per day

MOR_REAL_WALK_TIME The total length of time spent walking in the morning calculated based on the distance

MOR_WALK_DIST Distance walked in the morning per day

MOR_WALK_TIME The total length of time spent walking in the morning calculated by a Samsung
Galaxy Watch

MUSCLE Muscle mass measured by a scale

NAP_COUNT Number of naps in a day

NT_AVG_SPD Average walking speed at night (8:00 p.m.–00:00 a.m.) per day

NT_REAL_WALK_TIME The total length of time spent walking at night calculated based on the distance

NT_WALK_DIST Walked distance at night per day

NT_WALK_TIME The total length of time spent walking at night calculated by a Samsung Galaxy Watch

REAL_SUM_WALK_TIME The total daily walking time calculated based on the distance

REM_SLEEP_RATE REM sleep ratio

SLEEP_EFFICIENCY Sleep efficiency (the number of hours of sleep without waking up during sleep)

SPD_STD Standard deviation of average walking speed per day

STEP_COUNT Number of steps per day

STEP_STD Standard deviation of number of steps per day

SUM_WALK_TIME The total daily walking time calculated by a Samsung Galaxy Watch

TOTAL_COUNT_CONTINUOUS_WALK_
20MINUTES The total number of continuous walks for more than 20 min in a day

TOTAL_SLEEP_TIME_HOUR Total number of hours of sleep per night
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Table A1. Cont.

Name of Variables Description

TOTAL_SLEEP_TIME_VARIABILITY Standard deviation of the total number of hours of sleep per night

TOTAL_TIME_CONTINUOUS_WALK_
20MINUTES The total time of walking continuously for more than 20 min in a day

USER_CODE Distinct user code

WEEKDAY Day of the week other than Saturday or Sunday

WEEKEND Whether it is the weekend or not

WEIGHT Weight measured by a scale

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 16 
 

SLEEP_EFFICIENCY Sleep efficiency (the number of hours of sleep without waking up during 
sleep) 

SPD_STD Standard deviation of average walking speed per day 
STEP_COUNT Number of steps per day 

STEP_STD Standard deviation of number of steps per day 
SUM_WALK_TIME The total daily walking time calculated by a Samsung Galaxy Watch 

TOTAL_COUNT_CONTINU-
OUS_WALK_20MINUTES The total number of continuous walks for more than 20 min in a day 

TOTAL_SLEEP_TIME_HOUR Total number of hours of sleep per night 
TOTAL_SLEEP_TIME_VARIABILITY Standard deviation of the total number of hours of sleep per night 

TOTAL_TIME_CONTINU-
OUS_WALK_20MINUTES The total time of walking continuously for more than 20 min in a day 

USER_CODE Distinct user code 
WEEKDAY Day of the week other than Saturday or Sunday 
WEEKEND Whether it is the weekend or not 

WEIGHT Weight measured by a scale 

 
Figure A1. Importance of variables calculated using the SHAPley Additional exPlanations for 
women’s group 2. 

 
Figure A2. Importance of variables calculated using the SHAPley Additional exPlanations for men’s 
group 2. 

Figure A1. Importance of variables calculated using the SHapley Additional exPlanations for
women’s group 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 16 
 

SLEEP_EFFICIENCY Sleep efficiency (the number of hours of sleep without waking up during 
sleep) 

SPD_STD Standard deviation of average walking speed per day 
STEP_COUNT Number of steps per day 

STEP_STD Standard deviation of number of steps per day 
SUM_WALK_TIME The total daily walking time calculated by a Samsung Galaxy Watch 

TOTAL_COUNT_CONTINU-
OUS_WALK_20MINUTES The total number of continuous walks for more than 20 min in a day 

TOTAL_SLEEP_TIME_HOUR Total number of hours of sleep per night 
TOTAL_SLEEP_TIME_VARIABILITY Standard deviation of the total number of hours of sleep per night 

TOTAL_TIME_CONTINU-
OUS_WALK_20MINUTES The total time of walking continuously for more than 20 min in a day 

USER_CODE Distinct user code 
WEEKDAY Day of the week other than Saturday or Sunday 
WEEKEND Whether it is the weekend or not 

WEIGHT Weight measured by a scale 

 
Figure A1. Importance of variables calculated using the SHAPley Additional exPlanations for 
women’s group 2. 

