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Abstract: Owing to its wide range of applications, 3D object detection has attracted increasing
attention in computer vision tasks. Most existing 3D object detection methods are based on Lidar
point cloud data. However, these methods have some limitations in localization consistency and
classification confidence, due to the irregularity and sparsity of Light Detection and Ranging (LiDAR)
point cloud data. Inspired by the complementary characteristics of Lidar and camera sensors, we
propose a new end-to-end learnable framework named Point-Image Fusion Network (PIFNet) to
integrate the LiDAR point cloud and camera images. To resolve the problem of inconsistency
in the localization and classification, we designed an Encoder-Decoder Fusion (EDF) module to
extract the image features effectively, while maintaining the fine-grained localization information
of objects. Furthermore, a new effective fusion module is proposed to integrate the color and
texture features from images and the depth information from the point cloud. This module can
enhance the irregularity and sparsity problem of the point cloud features by capitalizing the fine-
grained information from camera images. In PIFNet, each intermediate feature map is fed into the
fusion module to be integrated with its corresponding point-wise features. Furthermore, point-wise
features are used instead of voxel-wise features to reduce information loss. Extensive experiments
using the KITTI dataset demonstrate the superiority of PIFNet over other state-of-the-art methods.
Compared with several state-of-the-art methods, our approach outperformed by 1.97% in mean
Average Precision (mAP) and by 2.86% in Average Precision (AP) for the hard cases on the KITTI 3D
object detection benchmark.

Keywords: 3D object detection; lidar point cloud; camera images; object detection

1. Introduction

Object detection plays an important role in an Advanced Driver Assistance System
(ADAS). Since the accuracy of the object detection in an ADAS is essential for the safety
of drivers and pedestrians, it is considered one of the most challenging computer vision
problems. The traditional object detection based on images is to transform the detection
task into a classification task by using a sliding window. These classifiers usually use
manual features and classifiers like Support Vector Machines (SVMs) [1,2]. The main
weakness of this method is that the amount of computation is very large because the
classifier must scan each position in the space. Light Detection and Ranging (LiDAR)
sensors are important for ADAS to perceive the environment and obstacles. Therefore, it
is crucial to effectively process irregular and uneven LiDAR point clouds. The classical
method [3] to process LiDAR data in 3D detection task achieved good performance. For
example, Gao et al. [3] proposed a dynamic clustering algorithm that applied an elliptical
function to adjust each position of key points. Convolution Neural Networks (CNNs) have
improved the performance of object detection because CNNs can extract useful features
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from 2D images, learn features, and classify objects. Many researchers have proposed
various neural network architectures for 2D object detection, and these architectures can
be extended for 3D object detection tasks. In [4], the authors proposed to generate specific
object proposals instead of classification by using deep learning. With the emergence
of more and more 3D object detection datasets and sensors, developing new 3D object
detection algorithms attracts more interest. Recently the majority of state-of-the-art and
popular 3D object detection methods utilize deep learning technologies.

Most existing 3D detection methods based on deep learning can be classified into three
categories in terms of representations, i.e., the point cloud-based methods [5–19], camera
image-based methods [20–23], and the point cloud and image fusion-based methods [24–32].
In general, it is not easy to achieve good performance in 3D object detection by using only
camera sensors because there is no depth information in RGB images. Thus, LiDAR sensors
and RGB-D camera sensors are extensively used to support the depth information for 3D
object detection.

In the last decade, significant progresses have been reported in 3D object detection
using RGB images and LiDAR point clouds. Rich semantic information in color and texture
can be provided by camera RGB images, whereas depth information and geometric struc-
ture features can be provided by LiDAR point clouds. Therefore, effective fusion of camera
images and LiDAR point clouds appears to be extremely beneficial for understanding 3D
objects and 3D scene construction. LiDAR sensors are commonly used in various self-
driving vehicles and robot applications to capture the surrounding 3D scene information.
Although point clouds provide depth information for environmental perception and 3D
structure understanding, LiDAR points are usually sparse and unordered. We designed an
effective fusion module to combine data from different sensors targeting a more accurate
3D object detection.

