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Abstract: With the improvement of the living standards of the residents, it is a very important and
challenging task to continuously improve the accuracy of PM2.5 (particulate matter less than 2.5 µm
in diameter) prediction. Deep learning-based networks, such as LSTM and CNN, have achieved
good performance in recent years. However, these methods require sufficient data to train the model.
The performance of these methods is limited for the sites where the data is lacking, such as the
newly constructed monitoring sites. To deal with this problem, an improved deep learning model
based on the hybrid transfer learning strategy is proposed for predicting PM2.5 concentration in
this paper. In the proposed model, the maximum mean discrepancy (MMD) is used to select which
station in the source domain is most suitable for migration to the target domain. An improved
dual-stage two-phase (DSTP) model is used to extract the spatial–temporal features of the source
domain and the target domain. Then the domain adversarial neural network (DANN) is used to find
the domain invariant features between the source and target domains by domain adaptation. Thus,
the model trained by source domain site data can be used to assist the prediction of the target site
without degradation of the prediction performance due to domain drift. At last, some experiments
are conducted. The experimental results show that the proposed model can effectively improve the
accuracy of the PM2.5 prediction at the sites lacking data, and the proposed model outperforms most
of the latest models.

Keywords: PM2.5 prediction; transfer learning; domain adversarial neural network; dual-stage
two-phase model

1. Introduction

With the rapid development of industrialization and urbanization in recent decades,
the PM2.5 emissions of developing countries have increased substantially. Serious PM2.5
pollution has caused many adverse effects on economic activities. For example, as of
2015, for every 5 µg/m3 increase in PM2.5 concentration, all other things being equal,
GDP per capita will decrease by about 2500 China Yuan [1]. Therefore, how to accurately
predict PM2.5 concentration becomes more and more important. The commonly used
prediction methods can be divided into two categories: statistics and machine learning
algorithms. Statistical methods predict air quality by applying statistics-based models, such
as the autoregressive integrated moving average (ARIMA) model [2–4], multiple linear
regression (MLR) model [5–7], and generalized additive model (GAM) [8–10]. However,
the earlier linear models described above assume that the relationship between variables
and target labels is linear, which is not suitable for nonlinear and unstable air quality
prediction problems.

In order to overcome this limitation, researchers began to adopt nonlinear machine
learning methods. For example, Yang et al. [11] used support vector regression (SVR) to
predict the PM2.5 concentration in Beijing and verified that the accuracy of the proposed
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model was better than that of other methods. Li et al. [12] proposed a stacked automatic
encoder (SAE) model for air quality prediction and demonstrated that the model exhibited
a better performance than linear models such as ARIMA. Feng et al. [13] used the set of
back-propagation neural networks (BP) to predict daily biomass combustion pollutant
emissions. Zhang et al. [14] used the genetic algorithm (GA) combined with the artificial
neural network (ANN) to predict local indoor air quality with two ventilation models.
Although the nonlinear machine learning methods have achieved satisfactory performance
in predicting air pollution, they are unable to learn from the long-term effects of air
pollution, because their models are shallow networks with few model parameters. The
generalization ability of these models to complex prediction problems is limited.

To solve the problem of models with fewer parameters, people have started to use
deep neural networks recently, which have been used widely in image processing, natural
language understanding, and so forth [15–18]. For example, Seng et al. [19] proposed a
multi-output multi-index supervised learning comprehensive prediction model (MMSL)
based on long-term and short-term memory (LSTM) to predict the overall air quality in
Beijing. Yan et al. [20] used the CNN-LSTM model based on spatial–temporal clustering to
predict the air quality of Beijing in multi-sites. Experiments show that CNN-LSTM and
LSTM generally have a better performance than the BP neural network. Feng et al. [21]
proposed a method based on WRF/RNN to predict the air pollutants in Hangzhou over the
next 24 h. Qin et al. [22] proposed a dual-stage attention-based recurrent neural network
(DA-RNN), where the attention mechanism is used in the input stage of the encoder and
decoder, so that the most relevant input features can be selected adaptively. Liu et al. [23]
proposed a dual-stage two-phase attention-based recurrent neural network (DSTP-RNN),
where a DSTP-based structure was used to enhance the spatial correlation of an exogenous
series, and a two-stage attention mechanism was used to generate stable response weights.
However, this method only uses the data of one site without considering the influence
of the data of other sites on the model. To solve the above problems, in our previous
work [24], an improved attention-based dual-stage two-phase fully connected (DSTP-FC)
model was proposed to improve the accuracy of PM2.5 concentration prediction, where
an exogenous series correlation method is used to calculate the relationship between the
target series and the exogenous series, and the PM2.5 concentrations are predicted by a
modified DSTP model.