 
Figure A2. Importance of variables calculated using the SHAPley Additional exPlanations for men’s 
group 2. 
Figure A2. Importance of variables calculated using the SHapley Additional exPlanations for
men’s group 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 16 
 

 
Figure A3. Importance of variables calculated using the SHAPley Additional exPlanations for men’s 
group 3. 

 
Figure A4. Local interpretation of arbitrary data in women’s group 2 using SHAP. 

 
Figure A5. Local interpretation of arbitrary data in men’s group 2 using SHAP. 

 
Figure A6. Local interpretation of arbitrary data in men’s group 3 using SHAP. 

References 
1. Dodge, M.; Kitchin, R. ‘Outlines of a World Coming into Existence’: Pervasive Computing and the Ethics of Forgetting. Environ. 

Plann. B Plann. Des. 2007, 34, 431–445. https://doi.org/10.1068/b32041t. 
2. Kim, D.H. Effect of Walking Exercise. Korean J. Fam. Med. 2009, 30, 329–331. https://doi.org/10.4082/kjfm.2009.30.3.S329. 
3. Luyster, F.S.; Strollo, P.J.; Zee, P.C.; Walsh, J.K. Sleep: A Health Imperative. Sleep 2012, 35, 727–734. 
4. Zheng, Y.; Manson, J.E.; Yuan, C.; Liang, M.H.; Grodstein, F.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Associations of Weight 

Gain from Early to Middle Adulthood with Major Health Outcomes Later in Life. JAMA 2017, 318, 255–269. 
5. Wu, O.; Leng, J.H.; Yang, F.F.; Yang, H.M.; Zhang, H.; Li, Z.F.; Zhang, X.Y.; Yuan, C.D.; Li, J.J.; Pan, Q.; et al. A comparative 

research on obesity hypertension by the comparisons and associations between waist circumference, body mass index with 
systolic and diastolic blood pressure, and the clinical laboratory data between four special Chinese adult groups. Clin. Exp. 
Hypertens. 2018, 40, 16–21. https://doi.org/10.1080/10641963.2017.1281940. 

6. Sepp, E.; Kolk, H.; Lõivukene, K.; Mikelsaar, M. Higher blood glucose level associated with body mass index and gut microbiota 
in elderly people. Microb. Ecol. Health Dis. 2014, 25, 22857. https://doi.org/10.3402/mehd.v25.22857. PMID: 24936169; PMCID: 
PMC4048595. 

Figure A3. Importance of variables calculated using the SHapley Additional exPlanations for
men’s group 3.



Appl. Sci. 2022, 12, 3819 14 of 16

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 16 
 

 
Figure A3. Importance of variables calculated using the SHAPley Additional exPlanations for men’s 
group 3. 

 
Figure A4. Local interpretation of arbitrary data in women’s group 2 using SHAP. 

 
Figure A5. Local interpretation of arbitrary data in men’s group 2 using SHAP. 

 
Figure A6. Local interpretation of arbitrary data in men’s group 3 using SHAP. 

References 
1. Dodge, M.; Kitchin, R. ‘Outlines of a World Coming into Existence’: Pervasive Computing and the Ethics of Forgetting. Environ. 

Plann. B Plann. Des. 2007, 34, 431–445. https://doi.org/10.1068/b32041t. 
2. Kim, D.H. Effect of Walking Exercise. Korean J. Fam. Med. 2009, 30, 329–331. https://doi.org/10.4082/kjfm.2009.30.3.S329. 
3. Luyster, F.S.; Strollo, P.J.; Zee, P.C.; Walsh, J.K. Sleep: A Health Imperative. Sleep 2012, 35, 727–734. 
4. Zheng, Y.; Manson, J.E.; Yuan, C.; Liang, M.H.; Grodstein, F.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Associations of Weight 

Gain from Early to Middle Adulthood with Major Health Outcomes Later in Life. JAMA 2017, 318, 255–269. 
5. Wu, O.; Leng, J.H.; Yang, F.F.; Yang, H.M.; Zhang, H.; Li, Z.F.; Zhang, X.Y.; Yuan, C.D.; Li, J.J.; Pan, Q.; et al. A comparative 

research on obesity hypertension by the comparisons and associations between waist circumference, body mass index with 
systolic and diastolic blood pressure, and the clinical laboratory data between four special Chinese adult groups. Clin. Exp. 
Hypertens. 2018, 40, 16–21. https://doi.org/10.1080/10641963.2017.1281940. 

