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Abstract: Numerous scholars in the scientific and management areas have been overly focused
on contemporary breakthroughs in two-dimensional objects for multiple prospective applications.
Photochemical and electrocatalytic functions of integrated circuits associated with multi-component
tools have been enhanced by designing the macro- and microstructures of the building blocks. There-
fore, the current research attempts to explore a larger spectrum of layered graphitic carbon nitrides
(g-C3N4) and their derivatives as an efficient catalyst. By executing systematic manufacturing, opti-
mization, and evaluation of its relevance towards astonishing energy storage devices, adsorption
chemistry, and remediation, many researchers have focused on the coupling of such 2D carbon
nitrides combined with suitable elementals. Hybrid carbon nitrides have been promoted as reliable
2D combinations for the enhanced electrophotocatalytic functionalities, proved by experimental
observations and research outputs. By appreciating the modified structural, surface, and physico-
chemical characteristics of the carbon nitrides, we aim to report a systematic overview of the g-C3N4

materials for the application of energy storages and environments. It has altered energy band gap,
thermal stability, remarkable dimensional texturing, and electrochemistry, and therefore detailed
studies are highlighted by discussing the chemical architectures and atomic alternation of g-C3N4

(2D) structures.

Keywords: carbon allotropes; 2D atomic structures; surface alteration; energy storage; environmental concerns

1. Introduction

Over the last several years, rapid innovations in the field of innovations and research
have enabled to upgrade the effectiveness and development of humankind, while the latest
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developments in modern scientific research have raised global survival and human life.
Nevertheless, due to their accurate handling and functionality in numerous purposes such
as photonic, pharmaceutical, and environmental implications, multi-component instru-
ments, or equipment, are becoming an essential aspect [1,2]. Notably, as every operation
requires energy in some form or another, constant demand in energy storage and conver-
sion has emerged as the most promising situation. Natural resources have been utilized
from the beginning of time, and as a result they are depleting owing to unrestricted power
consumption and use. Numerous experts in this perspective are attempting to develop an
alternative supply to handle such energy-related challenges [3,4]. They have continued to
work on multiphase sensors and systems, such as superconductors, capacitors, and solar
systems, in addition to storing and transforming photon energy into electrical energy [5–7].
Across many sectors, the use of such electronics to gradually shift in individual parts has
been encouraged, and it has been demonstrated to be fairly successful in addressing such
energy-related issues. Major advances in nanostructured materials and their promising
effects have sparked interest among researchers in the professional and technical worlds.
In this logic, the intended paragraph aims to cover a broader class of two-dimensional
materials, particularly graphitic carbon nitride (g-C3N4) [2,8,9]. The composite group
of carbon nitrides loaded with appropriate materials has been emphasized by perform-
ing a comprehensive construction, generalization, and exploration of its importance in
spectacular superconductors in recent years. By taking into account practical results, sev-
eral researchers tried to modify the carbon-based doped 2D substances to moderate their
physicochemical features, and reported their outstanding catalytic outputs [10–12]. In
the present environment, multimetallic components of such hybrid substances are being
discovered by targeting carbon nitride materials, and a significant method is developed
for manufacturing, characterization, and supercapacitor studies in material sciences and
their applications [9,12]. It is well addressed that the excellent energy gap, physical and
thermodynamic strength, and chemical resistance of these smart 2D materials have already
been recognized as a potential technology for power storage, and thus lots of research is
carried out in this particular field of materials sciences. Various physicochemical operations
were used to modify the chemical constituents and surface finish in atomically layered
materials of carbon nitrides for a spectrum of uses [13,14]. The discrete quality of surface,
opacity, and catalytic aspects for supercapacitor and environmental applications make
them desired candidates among the 2D morphologies in carbon-based materials [8,15].
While the metal and metal-doped semiconducting nanomaterials and their applications
were developed by modifying the crystal band structures and surface alteration [16,17],
these advanced nano-range materials were found to be very reliable and efficient towards
improved performance of macro- and microsystems in modern techniques and apparatus.

