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Featured Application: The method presented in this paper serves to predict the consumption of
household appliances by modeling their behavior and by simulating accordingly.

Abstract: The consumption of household appliances tends to increase. Therefore, the application
of energy efficiency measurements is urgently needed to reduce the levels of power consumption.
Over the last years, various methods have been used to predict household electricity consumption.
As a novelty, this paper proposed a method of predicting the consumption of household appliances
by evaluating statistical distributions (Kolmogorov–Smirnov Test and Pearson’s X2 test). To test
the veracity of the evaluations, first, a set of random values was simulated for each hour, and their
respective averages were calculated. These were compared with the averages of the real values
for each hour. With the exception of HVAC during working days, great results were obtained. For
the refrigerator, the maximum error was 3.91%, while for the lighting, it was 4.27%. At the point
of consumption, the accuracy was even higher, with an error of 1.17% for the dryer while for the
washing machine and dishwasher, their minimum errors were less than 1%. The error results confirm
that the applied methodology is perfectly acceptable for modeling household appliance consumption
and consequently predicting it. However, these consumptions can be only extrapolated to dwellings
with similar surface areas and habitats.

Keywords: household appliances; energy efficiency; power consumption; electricity bill; photovoltaics

1. Introduction

Currently, the growth in energy consumption and the need to address the pollution
resulting from its generation are of concern to consumers and suppliers [1]. Governments
have enacted legislation on circular economy and environmental protection [2,3]. Generally
speaking, energy efficiency refers to both energy and climate policy [4]. Improving energy
efficiency in buildings can significantly reduce the environmental impact of buildings as
well as provide economic savings to consumers [5,6].

In residential buildings, household appliances consume a considerable amount of
energy, resulting in high electricity bills [7]. This consumption has an increasing trend [8,9],
despite improvements in their efficiency in recent years [10]. Households in the European
Union account for 26% of the final energy consumption, yet their share in demand response
(DR) systems is practically nonexistent [11]. Moreover, the energy consumption of refrig-
erators and freezers accounts for about half of the corresponding households [12], while
HVAC is responsible for around 20–30% [13].

To cope with this high value of energy consumption, it can be of great help to predict
or estimate how much each appliance may consume, i.e., its future behavior in those
terms. An accurate prediction of the consumption at each hour of a day can be used to
make decisions to try to reduce them as much as possible. In [14], an adaptive predictive
control algorithm, using mixed linear programming, is proposed. Moreover, in [15], a two-
stage control algorithm for the centralized management of residential loads is proposed
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to ensure their control. In [16], several regression models were established to analyze the
determinants of end-use energy consumption. Further, in [17], a microgrid model was used
to estimate the consumption of washing machines, dishwashers and dryers. Moreover,
in [18], a model for detecting the behavior of building occupants was developed to estimate
building consumption. In [19], three prediction models were proposed to estimate HVAC
consumption as a function of occupants, electrical equipment and lighting. Similarly, in [20],
a hidden Markov model was used to model a system and estimate the power values of
household appliances. In [21], an SVM-based segmentation method was performed for
dishwashers and washing machines. Moreover, in [22], a calibration method was employed
to integrate POE data. In [23], a fuzzy logic controller was employed to estimate HVAC
consumption. In [24], the authors establish a residential user evaluation system based on
an evaluation model by selecting indicators related to user characteristics and electricity
consumption data. In [25], an innovative customer preference-based appliance scheduling
framework is presented. In [26], real-time simulations are provided by using finite element
analysis programs. In [27], a multi-agent simulator capable of emulating different profiles
of consumes and equipment is proposed. In [28], a harmonic coupled dynamic admittance
matrix model based on voltage and current data was established to predict the consumption
of household appliances. In [29], a domestic energy management model that was based
on time perspective theory was developed, incorporating energy storage devices and
flexible and smart appliances. In [30], the factors associated with the variation of total daily
energy consumption by smart meters in different British households were investigated,
including weather conditions, demographics and user attitudes. In [31], a study was
conducted on the impact of teleworking in the aftermath of the COVID-19 pandemic on
air-conditioning consumption using an ordinal logistic regression model. In [32], a real-
time dynamic pricing method was proposed to determine the hourly electricity prices
and schedule the electricity consumption of smart appliances. In [33], an equivalent
thermal model of the HVAC system of a reference house was established. In [34], an
air conditioner on/off state prediction model, combined with the diversity of occupant
behavior, was established. In [35], Lasso regression was used to estimate the consumption
of electrical appliances, electric heating, cooling and lighting of building parks in Wallonia.
In [36], a Pecan Street dataset was used to group building occupants according to the
energy they consume per electro-domestic appliance in their home with a subsequent
load profile development. In [37], air-conditioning usage patterns of three climate zones
were analyzed and developed. In [38], a thermal model was developed to calculate the
regulating power provided by air conditioners. In [39], an optimal load control strategy for
air conditioners was proposed. In [40], a model was established to characterize the Spanish
electricity consumption considering typical appliances and key parameters of vulnerable
households. In [41], a model of commonly used household appliances was constructed
and a user satisfaction evaluation index was established. In [42], it was proposed to find
the optimal delay time in the most energy-consuming equipment according to the priority
of each appliance.