6. Sepp, E.; Kolk, H.; Lõivukene, K.; Mikelsaar, M. Higher blood glucose level associated with body mass index and gut microbiota 
in elderly people. Microb. Ecol. Health Dis. 2014, 25, 22857. https://doi.org/10.3402/mehd.v25.22857. PMID: 24936169; PMCID: 
PMC4048595. 

Figure A4. Local interpretation of arbitrary data in women’s group 2 using SHAP.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 16 
 

 
Figure A3. Importance of variables calculated using the SHAPley Additional exPlanations for men’s 
group 3. 

 
Figure A4. Local interpretation of arbitrary data in women’s group 2 using SHAP. 

 
Figure A5. Local interpretation of arbitrary data in men’s group 2 using SHAP. 

 
Figure A6. Local interpretation of arbitrary data in men’s group 3 using SHAP. 

References 
1. Dodge, M.; Kitchin, R. ‘Outlines of a World Coming into Existence’: Pervasive Computing and the Ethics of Forgetting. Environ. 

Plann. B Plann. Des. 2007, 34, 431–445. https://doi.org/10.1068/b32041t. 
2. Kim, D.H. Effect of Walking Exercise. Korean J. Fam. Med. 2009, 30, 329–331. https://doi.org/10.4082/kjfm.2009.30.3.S329. 
3. Luyster, F.S.; Strollo, P.J.; Zee, P.C.; Walsh, J.K. Sleep: A Health Imperative. Sleep 2012, 35, 727–734. 
4. Zheng, Y.; Manson, J.E.; Yuan, C.; Liang, M.H.; Grodstein, F.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Associations of Weight 

Gain from Early to Middle Adulthood with Major Health Outcomes Later in Life. JAMA 2017, 318, 255–269. 
5. Wu, O.; Leng, J.H.; Yang, F.F.; Yang, H.M.; Zhang, H.; Li, Z.F.; Zhang, X.Y.; Yuan, C.D.; Li, J.J.; Pan, Q.; et al. A comparative 

research on obesity hypertension by the comparisons and associations between waist circumference, body mass index with 
systolic and diastolic blood pressure, and the clinical laboratory data between four special Chinese adult groups. Clin. Exp. 
Hypertens. 2018, 40, 16–21. https://doi.org/10.1080/10641963.2017.1281940. 

6. Sepp, E.; Kolk, H.; Lõivukene, K.; Mikelsaar, M. Higher blood glucose level associated with body mass index and gut microbiota 
in elderly people. Microb. Ecol. Health Dis. 2014, 25, 22857. https://doi.org/10.3402/mehd.v25.22857. PMID: 24936169; PMCID: 
PMC4048595. 

Figure A5. Local interpretation of arbitrary data in men’s group 2 using SHAP.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 16 
 

 
Figure A3. Importance of variables calculated using the SHAPley Additional exPlanations for men’s 
group 3. 

 
Figure A4. Local interpretation of arbitrary data in women’s group 2 using SHAP. 

 
Figure A5. Local interpretation of arbitrary data in men’s group 2 using SHAP. 

 
Figure A6. Local interpretation of arbitrary data in men’s group 3 using SHAP. 

References 
1. Dodge, M.; Kitchin, R. ‘Outlines of a World Coming into Existence’: Pervasive Computing and the Ethics of Forgetting. Environ. 