Although advanced deep learning methods can get good results in air quality pre-
diction, these deep learning-based methods all need enough historical datasets to train
the models. For datasets with very little data, these methods do not provide very good
prediction results. To solve the above data shortage problem, Ma et al. [25] proposed a
transfer learning-based bidirectional long short term memory (TL-BiLSTM) network to
predict the air quality of new stations lacking data. This method transfers the knowledge
learned from the existing air quality monitoring stations to the new monitoring stations to
improve the prediction accuracy of the new stations. Fong et al. [26] proposed a transfer
learning model combining LSTM and RNN to predict the concentration of air pollutants.
Their method inputs the data of all source domain sites into the model for pretraining,
then adds the number of network layers to input the data of the target domain to train
and predict the air quality of the target domain. Fang et al. [27] proposed a hybrid deep
migration learning strategy based on long and short-term memory (LSTM) and domain
adversarial neural networks (DANN), where the temporal features of the source and target
buildings are extracted by LSTM, and DANN is used to find the domain invariant features
between the source and target buildings through domain adaptation.

The above-mentioned methods have achieved satisfactory performance in the case of
new site data shortages, but there are still some problems that should be further studied.
For example, the temporal feature extractors of these models are all based on LSTM, which
treat all input features equally and fail to pay attention to the important features. The
TL-BiLSTM model is a single-site migration, and for the case where the source domain has
multiple sites, it is not known which site in the source domain is selected for migration. The
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LSTM-RNN model inputs the data of all source domain sites into the model for pre-training,
which is unsuitable when the number of source sites is large, because this method will
input a lot of redundant data, resulting in the over-fitting and calculation problems [28].

To deal with these problems above, an improved hybrid transfer learning-based deep
learning model is proposed in this paper for PM2.5 concentration prediction. When the
amount of data in the target domain is small, the model cannot be well trained only by
using the data in the target domain. If the transfer learning-based method is used, the
model trained on the source domain data is not applicable to the target domain data, when
the source and target domain data have different distributions. Thus, the motivation of
this study is to use the domain adaptive migration learning method to find the domain
invariant characteristics between the source domain and the target domain, and to use the
data of the source domain and the target domain to predict the PM2.5 concentration in the
target domain with fewer data.

The main contributions of this paper are summarized as follows: (1) An improved
hybrid transfer learning model with a dual-stage two-phase model (DSTP) and a domain
adversarial neural network (DANN) is proposed; (2) The maximum mean discrepancy
(MMD) is introduced into the air quality prediction based on transfer learning, which is
used to select which station in the source domain is most suitable for migration to the
target domain; (3) An improved dual-stage two-phase (DSTP) model is used to extract the
spatial–temporal features of the source domain and the target domain. Various experiments
on several cities in China are conducted, and the results verify the efficiency and the
generalization ability of the proposed method.

This paper is organized as follows: Section 2 describes the proposed method and
presents the structure of the proposed deep learning-based model; Section 3 presents the
experiments and results; Section 4 discusses the performance of different feature extractors,
the generalization ability and the robustness of the proposed method, and the setting of
hyperparameters; Section 5 provides the conclusion and possible future research directions.

2. Proposed Model

In this paper, a hybrid transfer learning model is proposed. The input of the model
includes historical air quality and meteorological data of source and target domains. Firstly,
the source domain site selection method based on MMD is used to find the source domain
site closest to the target domain. Then the data of the two sites are input into the improved
DSTP model together. A feature extractor based on the DSTP model is used to extract the
spatial–temporal features of training data from source and target site data. The obtained
spatial–temporal features are input into the domain classification model and the regression
prediction model, respectively. In this paper, a domain adversarial neural network (DANN)
is used to find the domain invariant features between the source domain and the target
domain through adversarial domain adaptation of DSTP feature extractor and domain
classifier. Finally, the regression prediction model based on the fully connected layer is
used to predict the values of the source and target sites. The test data of the target site
are input into the pre-trained DSTP-DANN model for PM2.5 concentration prediction.
The framework of the proposed model is shown in Figure 1, which will be described in
detail below.