In this paper, we propose a new 3D object detection framework, Point-Image Fusion
network (PIFNet), which fuses camera image features and LiDAR point cloud features.
In fact, the problem of fusing camera and LiDAR sensors is challenging as the features
obtained from camera images and LiDAR point clouds are represented from different
points of views, i.e., camera-view and 3D world view. The information fusion is achieved
using two object detection streams. In one stream, we use PointNet++ [11] to generate the
point-wise features. In the other stream, we aim to extract the image features and generate
the strong joint Camera-LiDAR features.

The main contributions of our work can be summarized as follows.

• We designed a new 3D object detection method, PIFNet, by using the fusion of LiDAR
and camera sensors. To compensate for the sparsity and the irregularity of point clouds
for far objects, camera images can provide rich fine-grained information. The point
cloud features and image features are fused to take advantage of the complementary
characteristics of these two sensors.

• We developed an Encoder-Decoder Fusion (EDF) network to effectively extract im-
age features. To obtain the multi-scale feature maps, we used multiple-level feature
maps. The low-level feature maps have high resolution but poor semantic information
whereas the high-level feature maps have low resolution but dense semantic informa-
tion. By using this EDF module, we can obtain accurate localization information from
low-level feature maps and useful semantic classification information from high-level
feature maps.

• A fusion module is proposed to integrate the color and texture features from images
and the depth information from point clouds. Each intermediate feature map is fed
into the fusion module to integrate with its corresponding point-wise features. This
module can cope with the irregularity and sparsity of the point cloud features by
capitalizing the fine-grained information extracted from images by the EDF module.

• The experiments using our method and several other state-of-the-art methods show
that our proposed neural network architecture can produce the best results on average.
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In particular, on the KITTI dataset, PIFNet achieved 85.16% mAP (the best results) in
3D object detection and 90.96% mAP (second best results) in BEV detection.

The rest of this paper is organized as follows. In Section 2, the related works of
3D object detection are briefly reviewed. Our proposed PIFNet is presented in Section 3.
The experimental results are described in Section 4. Finally, the conclusions are given in
Section 5.

2. Related Works

In this section, we review several 3D object detection techniques.

2.1. 3D Object Detection Based on Camera Images

Recently, plenty of 3D detectors have been proposed by using camera images, such
as monocular [20,21] and stereo images [22,23]. Ma et al. [20] exploited 3D features in
the reconstructed 3D space and generated class-specific 3D object proposals by using
monocular images. Xu et al. [21] presented a framework to generate 2D region proposals
and predicted 3D locations and orientations by using the disparity map. However, it is
hard to obtain accurate 3D bounding boxes by using the methods based on the monocular
camera images because of the lack of depth information. Some methods [22,23] use stereo
images to add the depth map for 3D object detection. However, the depth information
provided by stereo images is limited and not accurate when compared to the information
by LiDAR point clouds.

2.2. 3D Object Detection Based on LiDAR

Many LiDAR-based methods are proposed in recent years. Barrera et al. [19] extended
BirdNet to BirdNet+ to perform regression of height and vertical location of the center point
of a 3D bounding box. Most LiDAR-based methods generate 3D proposals based on voxel-
wise features [8,16–18] or point-wise features [12–15]. Voxel-based point encoding methods
use 3D regular voxels against the disorder of point clouds, but they often miss precise
point positions. Yan et al. [16] developed a Sparsely Embedded CONvolution Detection
(SECOND) technique to maximize the use of 3D information. Shi et al. [18] presented a part-
aware and aggregation neural network to predict high quality 3D proposals. Alex et al. [17]
developed a PointPillars network to convert the point cloud into a stacked pillar tensor and
pillar index tensor. Deng et al. [8] voxelized to extract voxel-wise features from point cloud,
converted the 3D volumes into Bird Eye View (BEV) plane to obtain region proposals,
and employed voxel Region of Interest (RoI) pooling to refine the bounding boxes. The
LiDAR-based 3D object detectors directly utilize raw points, but the computation cost
is large. Charles R. et al. [10] introduced a pioneer, PointNet, that extracts point-wise
features by Multi-Layer Perceptron (MLP) from raw point clouds without voxelization and
developed hierarchical PointNet++ [11] that applied PointNet [10] recursively on raw point
set. Shi et al. [14] employed PointNet [10] to predict bottom-up 3D proposals and used RoI
pooling to refine them. Sparse To Dense (STD) network [15] used PointNet [10] to yield the
global features representing the geometric structure of the entire point set.