Plann. B Plann. Des. 2007, 34, 431–445. https://doi.org/10.1068/b32041t. 
2. Kim, D.H. Effect of Walking Exercise. Korean J. Fam. Med. 2009, 30, 329–331. https://doi.org/10.4082/kjfm.2009.30.3.S329. 
3. Luyster, F.S.; Strollo, P.J.; Zee, P.C.; Walsh, J.K. Sleep: A Health Imperative. Sleep 2012, 35, 727–734. 
4. Zheng, Y.; Manson, J.E.; Yuan, C.; Liang, M.H.; Grodstein, F.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Associations of Weight 

Gain from Early to Middle Adulthood with Major Health Outcomes Later in Life. JAMA 2017, 318, 255–269. 
5. Wu, O.; Leng, J.H.; Yang, F.F.; Yang, H.M.; Zhang, H.; Li, Z.F.; Zhang, X.Y.; Yuan, C.D.; Li, J.J.; Pan, Q.; et al. A comparative 

research on obesity hypertension by the comparisons and associations between waist circumference, body mass index with 
systolic and diastolic blood pressure, and the clinical laboratory data between four special Chinese adult groups. Clin. Exp. 
Hypertens. 2018, 40, 16–21. https://doi.org/10.1080/10641963.2017.1281940. 

6. Sepp, E.; Kolk, H.; Lõivukene, K.; Mikelsaar, M. Higher blood glucose level associated with body mass index and gut microbiota 
in elderly people. Microb. Ecol. Health Dis. 2014, 25, 22857. https://doi.org/10.3402/mehd.v25.22857. PMID: 24936169; PMCID: 
PMC4048595. 

Figure A6. Local interpretation of arbitrary data in men’s group 3 using SHAP.

References
1. Dodge, M.; Kitchin, R. ‘Outlines of a World Coming into Existence’: Pervasive Computing and the Ethics of Forgetting. Environ.

Plann. B Plann. Des. 2007, 34, 431–445. [CrossRef]
2. Kim, D.H. Effect of Walking Exercise. Korean J. Fam. Med. 2009, 30, 329–331. [CrossRef]
3. Luyster, F.S.; Strollo, P.J.; Zee, P.C.; Walsh, J.K. Sleep: A Health Imperative. Sleep 2012, 35, 727–734. [CrossRef] [PubMed]
4. Zheng, Y.; Manson, J.E.; Yuan, C.; Liang, M.H.; Grodstein, F.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Associations of Weight Gain

from Early to Middle Adulthood with Major Health Outcomes Later in Life. JAMA 2017, 318, 255–269. [CrossRef] [PubMed]
5. Wu, O.; Leng, J.H.; Yang, F.F.; Yang, H.M.; Zhang, H.; Li, Z.F.; Zhang, X.Y.; Yuan, C.D.; Li, J.J.; Pan, Q.; et al. A comparative

research on obesity hypertension by the comparisons and associations between waist circumference, body mass index with
systolic and diastolic blood pressure, and the clinical laboratory data between four special Chinese adult groups. Clin. Exp.
Hypertens. 2018, 40, 16–21. [CrossRef] [PubMed]

6. Sepp, E.; Kolk, H.; Lõivukene, K.; Mikelsaar, M. Higher blood glucose level associated with body mass index and gut microbiota
in elderly people. Microb. Ecol. Health Dis. 2014, 25, 22857. [CrossRef] [PubMed]

7. U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; U.S. Department of Health
and Human Services: Washington, DC, USA, 2018.

8. Public Health England. 10 min Brisk Walking Each Day in Mid-Life for Health Benefits and towards Achieving Physical Activity
Recommendations; Public Health England: London, UK, 2017.

9. Manson, J.; Greenland, P.; LaCroix, A.Z.; Stefanick, M.L.; Mouton, C.P.; Oberman, A.; Perri, M.G.; Sheps, D.S.; Pettinger, M.B.;
Siscovick, D.S. Walking compared with vigorous exercise for the prevention of cardiovascular events in women. N. Engl. J. Med.
2002, 347, 716–725. [CrossRef] [PubMed]

10. Jeon, C.Y.; Lokken, R.P.; Hu, F.B.; Van Dam, R.M. Physical Activity of Moderate Intensity and Risk of Type 2 Diabetes:
A Systematic Review. Diabetes Care 2007, 30, 744–752. [CrossRef]

11. Dempsey, P.C.; Larsen, R.N.; Sethi, P.; Sacre, J.W.; Straznicky, N.E.; Cohen, N.D.; Cerin, E.; Lambert, G.W.; Owen, N.; Kingwell, B.A.
Benefits for Type 2 Diabetes of Interrupting Prolonged Sitting with Brief Bouts of Light Walking or Simple Resistance Activities.
Diabetes Care 2016, 39, 964–972. [CrossRef]