In other ways, a slew of new industries and companies have sprung up to develop
and produce advanced technologies, which are utilized to make fundamental building
components for humankind and everyday life. Because of the growing need for nanocom-
posites and related ingredients, chemical experiments and enterprises are springing up all
over the place. Hazardous residues, co-products, and intermediates, on the other hand,
are produced from a variety of industries and laboratories, posing a serious risk to hu-
man health as well as the environment [18,19]. Because of their extended lifecycle, toxic
effects, and erosion, organic and heavier metal-based building materials are also highly
toxic wastes. As a result, they have piqued the interest of scientists and inventors to use
innovative equipment and technologies to assess environmental challenges including water,
air, and soil qualities cleanup. The studies have revealed several ways to address these
ecological consequences, including the development of heterostructures for photocatalytic
activity, sewage disposal, and antimicrobial uses [20,21]. Terminated trash from many
sources is the primary factor in the spread of different symptoms, which has made human
existence more problematic and dangerous in recent years. As a result, people have been
able to chronicle the people’s development in improving material design and adaptation.
Multiple categories of substances are being produced at the microscopic and nanometer size
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using nanostructures and nanoscience ideas. The use of nanometer-sized components as
predicted analogs or mediators has improved the efficiency of catalytic performance in com-
plex mixtures. The architectural, photonic, and environmental characteristics of this kind
of transformed nanomaterials are considered valuable in the production of nanoelectronics,
therapeutic instruments, and atmospheric nanosensors [6,7,22]. Alkali, transitional, and
radioactive isotopes, including heterocyclic organic molecules, are among the heterostruc-
tures whose manufacture and design have been aided by major progress in physical science
and research. Diverse elemental constituents in the form of multimetallic nanostructures
have been reported and researched for their morphological, spectroscopic, and chemical
capabilities. Semiconductors such as CdO, ZnO, Fe3O4, MnO3, TiO2, SnO2, and MgO
have been used to increase physicochemical qualities [23,24]. These materials are generally
utilized and valued for their biological, microelectronics, and aerospace applications. In
comparison to bulk, their small dimensions and greater surface regions have enabled
nanoparticles to act as one of the most desirable catalytic alternatives. Doping princi-
ples might be used to modify the compositional and electronic structure of these kinds
of nanocomposites; hence, a lot of studies have been carried out in this field [25–27]. In
contrast, additional kinds of conjugated polymers have grown rapidly and evolved in the
domain of blended composite materials. Countless hybrid series of such 2D nanostructures,
such as carbon-based 2D graphene, reduced graphene-oxides, CNT, carbon nitrides (C3N4),
and MoS2, have been found and applied to resolve the energy storage and environmental
applications [18,28,29]. In this article, a systematic overview of the 2D carbon nitrides and
their derivatives is addressed, including sequential manufacturing, characterizations, uses
in energy conversion, and environmental impacts, by discussing their characteristic optical,
structural, and surface properties.

2. Developments and Engineering of g-C3N4

The g-C3N4 is a two-dimensional substance having increased nitrogen appropriate to
a given active surface area, similar to graphene. These positions are regarded as sensitive
regions of the C3N4 framework due to the electrostatic exposure, which aids in catalytic
enhancement via photogenerated electrons transmission. Novel chemical approaches could
potentially be used to change the photocatalytic efficiency at specific parameters. Due to
its good physicochemical robustness and inexpensive price, it has been classified as a soft
polymer semicrystalline framework [9,12]. The creation of advanced textiles and their dis-
tinctive behavior were investigated in order to construct macro- to nanodevices at a greater
scale. Blend compounds are created by mixing some different factors in their natural and
altered chemical forms. Carbonaceous and inorganic compounds have been utilized exten-
sively in the creation of a new type of matter, particularly for energy storage technologies
and other applications. These materials have been modified to attain the desired qualities
for diverse applications, increasing the number of researcher methodologies and pathways
to construct these 2D materials [30]. In the field of 2D materials, polymeric g-C3N4 has
emerged as the primary focus among the carbon-containing layered structures. The energy
bands of CB and VB for the g-C3N4 were studied around 2.7 eV, which is a favorable region
in visible light. The catalytic activity of such semiconducting materials fundamentally
depends upon the band gap values, and thus the g-C3N4 have an optimal energy which
could be altered for the multiple uses in a simple way. The lightweight, flexible character of
the g-C3N4 possesses strong mechanical strength and chemical stabilities in order to use as
efficient catalysts for biomedical, optoelectronics, and catalysis uses. Furthermore, g-C3N4
has the capacity to endure temperature, strong acid, and basic media. As compared to other
hybrid photocatalysts, g-C3N4 can be readily prepared by easy thermal polycondensing us-
ing simple N-rich precursors, for example, dicyanamide, cyanamide, melamine, melamine
cyanurate, and urea. These cost-effective synthesis and physicochemical properties of
g-C3N4 make it a futuristic material for multiple applications [12,31].