2.3. 3D Object Detection Based on the Fusion of Camera Images and LiDAR Point Clouds

To exploit the advantages of the camera and LiDAR sensors, various camera and
LiDAR fusion methods [25–27,30–32] have been proposed for 3D object detection. The
approaches proposed in [13] detected the objects in two sequential steps, where the region
proposals were generated in the first step based on the camera image, and then the LiDAR
points in the region of interest were processed in the second step to detect the objects.
However, the performance of these methods is limited by the accuracy of the camera-based
detectors. In [31], Shi et al. proposed a two-stage Multi-View 3D object detector (MV3D),
where LiDAR point clouds are projected to Bird Eye View (BEV), accurate multi-view
3D proposals are generated, and the region-wise features are extracted by using a multi-
view fusion network. Jason et al. [26] proposed Aggregate View Object Detection (AVOD)
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to integrate LiDAR BEV and camera front-view features for Region Proposal Networks
(RPNs) and a second stage detection network. However, projection methods [26,33] may
miss spatial structure information. Huang et al. [27] proposed a two-stream network
architecture EPNet and designed a LiDAR-Image Fusion module to generate the point-
wise correspondence. Liang et al. [24] presented a Multi-task Multi-sensor Fusion (MMF)
detector, where 4 tasks including 2D and 3D object detection, ground estimation, and depth
completion. Charles R. et al. developed Frustum Point-Net [30] that first used a mature 2D
detector to generate candidate boxes on images and then extracted the point clouds from
the 3D bounding frustums for box refinement. Meyer et al. [32] presented an end-to-end
detector without requiring 2D image labels to associate LiDAR points with image pixels.
Most of these methods [24,26,31,32] project the objects detected in 2D images to 3D space
and cannot fully utilize the semantic features from images. Our method can utilize more
detailed localization information from camera sensors.

3. Proposed Point-Image Fusion Network (PIFNet)

In this paper, we propose the Point-Image Fusion network (PIFNet), a two-stream 3D
detection framework aiming to exploit the point-based and image-based features more
effectively. We directly extract the point-based features from the point clouds and use the
Encoder-Decoder Fusion module to extract features from images.

3.1. Two Stream Network Architecture

Our two-stream network consists of a geometric stream and a semantic stream. As
shown in Figure 1, the geometric stream and the semantic stream produce the point-based
features and RGB image features, respectively. We developed a fusion module to effectively
fuse the point-based features and image features. A multi-level fusion module is used to
enhance the discriminative feature representations in multiple scales.

Figure 1. The overall architecture of PIFNet.

As illustrated in Figure 1, PIFNet consists of two parts, a point cloud feature extraction
stream and an image feature extraction stream. In the image feature extraction stream,
camera images are fed into the Encoder-Decoder Fusion (EDF) module. In this module, the
image is passed through convolution and deconvolution layers, and the four feature maps
obtained from the decoder will be integrated with a corresponding point-wise feature by
the fusion module. In the point cloud feature extraction stream, the LiDAR point cloud
is processed by a series of Set Abstraction (SA) modules and Feature Propagation (FP)
modules. Each output obtained by the SA module will be fused with the corresponding
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camera image features. Considering the tradeoff between the performance and computation
time, we use 4 pairs of SA layers and FP layers to extract point-wise features. The fused
features are used to generate accurate 3D proposals.

3.1.1. Image Feature Extraction Stream

The camera RGB images are processed by an Encoder-Decoder Fusion (EDF) module
as shown in Figure 2. The EDF module consists of a set of convolution and deconvolution
layers. The encoder module uses four convolution blocks to reduce the resolution of the
feature maps. Then, the feature maps in the decoder are up-scaled via deconvolution layers
and then combined with the corresponding feature maps of the same resolution in the
encoder through element-wise accumulation.

Figure 2. Encoder-Decoder Fusion (EDF) module architecture.

In the encoder module, the low-level feature maps have high resolution but poor
semantic features. On the contrary, the high-level feature maps have rich sematic features
but low resolution. The EDF module operates on the camera images and effectively extracts
the semantic features and fuses the low-level feature maps and high-level feature maps to
achieve good performance.