Remark 1. The method presented in this paper is different from those that fine-tune by freezing
the first few layers of the model. This method uses the domain adaptation of an adversarial neural
network to conduct transfer learning. DANN combines domain adaptation and feature learning in
a training process, so that the features of domain invariance can be predicted. Then, the proposed
transfer learning-based model trained by source domain site data can be used to assist in predicting
target site data without degradation of the prediction performance due to domain drift.
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Figure 1. Framework of the proposed model.

2.1. Site Selection for Source Domain Based on MMD

Because there are many source domain sites, it is necessary to measure the distribution
distance between source domain sites and target domain sites, and select the source domain
sites closest to the target domain sites. Recent studies have proved that the maximum
mean discrepancy (MMD) in the regenerative kernel Hilbert space is an effective method
for estimating the distance between two distributions [29]. Based on two distributed
samples, the average difference between two samples corresponding to f can be obtained
by subtracting the function mean of different samples, and MMD is the maximum value
of the average difference. For the convenience of calculation, the square form of MMD
is generally adopted. The process of using MMD to estimate the difference between two
domains is as follows.

The source domain site data in a given source domain is denoted as:

Ds = (x1, x2, . . . , xn), (1)

where x represents the source domain site data and n represents the source domain site
data number. The target site data in the target domain is denoted as:

Dt = (z1, z2, . . . , zm), (2)
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where z represents the target domain site data and m represents the target domain site data
number. The nonlinear mapping function in the Hilbert space of the regenerative kernel is
denoted as φ. Then the squared form of MMD is defined as follows:

MMD2
H =‖ 1

n ∑n
i=1 φ(xi)−

1
m ∑m

i=1 φ(zi) ‖2 . (3)

The difference in distribution between two domains is the distance between the two
data distributions. The smaller the MMD value, the closer the two domains are. Currently,
MMD has been widely used in transfer learning algorithms [30–32]. The proposed method
is used to select the source domain site that is most suitable for migration to the target
domain site by calculating the similarity between the source domain and the target domain
based on MMD.

2.2. Spatial-Temporal Features Extraction Based on DSTP

The center site is the site to be predicted, and the best matching site of the center site is
determined by the exogenous series correlation method. The main reason to use this DSTP
model is that a stable attention weight can be obtained by the DSTP model, which uses a
dual-stage attention mechanism in the encoder stage. Thus, temporal and spatial features
can be extracted simultaneously [24].

Given all sites’ data, each site contains n exogenous series and a target series (series to
be predicted). Within the window size SW of the central site collection, the k-th exogenous
series is represented by:

xk = (xk
1, xk

2, . . . , xk
SW

)T ∈ RSW . (4)

All exogenous series within window size SW are represented by:

X = (x1, x2, . . . , xSW )T ∈ Rn×SW . (5)

The target series is represented by:

Y = (y1, y2, . . . , ySW )T ∈ RSW . (6)

In this study, the encoder adopts a two-stage attention mechanism, which aims to
study the spatial correlation between the exogenous series of the central site collection,
its matching sites’ exogenous series and target series. Specifically, the spatial correlation
between the exogenous series of the central site collection and the exogenous series of the
matching sites is studied in the first stage of attention. In the second stage of attention, the
weighted features are studied again, that is, the spatial correlation among the exogenous
series of the central site collection, its target series and matching sites’ target series. Thus,
the two-stage spatial mechanism ensures that the learned spatial correlations are stable.
The decoder is a temporal attention mechanism designed to learn the temporal correlation
among the encoder hidden state, the target series of the central site collection, and the
target series of the matching site.

2.2.1. First Stage of Attention

The data from the central site and its matching sites are input into the model together,
which can be used to study the exogenous series relationships between them and can
improve the accuracy of predicting PM2.5 concentrations. The exogenous series correlation
method is used to find matching sites. Given the k-th feature xk of the central site collection
at time t, the k-th feature x(best)

k of the exogenous series of the best matching site can be
obtained by the exogenous series correlation method [24]. The spatial correlation between
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the exogenous attributes of the learning central site collection and the matching site in the
input attention mechanism is:

f k
t = vT

f tanh
(

W f

[
h f

t−1 : s f
t−1

]
+U f xk + M f x(best)

k

)
, (7)

where [∗ : ∗] is a concatenation operation, and v f ∈ RSW , W f ∈ RSW×2m, U f , M f ∈ RSW×SW

are the parameters to learn; h f
t−1 ∈ Rm and s f

t−1 ∈ Rm are the hidden state and unit state of
the encoder LSTM unit at the previous time. After f k

t is calculated, the Softmax function is
used to normalize to get the attention weight αk

t . αk
t is determined by h f

t−1, s f
t−1, the k-th

feature xk of the current input, and the k-th feature x(best)
k of the best-th matching site, which

measures the importance of the k-th feature at time t. x̃t is the combination of all features at
moment t, which is defined as follows:

x̃t =
(

α1
t x1

t , α2
t x2

t , . . . , αn
t xn

t

)T
. (8)

Then, the hidden states h f
t−1 and x̃t are input into the LSTM layer to update the hidden

state of the current moment, and x̃t is input into the attention of the second stage.