The characteristics of the g-C3N4 structures and functionalities could be regulated by
determining the electrical, physicochemical, and refractive functions, due to that the non-



Appl. Sci. 2022, 12, 3753 4 of 16

crystalline to crystalline form and varied compositions affect the catalytic performances.
Therefore, the manufacturing process must be moderated by changing the experimen-
tal setup during synthesis [32]. Thermolytic fusion of precursor salt, such as melamine
(C3N3(NH2)3), cyanamide, and dicyandiamide (C2N4H4, DCDA), is a common novel
approach to creating gCN compounds associated with Liebig’s melon. The ribbon-like
features are created by connected networks of heptazine (C6N7) subunits, and the produc-
tion technique produces polymer composites with a limiting constitution around that of
Liebig’s melon. The layers of C3N3 (s-triazine) units are linked via sp2-bonded N atoms.
In 1982, the composition of the original component “cyamelurine”, also known as tri-s-
triazine (C6N7H3), which contains this heptazine strong unit, was first discovered [33].
Komatsu [34] looked into Liebig’s melon and hydromelonate compounds, which he thought
could be successors to a substantially graphitic g-C3N4 substance, and assumed it would
be made up of sheets of heptazine units joined by trigonal N atoms. Later, Bojdys et al.
used DCDA to produce crystalline 2D materials in a molten salt (eutectic LiCl–KCl) solvent
solution. Proportions of C6N8.5H1.5Li0.8Cl0.2 were discovered using a mix of analysis
approaches. Extensive XRD patterns were discovered in the space group of P63cm, which
indicates an interlayer (d002) with 3.36-inch spacing.

To assign high-quality catalysts, many approaches for the synthesis of g-C3N4 and
structural modification have been used. The higher-temperature-induced polycondensation
process was usually performed in conjunction with calculations at a set time. Purified
and polymerized g-C3N4 and nitrogen-rich chemicals with flaming qualities such as urea,
melamine, thiourea, and uranic acid are frequently made using this low-cost approach [9,35].
Thermal treatment in a furnace at a temperature is favored by a community of researchers
for sequentially preparing g-C3N4, while physical and chemical methods for surface
modifications are carried out later. The outcome is often yellow with compacted solid
structures. Changes in temperature and acidic media, as well as open situations, have been
used to modify microstructures. The superconductive semiconductor g-C3N4 has been
investigated as a substance that can be transformed by changing experimental variables.
These counterparts are nitrogen-rich molecules that include reactive groups. To obtain
the desired qualities, band structures and surface modifications were made. Aside from
that, for the fabrication and engineering of polymer nanocomposites or nanosheets such as
graphene or CNTs, a variety of synthesis processes have been used [22,36]. The PVD, CVD,
and spin coating processes are particularly suited for fabricating these thinned substances
in either the platform or substrate materials. Generally, these approaches are used to create
atomic network structures under specific input conditions such as vacuum conditions, heat,
laser energies, and pulse.

3. Surface and Structural Features of g-C3N4

Due to the very effective method in the domain of light-induced inorganic oxide
semiconductors, the photocatalyst performance of g-CNs is seriously hampered. Pristine
g-CNs’ low specific surfaces and rapid photoinduced charge pairing allow a severe note
to change its architecture and banding locations. The varied geometrical patterns paired
with these g-CNs could be used to boost the quick recombination process, leading to
increased photoelectrocatalytic or electromechanical activities during catalytic reactions.
Nanocrystals in different sizes and shapes, including wires, cylindrical configurations, and
nanotubes, are employed to modify the catalytic effect of hybridized g-CNs [9,37]. The
core covered component of GCN facilitates improved results of GCN-based photocatalytic
device applications to its pp-stacked heterocyclic thicker systems of heptazine (tri-s-triazine)
or triazine heterocycles (Figure 1) [38].
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locations [38].