The encoder module consists of a series of convolutional blocks. Specifically, each
convolutional block consists of two 3 × 3 convolution layers and is followed by a batch
normalization layer and a ReLU activation function. Each convolution block produces a
feature map Em (m = 1, . . . , 4). The decoder module consists of a series of deconvolution
layers with successively increasing resolution. Each deconvolution module produces a
feature map Fn (n = 1, . . . , 4). E4 = F4 and Fn have an increased resolution than that of
the previous feature maps Fn+1, for n = 1, 2, 3. We exploit the abundant texture provided
by camera images by using the EDF module and fed the four feature maps into the fusion
module to associate with point-wise features.

3.1.2. Point Cloud Feature Extraction Stream

The point cloud feature extraction stream takes LiDAR point clouds as input and
generates the 3D proposals. Considering the tradeoff between the performance and com-
putation time, the geometric stream uses four pairs of Set Abstraction (SA) layers [11] and
Feature Propagation (FP) layers [11], for point-wise feature extraction. For the convenience
of description, the outputs of SA and FP layers are denoted as Si and Pi (I = 1,2,3,4), re-
spectively. As shown in Figure 1, the point feature map Si is combined with the semantic
image feature Fi in our fusion module. In addition, the point feature P4 is further enriched
by the multi-scale image feature functional units to obtain a compact and discriminative
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feature representation, which is then fed to the detection modules for foreground point
segmentation and 3D proposal generation.

3.2. Fusion Module

To merge the two streams, we developed an image-guided feature fusion module, as
shown in Figure 3. The fusion module has two inputs: lidar features and image features.
The fusion module consists of a convolution block for LiDAR features, a deconvolution
block for image features, and an element-wise fusion block.

Figure 3. The fusion module architecture.

We can easily associate image features with LiDAR features by using the fusion
module. Specifically, we use a 3 × 3 CONV layer and a ReLU activation function as a point-
wise feature processor. The point-wise feature processor takes LiDAR point clouds and the
camera images under the same resolutions and produces the point-wise correspondence
between them. A 2 × 2 deconvolution layer and a ReLU activation function are used in
the image feature processor. The point-wise features and the image features are fused by
element-wise consumption to obtain fusion features. Finally, we apply a 3 × 3 convolution
and a ReLU activation function to resize the feature.

3.3. Training Loss

A multi-task loss function is used to train our neural network, PIFNet. Following
EPNet [27], the total loss function is defined as the summation of training objectives for
the two-stream Region Proposal Network (RPN) and the refinement network. The loss
function can be formulated as follows,

Ltotal = Lrpnr + Lrcnn (1)

where Lrpn is the loss of RPN network, and Lrcnn is the loss of refinement network.
Both of them adopt a similar optimization goal, to minimize classification loss, regres-

sion loss and Consistency Enforcing (CE) loss, i.e.,

Lrpn = Lcls + Lreg + λLce (2)

where Lcls is the classification loss, Lreg is the regression loss, and Lce is the CE loss.
The focal loss is used as the classification loss to balance the positive and negative

samples. We use the same parameters, α = 0.25 and γ = 2.0 as in [27] in the following
equation. For a bounding box, the network needs to regress its center point (x, y, z), size (l,
h, w), and orientation θ. We directly calculate the Y-axis offset to the ground truth and the
size of the bounding box (h, w, l) with a smooth L1 loss [33]. As for the X-axis, the Z-axis,
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and the orientation θ, we adopt the bin-based regression loss. The loss functions can be
written as follows,

Lcls = −α(1− ct)
γlogct (3)

Ltotal = Lrpn + Lrcnn Lreg = ∑
u∈x,z,ϑ

E
(

bu, b̂u

)
+ ∑

u∈x,y,z,h,w,l,ϑ
S(ru, r̂u) (4)

where E and S denote the cross-entropy loss and the smooth L1 loss, respectively. The
parameter ct is the probability of the point, in consideration, belonging to the ground
truth category. The parameters b̂u and r̂u represent the ground truth of the bins and the
residual offsets.

Semi-supervised learning requires full mining of the value of unlabeled data. As a kind
of semi-supervised learning, the core idea of the Consistency-based method is to reduce
the consistency loss. For unlabeled data, the model should make consistent predictions.