12. Gottlieb, D.J.; Redline, S.; Nieto, F.J.; Baldwin, C.M.; Newman, A.B.; Resnick, H.E.; Punjabi, N.M. Association of Usual Sleep
Duration with Hypertension: The Sleep Heart Health Study. Sleep 2006, 29, 1009–1014. [CrossRef]

13. Cappuccio, F.P.; Taggart, F.M.; Kandala, N.-B.; Currie, A.; Peile, E.; Stranges, S.; Miller, M.A. Meta-Analysis of Short Sleep
Duration and Obesity in Children and Adults. Sleep 2008, 31, 619–626. [CrossRef] [PubMed]

14. Marshall, N.S.; Glozier, N.; Grunstein, R.R. Is Sleep Duration Related to Obesity? A Critical Review of the Epidemiological
Evidence. Sleep Med. Rev. 2008, 12, 289–298. [CrossRef] [PubMed]

15. Patel, S.R.; Hu, F.B. Short Sleep Duration and Weight Gain: A Systematic Review. Obesity 2008, 16, 643–653. [CrossRef] [PubMed]

http://doi.org/10.1068/b32041t
http://doi.org/10.4082/kjfm.2009.30.3.S329
http://doi.org/10.5665/sleep.1846
http://www.ncbi.nlm.nih.gov/pubmed/22654183
http://doi.org/10.1001/jama.2017.7092
http://www.ncbi.nlm.nih.gov/pubmed/28719691
http://doi.org/10.1080/10641963.2017.1281940
http://www.ncbi.nlm.nih.gov/pubmed/29083240
http://doi.org/10.3402/mehd.v25.22857
http://www.ncbi.nlm.nih.gov/pubmed/24936169
http://doi.org/10.1056/NEJMoa021067
http://www.ncbi.nlm.nih.gov/pubmed/12213942
http://doi.org/10.2337/dc06-1842
http://doi.org/10.2337/dc15-2336
http://doi.org/10.1093/sleep/29.8.1009
http://doi.org/10.1093/sleep/31.5.619
http://www.ncbi.nlm.nih.gov/pubmed/18517032
http://doi.org/10.1016/j.smrv.2008.03.001
http://www.ncbi.nlm.nih.gov/pubmed/18485764
http://doi.org/10.1038/oby.2007.118
http://www.ncbi.nlm.nih.gov/pubmed/18239586


Appl. Sci. 2022, 12, 3819 15 of 16

16. Knutson, K.L. Sleep Duration and Cardiometabolic Risk: A Review of the Epidemiologic Evidence. Best Pract. Res. Clin.
Endocrinol. Metab. 2010, 24, 731–743. [CrossRef]

17. Gottlieb, D.J.; Punjabi, N.M.; Newman, A.B.; Resnick, H.E.; Redline, S.; Baldwin, C.M.; Nieto, F.J. Association of Sleep Time with
Diabetes Mellitus and Impaired Glucose Tolerance. Arch. Intern. Med. 2005, 165, 863–867. [CrossRef]

18. Kakizaki, M.; Inoue, K.; Kuriyama, S.; Sone, T.; Matsuda-Ohmori, K.; Nakaya, N.; Fukudo, S.; Tsuji, I. Sleep Duration and the Risk
of Prostate Cancer: The Ohsaki Cohort Study. Br. J. Cancer 2008, 99, 176–178. [CrossRef]

19. Kakizaki, M.; Kuriyama, S.; Sone, T.; Ohmori-Matsuda, K.; Hozawa, A.; Nakaya, N.; Fukudo, S.; Tsuji, I. Sleep Duration and the
Risk of Breast Cancer: The Ohsaki Cohort Study. Br. J. Cancer 2008, 99, 1502–1505. [CrossRef]

20. Thompson, C.L.; Larkin, E.K.; Patel, S.; Berger, N.A.; Redline, S.; Li, L. Short Duration of Sleep Increases Risk of Colorectal
Adenoma. Cancer 2011, 117, 841–847. [CrossRef]