Important progress in the physicochemical aspects of composites such as carbon
nanotubes, graphite, and other 2D configurations are made in the form of one- and two-
carbon nitride films using appropriate processes [18,31]. Nanomaterials, g-CN, and nano-
ranged thick polyheptazine sheets were commonly used to distinguish two metal-based
semiconductors with suitable topologies. As a result, there is a huge requirement for
exfoliated GCN and its counterparts to develop promptly in extended surfaces, which
include 2D g-CN films and nanowires.

3.1. Structural and Morphological Aspects

The structure and morphology of the CN are often studied using a TEM or SEM
approach that has been used to describe the usual membranous nanosheets with many
mesoporous features. At some atmospheric conditions, polycondensation of urea is com-
monly used to create a similar atomic network structure of the CG. Pure CG frequently
has nanosheet-like architectures; however, mixed CG nanocomposites have a variety of
topologies based on the synthesis procedure. To explore the features of CN, foundation
methods such as FTIR, XRD, HRTEM, SEM, XPS, and others have been developed [22,39].
Alternatively, theoretical methodologies could be used to elucidate the electronic structure,
electrical properties, and surface characteristics of these conjugated polymers.

The interfacial and compositional content of the CN, as well as the atomic proportion
of pristine and hybrid forms, should be investigated using XPS which is strongly advisable.
As a result, a brief overview of the basic properties of CN is emphasized progressively
inside this part, utilizing appropriate methodologies. The HRTEM has previously been
shown to accurately characterize the structure, distribution, and scattering tendency of
mixed or native CN. To examine these sheet-like objects, the regulated electron beam energy
(in eV) has been tuned. The strong vacuum, full-beam power, and sample preparation
inappropriate solutions all aid in confirming the surface morphology of the CN as well as
its derivatives. HRTEM-based studies are commonly observed and could be used for core
morphological features, and as a result, this approach has become an indispensable method
for evaluating CN morphology. Wider research has been carried out to functionalize such
2D materials using chemical and physical approaches, and HRTEM, AFM, and SEM were
used to examine their topology. FTIR is also used to examine the interfacial bonding
of CN and cobalt sulfides (hexagonal sheet-like) contact. For the morphological studies,
Guan Wu and workers reported layered or sheet-like structures for the g-C3N4 synthesized
by different methods. TEM analysis were used to determine the morphology of these
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layered sheets, shown in Figure 2a, respectively [40,41]. Researchers constructed g-C3N4 by
employing a chemical route under the condensation of cyanamide as a molecular starting
precursor. The formed sample revealed 2D oriented highly ordered sheet structures of
g-C3N4 studied by SEM, shown in Figure 2b–d. However, the XRD profiles of the core
g-C3N4 (JCPDS 87-1526) clarify the crystalline nature of 2D structures, Figure 2e. The
(002) crystallographic index of g-C3N4 is related to the sharpest peaks for pure g-C3N4 at
2θ = 27.4◦. The modest signal at around 2θ = 13.1◦ relates to triazine units repeating in a
plane [41]. This crystallographic plane is ideally considered to determine the solid nature
of the synthesized graphitic carbon nitrides by several researchers. The layered structure
under nano range shows the difference in intensity as compared to bulk g-C3N4 sheets.
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3.2. Crystal Phase Confirmations

The selected area electron diffraction (SEAD) investigation is also quite significant.
The diffracted pattern during TEM investigation could also validate the crystal form in
terms of single or polycrystalline substances. Based on SAED results, the majority of the
studies were deemed to be very legitimate [42,43]. Due to the lightweight atoms involved
in carbon nitrites, diffraction patterns in 2D nanosheets are observed to be rare. Due to
the distinct diffraction patterns under the SAED pattern in TEM research, heavy metals
such as transitional, alkali, and lanthanides have been examined extensively. Understand-
ing phase formations and characteristic d-values for essential sections are aided by the
interplanar distance with diffracted spots. Furthermore, Runjia Lin [9] used the TEM to
examine the layered frameworks of these 2D films and discovered a considerable distri-
bution variation amongst functionalized carbon nitrite stacks with graphene oxides at
different molar ratios. The homogeneity of the CN and graphene-based CN is influenced by
surface-functionalized groups and solvent dispersion. Moreover, carbon–nitrides hybrids
containing other conjugated polymers such as MoS2, Co–sulfides, and Ni–sulfides were
produced and characterized using certain essential methodologies including XRD, which
was used to determine the contact between these two-layered materials [44,45].