All of the above methodologies lack a descriptive statistical analysis of each household
appliance for each hour of the day.

As alternatives to the previous solutions, this paper proposes an evaluation of the
statistical distributions followed by each household appliance in a house [43] and, using
them, to generate random values in such a way that they are as close as possible to the real
values measured. To check the applicability of the assessment, it has been compared with
an average of sets of simulated values with the sets of measured values and, thus, proves
that the result is accurate.

All the above papers provide different forms of modeling, but none of them deal with
the statistical distributions that may follow the consumptions at each period in depth. As a
novelty, in this paper, the aim is to discover what statistical distribution the consumption
of household appliances follows in 10-min periods, from the most basic ones (such as
the normal, exponential or Weibull distribution) to the less known ones (Rayleigh or
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Generalized Pareto), applying the Kolmogorov–Smirnov test and the X2 test. To guarantee
a correct evaluation, the averages of sets of random values are compared with the averages
of real values for each hour, checking that the difference between them is acceptable.

Obtaining the statistical distribution of the power consumption of household appli-
ances can be of certain interest because: it avoids dealing with errors, the absence of data
or out-of-scale values; it may simulate data corresponding to one, three or even ten years
in order to assess all possible scenarios; it can be statistically combined with other models
in order to obtain more complex theoretical developments and, last but not least, derived
results may be obtained from the type of distribution and its parameters (mean, mode,
variance, quantiles, etc.).

This article is organized as follows: Section 2 describes the methodology applied for
the two different types of consumption to deal with, i.e., the mathematical models and
procedures used to obtain the results. Section 3 includes the information of the case study
in detail. Section 4 presents the results after applying the methodology, together with a
discussion of the results. Finally, Section 5 presents the conclusions of the work carried out.

2. Methodology

Based on the values of power consumption of different household appliances, they
are processed according to the type of consumption; whether it is continuous for a long
time or not.

2.1. Continuous Power Consumption Household Appliances

The starting data corresponds to each 10-min period of the day, from the one included in
00:00–00:10 to the one corresponding to 23:50–00:00. The distribution of consumption for each
period is evaluated. First, every power consumption set of values will be evaluated using the
Kolmogorov–Smirnov test [44] to check whether they follow a Normal distribution or not.
First, the mean (µ) and standard deviation (σ) of each sample are calculated, and a theoretical
normal cumulative distribution function, expressed in Equation (1), is used.

FO(x) =
∫ x

∞

(
1√

2πσ2
e−

1
2 (

x−µ
σ )

2
)

dx (1)

This theoretical cumulative function is compared with the observed cumulative frequency
(F̂n(x)). At first, the maximum upper difference (D+) is obtained, as in Equation (2).

D+ = max
1≤i≤n

{
F̂n(xi)− FO(xi)

}
(2)

Subsequently, the maximum lower difference is calculated (D−), as it is expressed in
Equation (3).

D− = max
1≤i≤n

{
FO(xi)− F̂n(xi−1)

}
(3)

The maximum value between the upper difference and the lower difference is the
maximum absolute difference (D) between the theoretical cumulative function and the
observed cumulative frequency, as in Equation (4).

D = max
{

D+, D−
}

(4)

D is compared with Dα, the maximum difference allowed according to the level of
significance (α) and the type of distribution. Dα, Equation (5), is calculated by checking
Tables 1 and 2 for the values of cα and k(n).