We use a Consistency Enforcing (CE) loss [27] to ensure the consistency between the
localization confidence and the classification confidence, so that boxes with high localization
confidence possess high classification confidence. The consistency enforcing loss can be
written as follows,

Lce = − log
(

C ∗ Area(D ∩ G)

Area(D ∪ G)

)
(5)

where D and G represent the predicted bounding box and the ground truth bounding box.
C denotes the classification confidence for the predicted bounding box. To optimize this
loss function, the classification confidence and location confidence (i.e., IoU) should be
maximized. Therefore, boxes with large overlaps have high classification possibilities and
are kept in the Non-Maximum Suppression (NMS) procedure. The CE loss aims at ensuring
the consistency between the localization and the classification to assist the NMS procedure,
keeping more accurate bounding boxes.

4. Experimental Results
4.1. Datasets and Processing Platform

The KITTI dataset [34] is one of the most popular datasets and is frequently used in 3D
detection for autonomous driving. There are 7481 training samples and 7518 test samples in
the KITTI dataset, where the training samples are divided into the train split (3712 samples)
and the validation split (3769 samples). We compare our method with state-of-the-art
methods using the test split.

The experiments are performed on a standard computer under Ubuntu 16 with a core
i7-6850k 3.6 GHz Central Processing Unit (CPU) with 16 GB random-access memory and a
graphics processing unit (GPU), NVIDIA Titan RTX, for training and testing. Our codes
are built on Pytorch which requires a Compute Unified Device Architecture (CUDA) and
CUDA deep neural network library (cuDNN).

4.2. Implementation Details

The architecture of 3D backbone and 2D backbone follows the design in EPNet [28].
The two-stream RPN takes both the LiDAR point clouds and the camera images as input.
For each 3D scene, the range of LiDAR point clouds is [−40, 40], [−1, 3], [0, 70.4] meters
along the X (right), Y (down), and Z (forward) axis in the camera coordinate, respectively.
The orientation θ is in the range of [−π, π]. As the input for the image stream, 16,384 points
are subsampled from the raw LiDAR point cloud data, which is the same as in EPNet [27].
The image stream takes images with a resolution of 1280× 384 as input. We train the model
for around 50 epochs with a batch size of 24 in an end-to-end manner.

4.3. Experiments on KITTI Dataset

We evaluated our PIFNet on KITTI Dataset following the common protocol to report
the Average Precision (AP) of class Car with 0.7 (IoU) threshold. Table 1 presents quantita-
tive results on the KITTI test set [34] for several state-of-the-art methods. Our proposed
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method (PIFNet) outperforms multi-sensor-based methods MV3D [31], F-Point Net [30],
MMF [24], and EPNet [27] by 20.96%, 14.31%, 6.48%, and 3.94% in terms of 3D average
mAP. The results for other methods are brought from the KITTI leaderboard [34].

Table 1. Comparisons with state-of-the-art methods on the testing set of the KITTI dataset (Cars). L
and R represent the LiDAR point cloud and the RGB image.

Method Modality
3D Detection BEV Detection

Easy Mod. Hard mAP Easy Mod. Hard mAP

Point RCNN L 86.96 75.64 70.70 77.77 92.13 87.39 82.72 87.41

Fast Point R-CNN L 85.29 77.40 70.24 77.76 90.87 87.84 80.52 86.41

PV-RCNN L 90.25 81.43 76.82 82.83 94.98 90.65 86.14 90.59

Voxel RCNN L 90.90 81.62 77.06 83.19 - - - -

MV3D L + R 74.97 63.63 54.00 64.20 86.62 78.93 69.80 78.45

F-Point Net L + R 82.19 69.79 60.59 70.85 91.17 84.67 74.77 83.54

MMF L + R 88.40 77.43 70.22 78.68 93.67 88.21 91.99 91.29

EPNet L + R 89.81 79.28 74.59 81.22 94.22 88.47 83.69 88.79

PIFNet (Ours) L + R 92.53 83.03 79.92 85.16 95.89 89.08 87.91 90.96

In Table 1, our method showed the best results with mAP of 85.16% in 3D detection.
The second best method was EPNet [27] with mAP of 81.22%.