2.2.2. Second Stage of Attention

This module aims to learn the spatial correlation between the exogenous series and
the target series of the central site collection and the target series of the matching sites.
The specific method is to combine the target series of the central site collection with the
exogenous series of the corresponding time and add the target series of the best matching
site. The attention weights for the input attention mechanism are as follows:

sk
t = vT

s tanh(Ws
[
hs

t−1 : ss
t−1
]
+Us

[
x̃k : yk

]
+ Msy(best)

k ), (9)

where vs ∈ RSW , Ws ∈ RSW×2q, Us ∈ RSW×SW , Ms ∈ RSW are the parameters to be learned.
hs

t−1 ∈ Rq and ss
t−1 ∈ Rq are the hidden state and unit state of the encoder LSTM unit at

the previous time; and q is the hidden size in the second attention module.
After sk

t is calculated, it is normalized by Softmax function to get βk
t . The corresponding

target variable yk is connected to the k-th attribute x̃k to form a new vector zk, namely:

zk =
[

x̃k : yk
]
∈ R(n+1)×SW . (10)

Note that the weight βk
t measures the importance of zk at the moment t, and any

attribute value at any time has its corresponding weight:

z̃t =
(

β1
t z1

t , β2
t z2

t , . . . , βn+1
t zn+1

t

)T
. (11)

Then, hs
t−1 and z̃t are input into the LSTM layer to update the hidden state hs

t at the
current moment, and hs

t is input into the temporal attention stage.

2.2.3. Decoder with Temporal Attention

The decoder with temporal attention can adaptively select the encoder hidden state
most relevant to the target series by weighting the encoder hidden state. The encoder with
spatial attention outputs the hidden state, and the decoder learns the temporal relations of
the hidden state through the attention mechanism within a window size SW . Based on the
hidden state hd

t−1 ∈ Rp and unit state sd
t−1 ∈ Rp of the decoder LSTM unit at the previous

time, the attention weight of each encoder hidden state in the attention module at the
moment t can be calculated. The attention weights for the temporal attention mechanism
are as follows:
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di
t = vT

d tanh
(

Wd

[
hd

t−1 : sd
t−1

]
+ Udhs

i + bd

)
, (12)

where vd, bd ∈ Rp, Wd ∈ Rq×2p, Ud ∈ Rp×p are parameters to learn; p is the hidden size
of the third attention module, and hs

i ∈ Hs is the i-th encoder hidden state of the second
attention module. After di

t is calculated, it is normalized by Softmax function to get γi
t. The

context vector ct is defined as follows:

ct =
SW

∑
j=1

γ
j
th

s
j . (13)

The temporal relationship between all the hidden state of the central site collection
and the target series of matching sites is again learned by concatenating the target series of
matching sites:

ỹt−1 = W̃T[yt−1 : ct−1] + b̃ + H̃Ty(best)
t−1 , (14)

where W̃T ∈ Rq+1 and b̃, H̃T ∈ R are the parameters that map the connection to the size
of the hidden state of the decoder. Then, ỹt−1 and hd

t−1 are input into the LSTM layer to
update the hidden state hd

t at the current moment. The final multi-step prediction formula
is as follows:

ySW+1, . . . , ySW+τ = vT
y

(
Wy

[
hd

t : ct

]
+ by

)
+ b′y, (15)

where Wy ∈ Rp×(p+q) and by ∈ Rp are parameters that map concatenation to the size of

the decoder hidden state;
[

hd
t : ct

]
∈ Rp+q represents the concatenation of the decoder

hidden state and the context vector; vy ∈ Rτ×p is the weight and b′y ∈ Rτ is the deviation,
where τ is the time steps to predict in the future. The linear function produces the final
prediction result.