Dα =
cα

k(n)
(5)
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Table 1. Cα values according to the model and the significance.

cα A

Model 0.1 0.05 0.01

General 1.224 1.358 1.628
Normal 0.819 0.895 1.035

Exponential 0.990 1.094 1.308
Weibull n = 10 0.760 0.819 0.944
Weibull n = 20 0.779 0.843 0.973
Weibull n = 50 0.790 0.856 0.988

Weibull n → ∞ 0.803 0.874 1.007

Table 2. k(n) according to the distribution function.

Distribution k(n)

General
√

n + 0.12 + 0.11√
n

Normal
√

n− 0.01 + 0.85√
n

Exponential
√

n + 0.12 + 0.11√
n

Weibull
√

n

The significance selected for these distributions is 0.05 (95% of confidence). In Table 1,
the coefficient of significance (cα) is selected according to the model, its amount of data if
the model is Weibull and the level of the significance. The significance selected for these
distributions is 0.05 (95% of confidence).

In Table 2, the expression to calculate k(n) is selected according to the distribution,
and subsequently, this last parameter is calculated with the amount of data. In this way,
Dα is calculated.

As it can be seen, in Table 2, the expression of k(n) is different in function of the
distribution model, from Normal distribution to Weibull distribution.

In the case of D < Dα, the null hypothesis H0 of Normality is accepted so that the
corresponding distribution would follow a Normal distribution. 10-min periods whose
distribution rejects the null hypothesis of Normality are assessed in order to check if they
follow an Exponential distribution with an analogous process to the previous one. The
difference is the cumulative distribution function, expressed in Equation (6), where λ is the
rate parameter, as well as the different values of cα and the way k(n) is calculated according
to Table 2.

FO(x) = 1− e−λx (6)

Again, it is checked for the Exponential distribution condition, and the unfitted sets
are assessed against a Weibull distribution using the same process with its respective
cumulative distribution function, formulated in Equation (7), where β is the scale factor
and α is the shape factor.

FO(x) = 1− e−(βx)α

(7)

The sets of values that are still not associated with any of the three distributions tested
so far, will be subjected to an evaluation of the Lognormal, Logistic, Loglogistic, Gamma,
Generalized Pareto and Rayleigh distributions until one of these is found to be correct. The
method used for the last six mentioned distributions will be Pearson’s X2 test [45]. The
process begins with the grouping of the data in a number of classes greater or equal to five,
in such a way that they cover the whole possible range of values of the variables, and the
expected frequency Oi is calculated for each sample.

fo(x) =
1

xσ
√

2π
e(−

(lnx−µ)2

2σ2 ) (8)



Appl. Sci. 2022, 12, 3689 5 of 18

Subsequently, the probability density function of the corresponding model is cal-
culated. The Lognormal distribution is defined by Equation (8), while the Loglogistic
distribution is as Equation (9), where µl is the location factor and s is the scale factor.

fo(x) =
e
−(x−µl)

s

s
(

1 + e
−(x−µl)

s

)2 (9)

The Loglogistic, Gamma, Generalized Pareto and Rayleigh distributions are shown in
Equations (10)–(13), respectively, where λa and αd are the skewness and distribution shape
factors, respectively.

The probability density function of Loglogistic distribution is calculated by Equation (10):

fo(x) =
(xe−µl)

1
s−1

seµl
(

1 +
(
xe−µl

) 1
s

)2 (10)

Gamma distribution is defined by Equation (11):

fo(x) =
λa(λax)αd−1e−λax

Γ(αd)
(11)

Generalized Pareto distribution is expressed by Equation (12):

fo(x) =
1
s

(
1 + αd

x− µl
s

)−( 1
αd

+1)
(12)

Finally, Equation (13) defines the Rayleigh distributions:

fo(x) =
x
s2 e−

x2

2s2 (13)

If any period corresponding to a series of values cannot be represented by any of
the distributions assessed, it will be associated with the distribution corresponding to the
nearest period, because the probability of being the same is quite high.

Once all the series values have an associated distribution, the expected frequency is
calculated with the amount of data, defined in Equation (14).