21. Wu, A.H.; Wang, R.; Koh, W.-P.; Stanczyk, F.Z.; Lee, H.-P.; Yu, M.C. Sleep Duration, Melatonin and Breast Cancer among Chinese
Women in Singapore. Carcinogenesis 2008, 29, 1244–1248. [CrossRef]

22. Verkasalo, P.K.; Lillberg, K.; Stevens, R.G.; Hublin, C.; Partinen, M.; Koskenvuo, M.; Kaprio, J. Sleep Duration and Breast Cancer:
A Prospective Cohort Study. Cancer Res. 2005, 65, 9595–9600. [CrossRef]

23. Kolstad, H.A. Nightshift Work and Risk of Breast Cancer and Other Cancers—a Critical Review of the Epidemiologic Evidence.
Scand. J. Work Environ. Health 2008, 34, 5–22. [CrossRef] [PubMed]

24. Viswanathan, A.N.; Hankinson, S.E.; Schernhammer, E.S. Night Shift Work and the Risk of Endometrial Cancer. Cancer Res. 2007,
67, 10618–10622. [CrossRef] [PubMed]

25. Hu, F. Obesity Epidemiology; Oxford University Press: Oxford, UK, 2008; ISBN 0-19-531291-0.
26. Maclure, K.M.; Hayes, K.; Colditz, G.A.; Stampfer, M.J.; Speizer, F.E.; Willett, W.C. Weight, Diet, and the Risk of Symptomatic

Gallstones in Middle-Aged Women. N. Engl. J. Med. 1989, 321, 563–569. [CrossRef] [PubMed]
27. Song, M.; Hu, F.B.; Spiegelman, D.; Chan, A.T.; Wu, K.; Ogino, S.; Fuchs, C.S.; Willett, W.C.; Giovannucci, E.L. Adulthood Weight

Change and Risk of Colorectal Cancer in the Nurses’ Health Study and Health Professionals Follow-up Study. Cancer Prev. Res.
2015, 8, 620–627. [CrossRef] [PubMed]

28. Zhan, A.; Mohan, S.; Tarolli, C.; Schneider, R.B.; Adams, J.L.; Sharma, S.; Elson, M.J.; Spear, K.L.; Glidden, A.M.; Little, M.A.; et al.
Using Smartphones and Machine Learning to Quantify Parkinson Disease Severity: The Mobile Parkinson Disease Score. JAMA
Neurol. 2018, 75, 876–880. [CrossRef] [PubMed]

29. Stankoski, S.; Jordan, M.; Gjoreski, H.; Luštrek, M. Smartwatch-Based Eating Detection: Data Selection for Machine Learning
from Imbalanced Data with Imperfect Labels. Sensors 2021, 21, 1902. [CrossRef]

30. Stark, G.F.; Hart, G.R.; Nartowt, B.J.; Deng, J. Predicting breast cancer risk using personal health data and machine learning
models. PLoS ONE 2019, 14, e0226765. [CrossRef]

31. Agarwal, A.; Saxena, A. Comparing Machine Learning Algorithms to Predict Diabetes in Women and Visualize Factors Affecting It the
Most—A Step toward Better Health Care for Women; Springer: Singapore, 2020. [CrossRef]

32. Zhang, Y.; Wang, S.; Hermann, A.; Joly, R.; Pathak, J. Development and validation of a machine learning algorithm for predicting
the risk of postpartum depression among pregnant women. J. Affect. Disord. 2021, 279, 1–8. [CrossRef]

33. Chatterjee, A.; Gerdes, M.W.; Martinez, S.G. Identification of Risk Factors Associated with Obesity and Overweight-A Machine
Learning Overview. Sensors 2020, 20, 2734. [CrossRef]

34. Pinto, K.A.; Abdullah, N.L.; Keikhosrokiani, P. Diet & Exercise Classification using Machine Learning to Predict Obese Patient’s
Weight Loss. In Proceedings of the International Congress of Advanced Technology and Engineering (ICOTEN), Taiz, Yemen,
4–5 July 2021; pp. 1–5. [CrossRef]

35. Eoghan, K. BorutaShap: A Wrapper Feature Selection Method Which Combines the Boruta Feature Selection Algorithm with Shapley Values.
(1.1); Zenodo: Geneva, Switzerland, 2020. [CrossRef]

36. Kursa, M.B.; Rudnicki, W.R. Feature Selection With the Boruta Package. J. Stat. Soft. 2010, 36, 1–13. [CrossRef]
37. Bhalaji, N.; Kumar, K.S.; Selvaraj, C. Empirical study of feature selection methods over classification algorithms. Int. J. Intell. Syst.