One can observe that the proposed PIFNet has achieved the significant performance
gains over other camera-LiDAR fusion-based detectors in the KITTI leaderboard. In par-
ticular, our approach improved the average mAP by up to 4.27% compared to that of
EPNet [27], the best published fusion-based method so far. While PIFNet outperforms
the MMF [24] for easy and moderate cases in BEV detection, MMF [24] showed the best
performance for the hard case. Compared with Lidar-only methods, PIFNet also out-
performs most of 3D detectors except PV-RCNN [6] for the hard case in BEV detection.
Since PV-RCNN [6] combines the point-wise feature and voxel-wise feature, it might have
stronger Lidar feature.

Furthermore, we evaluated the inference time on a GPU board, and the running time
is 0.21 s per frame on average. In Table 2, the running times are compared with several
other methods which are based on the fusion of Lidar point clouds and camera images.
The time-consuming is a bit longer than other methods because our network utilizes rather
a large number of intermediate parameters and features.

Table 2. Running time comparisons with several camera-LiDAR fusion-based methods.

Methods Running Time (s/frame)

MV3D 0.36

F-Point Net 0.17

MMF 0.08

PIFNet (Ours) 0.21

4.4. Ablation Study

To explore the contribution of each PIFNet component, ablation experiments are
performed, and the results are summarized in Table 3. We removed the EDF module and
fusion module, one by one, to verify their effectiveness.
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Table 3. Effectiveness of EDF module and fusion module.

Method Modality
3D Detection BEV Detection

Easy Mod. Hard Easy Mod. Hard

PIFNet + Fusion L + R 89.22 81.79 79.15 91.73 87.41 87.00

PIFNet + EDF L + R 91.45 82.28 79.46 93.01 87.96 87.13

PIFNet + Fusion + EDF L + R 92.53 83.03 79.92 95.89 89.08 87.91

The fusion module can utilize the point-wise features and image-wise features by
combining the two features to achieve good performance. The EDF module effectively
extracted image features and boosted the performance more than that of the fusion module.
It is also possible to apply our EDF module and fusion strategies to other detectors to
improve their performance.

To explore the effect of the number of fusion modules on the object detection per-
formance, we compared mAP values of architectures with different number of fusion
modules. The performance results for 3 architectures with 3, 4, and 5 fusion modules are
summarized in Table 4. In the experiments, the depth of EDF and the number of SA/FP
layers are adjusted accordingly. As shown in Table 4, the architecture with larger number
of fusion modules shows improved performance. When the number of fusion modules
is increased from 3 to 4, mAP is improved by 1.73. However, when the number of fusion
modules is increased from 4 to 5, mAP is improved only by 0.05, while the training time is
increased significantly from 73 h to 116 h. Therefore, we choose 4 fusion modules in our
normal architecture.

Table 4. Optimization of the number of fusion modules.

#Fusion Modules 3D Detection mAP Training Time (Hour)

3 83.43 51

4 85.16 73

5 85.21 116

4.5. Discussion

In our approach, we developed an Encoder Decoder Fusion module to extract the
image features and a fusion module to integrate the two stream features for accurate 3D
object detection. The EDF module can fuse the low-level feature maps with high resolution
and high-level feature maps with dense semantic information. The fused feature maps
have accurate localization information and rich color and texture information. The fusion
module is applied against the irregularity and sparsity of the point cloud, and thus, our
PIFNet can outperform other state-of-the-art methods tested.

5. Conclusions

In this research, we have proposed a two stream Point-Image Fusion network (PIFNet)
for 3D object detection to solve the problem of inconsistency between the localization and
classification. We focus on fusing the depth information from point clouds generated by
a Lidar and the semantic information from images generated by a camera. In order to
generate the multiple scale feature maps, the Encoder-Decoder Fusion module has been
designed to effectively extract image features, such as color and texture features. In addition,
we align different modalities using a fusion module to generate accurate 3D proposals.

Extensive experiments demonstrated that our PIFNet can achieve good performance.
Particularly, PIFNet has achieved an average mAP of 85.16% on the KITTI dataset, which is
an 1.97% improvement over the previous best performance. In future works, we plan to
explore more accurate methods for real-time 3D object detection solutions.
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