Ei = n fo(xi) (14)

Finally, X2, defined in Equation (15), is calculated and compared with X2
α(k-r-1),

where k is the number of classes and r is the number of parameters on which each dis-
tribution depends. If X2 is less than or equal to X2

α(k-r-1) the null hypothesis H0 of the
corresponding distribution to be evaluated is accepted.

X2 =
k

∑
i=1

(Oi − Ei)
2

Ei
(15)

Figure 1 shows a flowchart of the sequence of evaluations carried out before the
following process.

Once all the curves have their associated distribution, a set of 300 random values
are generated for each 10-min period according to their associated distribution, and the
averages of these are compared with the averages of the real values to verify whether each
simulation is close to reality (Figure 2).
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Figure 1. Flowchart of the sequence of statistical distributions evaluations.

Figure 2. Flowchart of the comparison between random and real consumptions.

The percentage of error in each case is calculated by Equation (16):

Error =
∑
∣∣∣Simulation− Real

∣∣∣
∑ Real

(16)

2.2. Discontinuous Power Consumption Household Appliances

The number of times each household appliance is used per day is counted, as well as
the duration of each time and in which periods of the day it happens.

The washing machine, dishwasher and dryer only consume energy while they are
doing their functions. The first step consists of counting how many times each appliance
consumes per day. The duration of each time and its start hour are registered as well.

The times with the same consumption duration are grouped together and evaluated
in the same way as the continuous consumption appliances. The essential difference is
that, in the latter case, just the moments where consumption is taking place are considered,
and consequently shorter time intervals, whereas in the previous process the whole day
was evaluated.

Once the power consumption curves are associated with each distribution, the follow-
ing process is carried out:

1. Simulation of the number of power consumptions of each element, where the proba-
bility of each integer value is based on the ratio of the previous count.
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2. If the above-simulated value is greater than or equal to 1, the duration of each count
and its start time are simulated, also based on the data previously collected.

3. Simulation of 300 sets of random consumptions according to the duration of the
consumptions and their associated distribution, comparing their average value with
the average of the real values.

4. Calculation of the percentage of error by Equation (16).

Figure 3 shows a flowchart of the entire process of the treatment of the punctual
consumptions, from the different counts to the calculation of errors, including the evaluation
of distributions

Figure 3. Flowchart of the treatment of the punctual consumptions.

The simulation was carried out with the consumption data of a house, with 199 m2 and
three occupants, located in Vancouver. The extrapolation of results can be done in homes
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with an equivalent surface area, an equal number of inhabitants and a similar climatic zone.
If these conditions change, the results would be different. Thus, if the surface area was
larger, the consumption would increase. If it were a single dwelling, consumption would
be lower, on the other hand. However, the methodology proposed in this paper can be
applied if the number of consumption values available are significant and correspond to
the same appliances that have been evaluated. Moreover, in some cases, such as the HVAC,
the climate data influences the models obtained. This fact is not taken into account in this
research work but can be of interest for future work.

3. Case study

The methodology explained in the previous section was applied to the instantaneous
consumption data per second of different household appliances, extracted from [43], namely
lighting, refrigerator, HVAC, dryer, washing machine and dishwasher.

The input data are the consumption of different household appliances in a house
located in Vancouver. The powers were measured for 63 days, from 6 March 2016 to 7 May
2016. The dwelling consists of two floors, with a total of 199 m2 and three people living
in it. Before starting the statistical evaluation, the consumption was grouped according
to a 10-min period of power and then separated into three groups, i.e., working days,
Saturdays and Sundays. The last step beforehand was to distinguish between continuous
and discontinuous consumption, given that the treatment of the latter is more complex.

The reason for evaluating the 10-min periods is a matter of trade-off in accuracy and
computational cost. On one hand, in a 10-min period, an appliance is not very likely to
experience a large number of consumption changes. If it were 20 min, there is a risk of
adding a larger error, as it could cover more than two phases of operation, e.g., a dishwasher.
On the other hand, if the period is reduced to 5 min, the accuracy would increase, but
the computational cost would be doubled, as twice as many periods would have to be
modeled. Thus, a period of 10 min shows an adequate balance. The refrigerator, lighting
and HVAC consume a considerable minimum at all times, while the dryer, dishwasher and
washing machine only consume a considerable amount when they are running, thus they
are considered point loads, or discontinuous consumptions.

A summary of the type of data can be observed in Table 3, with its type of consump-
tions, days and amount.