With the use of crystallographic planes derived from high-resolution TEM, and crys-
tallographic planes in XRD, the creation of heterojunctions between 2D alternating layers
might be verified. The critical importance of these heterojunctions in enhancing work
capabilities in energy storage devices has been explored and thoroughly explained. For this
kind of carbon object, the FTIR method is also employed to detect functional active affinity.
Such approaches were used to investigate the modes of vibration of CN and functionalized
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CN (Figure 3a). The specific C–C and C–N stretched harmonics are unique to the 2D layers
in which certain FTIR wavenumber intensities are found.

1 
 

 
Figure 3. Elemental analysis of the g-C3N4; (a) C1s XPS peaks of g-C3N4; (b) N1s XPS peaks of g-
C3N4; (c) electron energy loss spectroscopy spectrum; (d) a characteristic XRD spectra of g-C3N4 [46].

3.3. Elemental Analysis: g-C3N4

Because CN has a 2D character comparable to that of a thin coating, many processes
are utilized to authenticate the layers, as previously indicated. Body, redox arrangements,
and chemical ratios are all highly valued using the XPS method, which is one of the most
reliable. XPS is utilized to analyze CN frameworks in this circumstance, with specialized
analysis conditions such as super vacuum and X-ray frequency. The likely components
of the CN may be easily discovered using scanning analysis, but for the functionalized
assembly, extraordinary scanning for the individual parts is necessary (see Figure 3b–d).

4. Significance of g-C3N4 towards Energy Storage and Environmental Impacts

Due to its excellent adsorption capacities, excellent power transfer, and huge surface
architecture, hybrid carbon nitride has aroused a lot of interest in the last decade. It also
has a low resistance and is the strongest carbon nitride allotrope at ambient temperature
due to its low resistivity and stability. As reactivity rates increase, organometallic carbide
hybrids outperform catalytically active oxides in respect of thermomechanical endurance
and oxidation stability. Processing, nanosensors, and rechargeable batteries could all benefit
from the catalytically active carbide composition [17,32,33].
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4.1. g-C3N4 for Energy Storage (Supercapacitor) Uses

Supercapacitors have sparked attention from scholars due to their high power effi-
ciency, rapid charging rate, and excellent durability. An important research difficulty in
the growth of advanced supercapacitors is the development of electro catalysts with a
layered form, high electrochemical sensitivity, high surface to volume ratio, and a simple
production procedure. Metal-loaded carbides are frequently regarded as 2D alternatives
for building electrochemical technologies due to their exceptional oxidation–reduction
and high conductivity [47,48]. Its applicability in realistic science and innovation is con-
fined, however, because of its thermodynamically stable layered architectures and reduced
reactive sites/area. Hybrid materials have the potential to effectively remedy defects in
the changed surface and characteristics of single atomic requirement analysis while also
optimizing their separate tools to increase the substance’s positive wealth [49,50].

The g-C3N4 polymers have been discovered to be particularly useful in improving the
operation of supercapacitors. Thus, Sharma Meenu et al. [51] conducted CV curves of pure
metal oxides such as ZnCo2O4 and g-C3N4@ZnCo2O4 blended electrodes. The enhanced
capacitance hits were performed at a scanning speed of 20 mVs−1 from 0.0 to 0.5 V potential.
The hybrid CN doped with ZnCo2O4 showed a greater current amplitude. The greatest
power rating of the composite g-C3N4@ZnCo2O4 electrode is 157 mAhg−1 at 4 Ag−1. At
10 Ag−1, the single electrode premised on g-C3N4@ZnCo2O4 has capacity retention of
90% after 2500 constant GCD cycles. g-C3N4@ZnCo2O4 materials surpass other carbon-
based materials due to their exceptional optical properties, electrical conductivity, and
thermally stable system. The insertion of nitrogen to g-C3N4 enhances the surface area
and capacitance while maintaining the cyclability of the manufacturing and product. As a
result, the g-C3N4@ZnCo2O4 electrode is incorporated into a hard surface apparatus for
energy storage research. The electrochemical studies of casting-produced C3N4 electrodes
were performed by Roger Gonçalves and co-authors [36] using cyclic voltammetry. A
capacitance cost of 113.7 F g−1 at 0.2 A g−1 along with an 89.2% retention were obtained after
5000 charge and discharge cycles at 3.0 A g−1 (Figure 4). The designed electrodes expressed
a remarkable specific energy value ≈ 76.5 W h kg−1 at 11.9 W kg−1 operation power. These
electrochemical findings are appreciated to lead to carbon nitride-based hybrid materials
for improved energy-based applications in optoelectronic devices and sensors.
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According to Samarjeet Singh Siwal et al. [15], CuMnO2–gCN exhibits impressive elec-
trocapacitive behavior, with good conductivity (817.85 Ag−1) and deserving rate capability
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(1000 cycles). Certain metallic elements, such as MnO2 and CuO, are price solutions for
transparency, sensitivity, and durability, to name a few further advantages, while CuMnO2
has a high surface area and homogeneous distribution, enabling additional functional
zones to be accessible. As a result, CuMnO2–gCN was used as an effective electrochem-
ically active catalyst to boost enhance efficiency, resulting in capacitance of 817.85 Ag−1