Technol. Appl. 2018, 17, 98–108. [CrossRef]
38. Strobl, C.; Boulesteix, A.-L.; Zeileis, A.; Hothorn, T. Bias in random forest variable importance measures: Illustrations, sources

and a solution. BMC Bioinform. 2007, 8, 25. [CrossRef] [PubMed]
39. Joharestani, M.Z.; Cao, C.; Ni, X.; Bashir, B.; Talebiesfandarani, S. PM2.5 Prediction Based on Random Forest, XGBoost, and Deep

Learning Using Multisource Remote Sensing Data. Atmosphere 2019, 10, 373. [CrossRef]
40. Voskresenskiy, A.; Bukhanov, N.; Filippova, Z.; Brandao, R.; Segura, V.; Brazil, E.V. Feature Selection for Reservoir Analogues

Similarity Ranking As Model-Based Causal Inference. In Proceedings of the Conference Proceedings, ECMOR XVII, Online,
14–17 September 2020; Volume 2020, pp. 1–9. [CrossRef]

41. National Health Insurance Service, Average Height Distribution by Province, Age, and Gender: General. Available online:
https://kosis.kr/statHtml/statHtml.do?orgId=350&tblId=DT_35007_N130 (accessed on 23 September 2021).

42. Lee, S.-J.; Kim, Y.-J.; Kim, T.-W.; Ahn, S.-J. New Evaluation Chart of Stature and Weight for Koreans. Korean J. Orthod. 2006, 36, 153–160.
43. Hollis, J.L.; Williams, L.T.; Young, M.D.; Pollard, K.T.; Collins, C.E.; Morgan, P.J. Compliance to step count and vegetable serve

recommendations mediates weight gain prevention in mid-age, premenopausal women. Findings of the 40-Something RCT.
Appetite 2014, 83, 33–41. [CrossRef]

http://doi.org/10.1016/j.beem.2010.07.001
http://doi.org/10.1001/archinte.165.8.863
http://doi.org/10.1038/sj.bjc.6604425
http://doi.org/10.1038/sj.bjc.6604684
http://doi.org/10.1002/cncr.25507
http://doi.org/10.1093/carcin/bgn100
http://doi.org/10.1158/0008-5472.CAN-05-2138
http://doi.org/10.5271/sjweh.1194
http://www.ncbi.nlm.nih.gov/pubmed/18427694
http://doi.org/10.1158/0008-5472.CAN-07-2485
http://www.ncbi.nlm.nih.gov/pubmed/17975006
http://doi.org/10.1056/NEJM198908313210902
http://www.ncbi.nlm.nih.gov/pubmed/2761600
http://doi.org/10.1158/1940-6207.CAPR-15-0061
http://www.ncbi.nlm.nih.gov/pubmed/25930050
http://doi.org/10.1001/jamaneurol.2018.0809
http://www.ncbi.nlm.nih.gov/pubmed/29582075
http://doi.org/10.3390/s21051902
http://doi.org/10.1371/journal.pone.0226765
http://doi.org/10.1007/978-981-15-1286-5_29
http://doi.org/10.1016/j.jad.2020.09.113
http://doi.org/10.3390/s20092734
http://doi.org/10.1109/ICOTEN52080.2021.9493560
http://doi.org/10.5281/zenodo.4247618
http://doi.org/10.18637/jss.v036.i11
http://doi.org/10.1504/IJISTA.2018.091590
http://doi.org/10.1186/1471-2105-8-25
http://www.ncbi.nlm.nih.gov/pubmed/17254353
http://doi.org/10.3390/atmos10070373
http://doi.org/10.3997/2214-4609.202035170
https://kosis.kr/statHtml/statHtml.do?orgId=350&tblId=DT_35007_N130
http://doi.org/10.1016/j.appet.2014.07.020


Appl. Sci. 2022, 12, 3819 16 of 16

44. Browning, R.C.; Kram, R. Effects of obesity on the biomechanics of walking at different speeds. Med. Sci. Sports Exerc. 2007, 39,
1632–1641. [CrossRef]

45. Amorim, P.; Moura, B.P.D.; Marins, J. Self selected walking speed in overweight adults: Is this intensity enough to promote health
benefits? Apunt. Sports Med. 2010, 45, 11–15.