Table 3. Summary of the evaluated appliances with their type of consumption, type of days and
amount of data.

Appliance Type of Consumption Type of Days Amount of Data

Lightning Continuous
Working days 45

Saturdays 9
Sundays 9

Refrigerator Continuous
Working days 45

Saturdays 9
Sundays 9

HVAC Continuous
Working days 45

Saturdays 9
Sundays 9

Dryer Occasional Working days 45

Washing machine Occasional Working days 45

Dishwasher Occasional Working days 45

4. Results

Figure 4 compares the simulated average values with the real average values for each
10-min period of lighting during the weekdays. In general, the trends in both graphs are
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very similar, since the off-peak hours, between 08:00 and 13:00, coincide, and the peak
hours, around 07:00, are the same.

Figure 4. Random (blue) and real (orange) average consumption of the lighting during working days.

However, there are some significant differences between the simulation and the mea-
sured situation, especially at 15:00, just at the end of the hours of minimum consumption.

The error of the simulation with respect to the measured values is 3.81%, an acceptable
value, which makes the simulation valid and perfectly close to the real situation.

Figure 5 shows the difference in lighting on Saturdays. Just as there are several more
coinciding values in the previous graph, with the same trend, there are also two or three
consumption peaks with a somewhat more significant difference than in the previous case,
which means that the error increases to 4.26%, but it is still a valid simulation that is close
to reality.

Figure 5. Random (blue) and real (orange) average consumption of the lighting during Saturdays.

In the case of Sundays, there are also slightly unequal trends between the two curves
(Figure 6), but also some significant differences in some specific points. The error produced
in this simulation is 4.27%, very close to that of Saturdays thus all the simulations for the
three lighting cases are acceptable.
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Figure 6. Random (blue) and real (orange) average consumption of the lighting during Sundays.

In the case of the refrigerator during the days of the week (Figure 7), the same trend
and generally insignificant differences can be seen, except for the first peak. In many cases,
the values are practically the same or very close. The error is 3.91%, thus the simulation is
considered successful.

Figure 7. Random (blue) and real (orange) average consumption of the refrigerator during working days.

On Saturdays (Figure 8), the simulation of refrigerator consumption is even tighter
than on weekdays. Differences are generally minimal, leading to an error of 3.33%.

For Sundays (Figure 9), the same happens as with the simulations for Saturdays, with
minimal deviations and a high coincidence. Nevertheless, the error amounts to 3.61%,
which is not very significant. The three simulation graphs for the refrigerator consumption
fit perfectly with a real situation.
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Figure 8. Random (blue) and real (orange) average consumption of the refrigerator during Saturdays.

Figure 9. Random (blue) and real (orange) average consumption of the refrigerator during Sundays.

In the case of HVAC on weekdays (Figure 10), the same general trend between the
simulation and the real values can also be observed, but in this case, there are more differ-
ences, although they are not particularly significant. These inaccuracies are responsible for
an error of 5.55%, the highest error of all simulations.

For Saturdays (Figure 11), as well as a high number of ex-actual coincidences, there
are also a few other considerably significant deviations. However, the error produced in
this case is smaller than for weekdays and drops to 4.72%.
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Figure 10. Random (blue) and real (orange) average consumption of HVAC during working days.

Figure 11. Random (blue) and real (orange) average consumption of HVAC during Saturdays.

Finally, in the HVAC simulation for Sundays (Figure 12), the trends are practically
the same and show a high number of coinciding values for weekdays and Sundays, and
consequently a lower error (4.03%). The three HVAC simulations are also considered
acceptable despite being the ones with the highest error.

In the case of the dryer during the days (Figure 13), the most frequent duration occurs
with a 40 min consumption, as can be seen in the graph. In this case, the simulation is
practically coincident with the real average, producing an error of 1.17%. The rest of the
graphs with different durations have not been included, as they are very unlikely and
therefore have low significance.
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Figure 12. Random (blue) and real (orange) average consumption of HVAC during Sundays.

Figure 13. Random (blue) and real (orange) average consumption of the dryer whose duration is
40 min during working days.

In the case of the washing machine during weekdays (Figure 14), the most frequent
consumption durations are 10 and 70 min, approximately. In this case, the simulations are
also close to the average of the real data, with errors of 1.04% and 0.78% for the 10-min and
70-min durations, respectively. Both errors are low and, therefore, valid.