after 1000 cycles (stability). It has also been discovered that metal-based metasurfaces,
particularly modified metal-oxides, are commonly employed in these electrochemical areas
because of their increased electron mobility and hence larger voltage density. Multiphase
substances are therefore constructed and exploited to boost conductivities by modifying
the electronic structure of metal-oxides through the inclusion of appropriate ions or metals
into the electrode material. Transitional and lanthanide host materials, such as oxides and
sulfides, have been discovered to be the most desirable composition because they prevent
carrier recombination. During studies or measurements, the altered ions cause imperfec-
tions in the bulk and interface of the host nanocomposites, triggering electron transport.
Kannadasan Thiagarajan and workers [52] employed a hydrothermal technique to produce
NiMoO4/g-C3N4 as an electrocatalyst material for electrochemical capacitors systems. The
NiMoO4/g-C3N4 composites displayed a higher highest capacitive performance than na-
tive NiMoO4 (203 Fg−1) (510 F g−1). The NiMoO4/g-C3N4 hybrid electrocatalyst was also
incredibly reliable, with up to 91.8% specific capacity after 2000 charge–discharge cycles.
Ultimately, it was discovered that the capacity factor of NiMoO4/g-C3N4 is 11.3 Whkg−1.
These findings demonstrated that NiMoO4/g-C3N4 would make an excellent reactive
component for electrolytic capacitors. Veena Ragupathi and coworkers [14] created a hemi-
spheric g-C3N4 mixed MnS substance by using the sol–gel technique and discovered a
463.32 F g−1 reversible capacity with a 10 mV s1 scanning speed, with a 98.6 percent specific
capacity after 2000 cycles (Figure 5). At 0.005 A g−1 charge density, although, the g-CN
functionalized MnS had a superior 403.36 F g−1 maximum power ability.
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Likewise, MnS acted as a positive electrode and an activated carbon-based negative
electrode to create solid unsymmetrical circuits for the energy storage investigation, which
showed 573.9 F g−1 at 0.5 A g1. The particular sphere and packing properties of g-C3N4
improve electron transport while also strengthening the material’s internal structure. Thus,
the architecturally formed 2D layers can be used as electrochemical devices to boost the
supercapacitor’s functional ability when loaded with inorganic metal-based oxides, or even
sulfides. Minmin Liu et al. [22] used the pyrolysis procedure to create g-C3N4@Ni3C 2D
structures at ambient temperature. The supercapacitor performances of the developed
g-C3N4@Ni3C structures in the form of nanosheets have been excellent. The functional
ability of such graft-conjugated polymers was also proved in hydrogen generation by
NaBH4 hydrolyzed, as well as a reduction in p–nitrophenol. This method presents a fresh
method for the production of sustainable refined fuels from low-cost building ingredients.
With respect to structure, the large interfacial sites and volume help increase electrical and
chemical catalytic reduction activity. Graphene, activated carbon, C-aerogel, and CNTs are
the most often used electrode elements in EDLCs [19,22,31], while additional metal-based
frameworks are used to increase the chemical potencies in supercapacitor electrodes. Due
to their unusual characteristics, such as high SC ratings, incredible performance/energy
densities, and fast reversible electrochemical reactions at the conductive junctions, experts
have been attracted to all these metal oxides.