2.3. DSTP-DANN Based on Transfer Learning

Figure 2 shows the proposed DSTP-DANN structure based on transfer learning (de-
fined as TL-DSTP-DANN). The TL-DSTP-DANN structure consists of three main compo-
nents: feature extractor, regression predictor, and domain classifier. The feature extractor
is based on the improved DSTP model (see Section 2.2), and the regression predictor and
domain classifier are both fully connected layers.

The training optimization loss of the TL-DSTP-DANN model includes regression loss
and domain classification loss. The regression loss for PM2.5 prediction is defined as the
mean squared error:

Li
y(θ f , θy)=

1
n

n

∑
i=1

(yi − yi
′)

2, (16)

where n is the batch size of training data; yi and yi
′ represent the actual and predicted

values of PM2.5, respectively. The loss for domain label classification is defined as the
dichotomous cross-entropy:

Li
d(θ f , θd) =

1
n

n

∑
i=1

li log
1
l′i
+

1
n

n

∑
i=1

(1− li) log
1

1− l′i
, (17)

where li and li
′ represent the actual domain label and the prediction domain label, respec-

tively. In this study, we set the source domain label to 0 and the target domain label to 1.
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Figure 2. The proposed TL-DSTP-DANN structure. (1) Feature extractor: The feature extractor G f
is used to extract the temporal and spatial features of the input time-series data. (2) Regression
predictor: The purpose of the regression predictor Gy is to find the mapping between the extracted
spatial–temporal features and PM2.5 concentrations based on the source and the target domain data.
(3) Domain classifier: The domain classifier Gd distinguishes whether the extracted features come
from the source or target domain.

In the training process, to obtain domain invariant features, the distribution of two
features is as similar as possible. The parameter θ f of feature mapping is found to max-
imize the loss of the domain classifier, and at the same time, the parameter θd of the
domain classifier is found to minimize the loss of the domain classifier. The minimum and
maximum change between losses cannot be directly realized by gradient update in the
back-propagation process of neural networks. The difference between these two losses is
achieved by inserting a gradient reversal layer (GRL) between the feature extractor and the
domain classifier.

In this paper, DANN is used to search for domain-invariant features between source
domain and target domain through the domain adaptation of DSTP feature extractor and
domain classifier. The main reason for using the DANN is that it can combine domain
adaptation and feature learning in a training process, so that the parameters learned can be
directly applied to the target domain without reducing its prediction accuracy due to the
domain deviation [27].

The idea of this paper is very similar to the generative adversarial networks (GANs).
The generating model G: Equivalent to a feature extractor, the goal is to make the domain
classifier not correctly identify the domain labels (the two feature distributions should be
as similar as possible). The discriminant model D: Determine whether a label is the label
of the target domain, and the target is to distinguish whether the extracted features come
from the source domain or the target domain. GANs is implemented by the competition
between G and D.

During the training process, the two models G and D can be enhanced simultaneously
by competing with each other. Because of the existence of discriminant model D, G can
learn the similar features of the two distributions well without a lot of prior knowledge
and prior distribution, and finally make the data generated by the model achieve the
effect of faking the truth (that is, D cannot distinguish whether the features extracted by
G come from the source domain or the target domain, so G and D reach a certain Nash
equilibrium [33]).

In the proposed TL-DSTP-DANN model, GRL acts as a constant transform during
forward-propagation, gaining gradients at the latter level and changing its sign during



Appl. Sci. 2022, 12, 3597 9 of 18

backward propagation. In particular, GRL can be regarded as a pseudo function Rβ, and
the following equations are its forward and backward propagation processes:

Rβ(x) = x (18)

dRβ

dx
= −βQ, (19)

where Q is a unit matrix; β is a positive hyperparameter, which realizes the trade-off
between regression loss and domain classification loss, and the setting of β refers to [34].
Because the difference between the regression loss and the domain classification loss is
relatively large, the model loss is the sum of the regression loss and the domain classification
loss. The GRL layer is followed by the domain classifier, and a hyperparameter is set in the
GRL layer to achieve a balance between two loss functions.