For the dishwasher during weekdays (Figure 15), 30 and 40 min were the most frequent
durations. In the two cases, the errors (2.33% in 30 min and 0.78% in 40 min) are perfectively
admissible, so the two approximations are also valid.
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Figure 14. Random (blue and yellow) and real (orange and purple) averages consumption of the
washing machine, whose durations are 10 and 70 min during working days.

Figure 15. Random (blue and purple) and real (red and orange) averages consumption of the
dishwasher whose durations are 30 and 40 min during working days.

Table 4 shows a summary of the results obtained for each appliance, with the errors
for each simulation.

After the results of the contrast of simulations, the applied methodology can be con-
sidered valid to predict the consumption of any home where the appliances are the same as
those evaluated, i.e., lighting, HVAC, refrigerator, dryer, washing machine and dishwasher.
Moreover, the results are perfectly extrapolated to homes whose surface area is equivalent
to the one studied (199 m2) and the number of inhabitants is the same (three in this case).
If these characteristics change, the results would no longer be applicable. However, the
methodology can be applied in the same manner and, after a proper validation, the results
obtained would be considered valid.
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Table 4. Summary of the error values.

Appliance Type of Day Duration Error

Lightning
Working day All day 3.81%

Saturdays All day 4.26%
Sundays All day 4.27%

Refrigerator
Working day All day 3.91%

Saturdays All day 3.33%
Sundays All day 3.61%

HVAC
Working day All day 5.55%

Saturdays All day 4.72%
Sundays All day 4.03%

Dryer Working days 40 min 1.17%

Washing machine Working days 10 min 1.04%
70 min 0.78%

Dishwasher Working days 30 min 2.33%
40 min 0.78%

5. Conclusions

A ten minute period of consumption of six household appliances, based on the data
provided, was assessed and simulated based on a related distribution. The first three
appliances consume in a continuous way (lighting, refrigerator and HVAC), while the
remaining appliances consume just in some periods of the day (dryer, washing machine
and dishwasher). In order to establish the best model for each case, a methodology was pro-
posed, which consisted of checking, in order of expectance, if data could be approximated
through statistical distributions. The best results obtained, in the continuous consumption
case, have been the refrigerator, then the lightning, and finally the HVAC. While the best
results for the discontinuous consumptions were obtained for the washing machine, then
the dryer, and the dishwasher.

The simulation of the continuous consumptions can be extrapolated to any house,
as they are the most demanded appliances in most of them. For the dryer, washing
machine and dishwasher, i.e., the discontinuous ones, their use can be very varied, since
the duration can be longer or shorter. In these cases, it was decided to analyze the most
frequent durations, as they are more significant. Generally speaking, good results were
obtained and, therefore, simulation curves could also be extrapolated to other houses.
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Symbols and Acronyms

µ Mean
σ Standard deviation
FO(x) Normal cumulative distribution function
F̂n(x) Observed cumulative frequency
fo(x) Probability density function

D+ Upper difference between the observed cumulative frequency and normal cumu-
lative Distribution

D−
Lower difference between the observed cumulative frequency and normal cumu-
lative distribution

D
Maximum difference between the observed cumulative frequency and normal
cumulative distribution

Dα
Maximum tabulated difference between the observed cumulative frequency and
normal cumulative distribution

cα Coefficient of significance
k(n) Tabulated expression which determines Dα

Ei Expected frequency
Oi Observed frequency
α Level of significance
n Number of samples
λ Rate parameter
β Scale factor
α Shape factor
µl Location factor
λa Skewness shape factor
αd Distribution shape factor
X2 Chi square
X2

α(k-r-1) Tabulated chi square
DR Demand Response
HVAC Heating, ventilating and air condition
SVM Support-vector machines
POE Post Occupancy Evaluation
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36. Dongre, P.; Aldrees, A.; Gračanin, D. Clustering appliance energy consumption data for occupant energy-behavior modeling.
BuildSys 2021. In Proceedings of the 2021 ACM International Conference on Systems for Energy-Efficient Built Environments, Coimbra,
Portugal, 17–18 November 2021; ACM: New York, NY, USA, 2021; pp. 290–293.