As a result, a research study showed that rGO, GO, pyrrole, and polyaniline, as well as
other conducting material chemicals, were employed to increase the conductance of MoS2.
Although showing tremendous progress, MoS2 and some other compounds electrical and
chemical reactivity continue to be inadequate. The compact MoS2 sheets grafted on g-
C3N4 have 2D/2D heterostructures geometries. Sufficient consistency, high surface area,
outstanding electron–donor character, cheap, and environmentally friendly nature are
some of the improved heterostructure qualities of graphitic carbon nitride [53]. Larger
charge redistribution features on the interface coupled with more electrons onto the g-C3N4
boost the substance’s conductance. Polymeric metasurfaces, which are essentially metal
nanoparticles connected to layered materials, metal-oxides, and multimetallic frameworks,
have been used in the field of science and technology in the past [54–56]. The compositional,
spectroscopy, and interface alterations of these nano-ranged substances have revealed their
beneficial spectrum and physical characteristics, approaching individual dynamics. While
the durability and specific energy distribution of double-layered capacitive substances, such
as carbon nanotubes, have been established and appreciated, the power output constraint
has also drawn a lot of interest. When superior electron capacitive components, such as
graphene, activated carbon, metal oxide, transition sulfide, or conducting polymers [57,58],
are combined with carbon nanotube-oriented fibers, the conductivity of the native fibers
can be greatly increased by maintaining the periodic features. In this context, Peng and
colleagues [59] constructed a CNT/graphene composite fiber by covering the as-prepared
MWNT assemblies with colloidal GO and spinning them into fibers. The transfer tendency
of electrons in the composite fiber is noticeably enhanced because of contact of the pi–pi
bond between the graphene oxide sheet and the carbon nanotube, and the graphene oxide
layer can reduce carbon nanotube packing and enhance ion pathways. In comparison to
naked CNT fiber (630 MPa), the chemical-reduced blended fiber seems to have a mechanical
property of 500 MPa, whereas the conductance of the fiber reinforcement can be as strong
as 450 20 S/cm. In comparison to the 5.83 F/g of the pure CNT fiber, the mixed fiber’s
computed specific capacity was 31.5 F/g, while Foroughi et al. [60] investigated a unique
type of inductive carbon nanotube–graphene hybrid fiber under electrospinning chemical-
reduced graphene within and covering the face of MWNT fiber during the drawing phase,
based on a similar principle [61]. The functionalized fiber had electrical properties of
900 50 S/cm, whereas its impact resistance, stiffness, and modulus of rupture were all
about 140 MPa, 2.58 GPa, and 6%, correspondingly. At a scanning speed of 2 mV/s, the
specific capacity was considerably enhanced to 111 F/g. The co-spun CNT-based fiber
could also improve the fundamental electrocatalytic activity as a comparison to the naked
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CNT fiber with the use of nanocrystals or nanoflakes. As a result, such nanomaterials or
equivalents have been currently widely used in the creation of sophisticated raw resources
or components for nanoelectronics and allied equipment [25,62,63].

4.2. Environmental Applications

Scientists are very interested in these materials because of their outstanding electrical
and chemical properties. Carbon nitride is found in nature in five different crystalline forms,
according to research. Along with its chemical reactivity, mobility, and sensitivity, graphitic
carbon nitride (g-C3N4) has received much interest [64,65]. The g-C3N4 is made up of
tris-triazine subunits with a lot of extra electrons and has a planar-conjugated shape [46].
Due to the obvious chemical bonding formed between g-C3N4 and metal ions, it is applied
to eliminate pollutants from wastewater. To interpret a hybrid iron-oxides nanocomposite
(Fe3O4–g-C3N4), Fe3O4 nanostructures loaded on g-C3N4 were designed by Shuangzhen
Guo et al. [46] under the ultrasonication method. They used SEM, X-ray diffraction,
vibrating sample magnetometer (VSM), Fourier transform infrared, thermogravimetric
analysis, and particle size analyzer to investigate the morphology and compositions of the
formed catalysts, and the magnetic adsorbent Fe3O4–g-C3N4 was used to extract Cd(II),
Pb(II), and Zn(II) from aqueous medium.