46. Baron, K.G.; Reid, K.J.; Kern, A.S.; Zee, P.C. Role of sleep timing in caloric intake and BMI. Obesity 2011, 19, 1374–1381. [CrossRef]
[PubMed]

47. Meyer, K.A.; Wall, M.M.; Larson, N.I.; Laska, M.N.; Neumark-Sztainer, D. Sleep duration and BMI in a sample of young adults.
Obesity 2012, 20, 1279–1287. [CrossRef]

48. Marouli, E.; Del Greco, M.F.; Astley, C.M.; Yang, J.; Ahmad, S.; Berndt, S.I.; Caulfield, M.J.; Evangelou, E.; McKnight, B.;
Medina-Gomez, C.; et al. Mendelian randomisation analyses find pulmonary factors mediate the effect of height on coronary
artery disease. Commun. Biol. 2019, 2, 119. [CrossRef]

49. Nelson, C.P.; Hamby, S.E.; Saleheen, D.; Hopewell, J.C.; Zeng, L.; Assimes, T.L.; Kanoni, S.; Willenborg, C.; Burgess, S.; Amouyel,
P.; et al. CARDIoGRAM + C4D Consortium. Genetically determined height and coronary artery disease. N. Engl. J. Med. 2015,
372, 1608–1618. [CrossRef] [PubMed]

50. Cho, M.; Kim, J.Y. Changes in physical fitness and body composition according to the physical activities of Korean adolescents. J.
Exerc. Rehabil. 2017, 13, 568–572. [CrossRef] [PubMed]

51. Gorostegi-Anduaga, I.; Corres, P.; Aguirre-Betolaza, A.M.; Pérez-Asenjo, J.; Aispuru, G.R.; Fryer, S.M.; Maldonado-Martín, S.
Effects of different aerobic exercise programmes with nutritional intervention in sedentary adults with overweight/obesity and
hypertension: EXERDIET-HTA study. Eur. J. Prev. Cardiol. 2018, 25, 343–353. [CrossRef] [PubMed]

52. Rowlands, A.V.; Ingledew, D.K.; Eston, R.G. The effect of type of physical activity measure on the relationship between body
fatness and habitual physical activity in children: A meta-analysis. Ann. Hum. Biol. 2000, 27, 479–497.

http://doi.org/10.1249/mss.0b013e318076b54b
http://doi.org/10.1038/oby.2011.100
http://www.ncbi.nlm.nih.gov/pubmed/21527892
http://doi.org/10.1038/oby.2011.381
http://doi.org/10.1038/s42003-019-0361-2
http://doi.org/10.1056/NEJMoa1404881
http://www.ncbi.nlm.nih.gov/pubmed/25853659
http://doi.org/10.12965/jer.1735132.566
http://www.ncbi.nlm.nih.gov/pubmed/29114532
http://doi.org/10.1177/2047487317749956
http://www.ncbi.nlm.nih.gov/pubmed/29313359

	Introduction 
	Importance of Lifelog Analysis: Relationship between Lifelog and Diseases 
	Relationship between Walking and Disease 
	Relationship between Sleep and Disease 
	Relationship between Weight and Disease 

	The Association between Lifelog Data and BMI Using Regression Machine Learning Algorithms 
	Digital Healthcare Research Using Machine Learning and Data Generated by Smartphones and Smartwatches 
	Research on Men and Women’s Health Using Machine Learning 
	Research on Weight and Weight Change Using Machine Learning 

	Methods 
	Data Collection 
	Data Preprocessing 
	Feature Selection 
	Data Modeling 
	Evaluation 

	Results 
	Discussion 
	Appendix A
	References