37. Liu, H.; Sun, H.; Mo, H.; Liu, J. Analysis and modeling of air conditioner usage behavior in residential buildings using monitoring
data during hot and humid season. Energy Build. 2021, 250, 111297. [CrossRef]

http://doi.org/10.1016/j.jobe.2021.103919
http://doi.org/10.1016/j.ijepes.2021.107831
http://doi.org/10.1016/j.apenergy.2021.117971
http://doi.org/10.1016/j.enbuild.2021.111782
http://doi.org/10.1007/s00202-020-01197-y
http://doi.org/10.1016/j.enbuild.2021.111794
http://doi.org/10.1016/j.enbuild.2019.109373
http://doi.org/10.5755/j02.eie.27000
http://doi.org/10.1016/j.apenergy.2021.117052
http://doi.org/10.1016/j.apenergy.2021.116761
http://doi.org/10.1007/s42835-021-00706-8
http://doi.org/10.1080/17477778.2021.1931499
http://doi.org/10.1016/j.apenergy.2022.118759
http://doi.org/10.1016/j.est.2022.104049
http://doi.org/10.1016/j.enbuild.2022.111845
http://doi.org/10.1016/j.spc.2022.01.001
http://doi.org/10.1109/JSYST.2022.3148536
http://doi.org/10.1109/TIA.2021.3120971
http://doi.org/10.1016/j.enbuild.2021.111516
http://doi.org/10.1016/j.enbuild.2021.111535
http://doi.org/10.1016/j.enbuild.2021.111297


Appl. Sci. 2022, 12, 3689 18 of 18

38. Hua, Y.; Xie, Q.; Hui, H.; Ding, Y.; Wang, W.; Qin, H.; Shentu, X.; Cui, J. Collaborative voltage regulation by increasing/decreasing
the operating power of aggregated air conditioners considering participation priority. Electr. Power Syst. Res. 2021, 199, 107420.
[CrossRef]

39. Yang, Z.; Ding, X.; Lu, X.; Jing, J.; Gao, C. Inverter air conditioner load modeling and operational control for demand response.
Dianli Xitong Baohu yu Kongzhi/Power Syst. Prot. Control 2021, 49, 132–140.

40. Barrella, R.; Cosin, A.; Arenas, E.; Linares, J.I.; Romero, J.C.; Centeno, E. Modeling and analysis of electricity consumption in
Spanish vulnerable households. In Proceedings of the 2021 IEEE Madrid PowerTech, Madrid, Spain, 28 June–2 July 2021; pp. 1–6.
[CrossRef]

41. Wang, Z.; Li, P.; Liu, Z.; Sun, P.; Yang, B. Research on Optimal Control Strategy of Household Electricity Load. In Proceedings
of the 3rd Asia Energy and Electrical Engineering Symposium, Chengdu, China, 26–29 March 2021; IEEE: New York, NY, USA, 2021;
pp. 765–771.

42. Karamalian, D.; Moradian, M.; Heydari, S. Residential Energy Management Using Hierarchical Delay in Home Appliance. J.
Electr. Syst. 2021, 17, 77–89.

43. Makonin, S.; Wang, Z.J.; Tumpach, C. RAE: The Rainforest Automation Energy Dataset for Smart Grid Meter Data Analysis. Data
2018, 3, 8. [CrossRef]

44. Kumar, R.; Kumar, A.; Shankhwar, A.K.; Verma, A.; Kumar, V. Modelling of metereological drought in the foothills of Central
Himalayas: A case study in Uttarakhand State, India. Ain Shams Eng. J. 2022, 13, 1–14. [CrossRef]

45. Babichev, S.; Yasinska-Damri, L.; Liakh, I.; Durnyak, B. Comparison Analysis of Gene Expression Profiles Proximity Metrics.
Symmetry 2021, 13, 1812. [CrossRef]

http://doi.org/10.1016/j.epsr.2021.107420
http://doi.org/10.1109/powertech46648.2021.9494785
http://doi.org/10.3390/data3010008
http://doi.org/10.1016/j.asej.2021.09.022
http://doi.org/10.3390/sym13101812

	Introduction 
	Methodology 
	Continuous Power Consumption Household Appliances 
	Discontinuous Power Consumption Household Appliances 

	Case study 
	Results 
	Conclusions 
	References