Adsorption in real samples: Experiments in electrolytic zinc residue percolate were
used to study the adsorption ability of as-prepared Fe3O4–g-C3N4. The effluent was made
up to conduct the adsorption studies by purifying it through a membrane filter. The
obtained adsorption capacities for the Fe3O4–g-C3N4 nanocatalysts for Cd(II), Pb(II), and
Zn(II) were 50.41, 69.38, and 82.31 mg/g, respectively (Figure 6).
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However, melamine and industrial waste residue (red mud) were taken as source
components in a one-step thermal polymerization process to create the red mud/g-C3N4
(RM–CN) composite [66]. Because of the synergistic effect of adsorption and photocatalysis,
RM–CN composites have a massive impact on the removal of organic contaminants from
sewage. The surface morphology of RM–CN was considerably enlarged, concerning
only CN, due to the inclusion of RM. The refined 0.8 percent RM–CN product (with RM
mass concentration of 0.8 wt% in precursor) exhibited considerable photodegradation
effectiveness for antibiotics and organic molecules with excellent recycling ability when
exposed under visible spectrum (Figure 7).
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Figure 7. (a) Trapping studies of active moieties throughout photocatalytic degradation of TC over
0.8% RM–CN. (b) ESR bands of % O2

− trapped by DMPO over 0.8% RM–CN sample in dark and
light irradiation [66]. Cu(I)-loaded conjugated carbon nitride structures (Cu–CNF) along with the
heteroatom N and O were structured followed by the ligand charge transfer [67]. Cu–CNF catalysts
were employed efficiently to catalyze chlortetracycline hydrochloride chemicals from the deionized
water. The elimination rate was high in the case of the river water (68.2%) corresponding to the tap
water (45.7%), and swine wastewater (45.7%) (33.1 percent). For the improved catalytic personality
of g-CN materials, Xiaohu Zhang and co-workers [68] reported fundamental characteristics by
discovering a strong asymmetric phthalocyanine (sensitizer) of graphitic carbon nitride. They used
it as efficient photocatalysts material for the production of H2 on the near-IR spectrum. The zinc
phthalocyanine derivative (Zn-tri-PcNc) associated with the chenodeoxycholic acid (CDCA) showed
a 125.2 µmol h−1 efficiency due to an increased recombination rate. It was found that the photoactivity
for H2 is increased by the activated Zn-tri-PcNc dispersed on the 2D g-C3N4 surface and photo-
induced free electrons inserted into the CB of g-C3N4, and is captured by supported co-catalyst Pt for
H2 generation on water reduction (Figure 8). Concurrently, the oxidized Zn-tri-PcNc is produced via
accepting an electron by the reagents which further excites under illumination. The photostability for
H2 creation from the Zn-tri-PcNc/g-C3N4 system was traveled on 700 nm monochromatic radiation.
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Therefore, these are some basic studies performed for wastewater learning to protect
environmental health. Additionally, numerous nanomaterials and their functionalized
phases were studied for their environmental impacts and biomedical significance due to
their modified surface, shape, sizes, and band structures [28,62,63]. In the present article,
wider information of carbon nitride-based materials is focused on including manufacturing
and their applications in medical science and environmental technologies [69–71].
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5. Summary and Conclusions

The mutual understanding of carbon nitride-based heterostructures for energy storage
and conversion is stated in this report. The features of each stage are highlighted and
explored regarding the bigger group of g-C3N4 substances. Conversely, two-dimensional
polymers such as carbon nitride, graphene, and CNTs materials have been regarded as
viable candidates, although this article focuses mostly on carbon nitride. Synthetic pro-
cesses and elements in the process are used to develop extraordinary physical and chemical
strengths and electrocatalytic activity. Moreover, these conducting polymers have found
their way into a variety of uses, mostly in power systems, and so this chapter provides
a systematic review. To improve the performance of electrochemical devices, a basic in-
vestigation of conductive polymers associated with their combinations was examined.
Comparatively, the prospective uses of carbon nitrides, as well as their combinations,
are explored, exhibiting improved energy storage capacity. Certain principles were also
explored by interface alterations, electronic structures, and compositional analysis. Be-
cause of current efficiency, two-dimensional frameworks such as graphene, CNTs, and
the modified g-C3N4 are recommended for supercapacitance usefulness. The relevance of
two-dimensional carbon nitride is explored and expanded to investigate these substances
as real and future carbon allotropes for supercapacitors applications. In conclusion, the
subject of g-CN appears to be well worth further investigation, and it is expected to yield
innovative metamaterials in the same way that related topics such as CNT structures and
carbon mixed arrays have. We anticipate that our study and findings will ignite attention in
g-CN as a promising advanced substance and will contribute to more progress throughout
this intriguing subject.
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