In this paper, the source domain site data is denoted as Ds = (
[
x1, ys

1
]
, [x2, ys

2], . . . ,
[xn, ys

n]), where xi and ys
i represent the source domain site’s exogenous data and target

data, respectively, n represents the source domain data number. The target domain site data
are denoted as Dt =

([
z1, yt

1
]
,
[
z2, yt

2
]
, . . . ,

[
zm, yt

m
])

, where zi and yt
i represent the target

domain site’s exogenous data and target data, respectively, m represents the target domain
data number. The expression of the final objective “pseudo-function” is:

L(θ f , θy, θd) = A + B + C + D (20)

A =
1
n

n

∑
i=1

Ly

(
Gy

(
G f

(
xi; θ f

)
; θy

)
, ys

i

)
(21)

B =
1
n

n

∑
i=1

Ld

(
Gd

(
Rβ

(
G f

(
xi; θ f

))
; θd

)
, li
)

(22)

C =
1
m

m

∑
i=1

Ly

(
Gy

(
G f

(
xi; θ f

)
; θy

)
, yt

i

)
(23)

D =
1
m

m

∑
i=1

Ld

(
Gd

(
Rβ

(
G f

(
zi; θ f

))
; θd

)
, li
)

, (24)

where θ f , θy, θd denote the network connection weights of the feature extractor, regression
predictor and domain classifier, respectively; G f , Gy, Gd represent the feature extractor,
regression predictor and domain classifier, respectively. The gradient descent method is
used to update the learning weights in the TL-DSTP-DANN model, which is expressed
as follows:

θ f ← θ f − µ

(
∂Li

y

∂θ f
− β

∂Li
d

∂θ f

)
(25)

θy ← θy − µ
∂Li

y

∂θy
(26)

θd ← θd − µ
∂Li

d
∂θd

, (27)

where µ represents the learning rate. The pseudo-code of the proposed TL-DSTP-DANN
training process is shown in Algorithm 1.
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Algorithm 1 TL-DSTP-DANN model training process.

Input: source domain site data Ds, target domain site data Dt
Output: Parameters of the model θ f ,θy,θd

1: for i = 1→ n do
2: Forward:
3: Calculate the regression loss Li

y(θ f , θy) by Equation (16)
4: Calculate the loss of domain label classification Li

d(θ f , θd) by Equation (17)

5: Calculate the loss of “pseudo-function” L
(

θ f , θy, θd

)
by Equation (20)

6: Backward:
7: Calculate gradient

∂L(θ f ,θy ,θd)
∂θ

8: Update:
9: Update the network weight parameter θ by Equations (25)–(27)

10: end for
11: return θ f , θy, θd

3. Experiments
3.1. Experiment Setting and Data Source

The dataset used in this paper was collected by Microsoft Research’s Urban Air
project [35]. We select datasets related to Beijing and Tianjin to evaluate the proposed TL-
DSTP-DANN neural network. The distribution of monitoring sites in Beijing and Tianjin
is shown in Figure 3, where the red points are all the sites in Beijing, and the black point
is the Tianjin site to be predicted. For reasons of data collection, the historical data of the
Tianjin site are only one month, and the historical data for the Beijing sites are from 1 May
2014 to 30 April 2015 (1 year, 8759 data). Because the data of Tianjin site are very few, the
training effect is not good if they are directly used. This paper investigates how to use data
migration learning from all sites in Beijing to predict PM2.5 concentrations at the Tianjin
site. The dataset collects air quality records from 36 sites in Beijing and 1 site in Tianjin.
Each air quality record contains six pollutants: PM2.5, PM10, SO2, NO2, CO and O3. Each
weather record contains seven items: time, weather, temperature, pressure, humidity, wind
speed, and wind direction. Table 1 shows the details of the datasets used in this paper.
There are very complex relationships among these factors [28]. It is the main reason why
the deep learning-based method is used in this study.

Table 1. Dataset summary.

Attribute Source Site Target Site

District Beijing of China Tianjin of China
Time Range 1 May 2014–30 April 2015 30 March 2015–30 April 2015

Number of Sample 8759 745
Number of Site 36 1

Standard Deviation 81.23 49.78
Mean Value 84.73 76.66

The first 75% of the Tianjin site is selected as the training data, and the remaining 25%
as the test data. For data from the Beijing stations, because PM2.5 data from individual
stations are highly correlated, consecutive missing values greater than one row are filled in
using the IDW interpolation [36] method based on the PM2.5 concentrations at adjacent
stations. If the consecutive missing values are less than two rows, the linear interpolation
method is used. For the data from the Tianjin site, linear interpolation is used directly.
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Figure 3. Distribution of monitoring sites in Beijing and Tianjin, the red points are all the sites in
Beijing, and the black point is the Tianjin site to be predicted.

For proving the effectiveness of the proposed method for stations with fewer data, the
TL-DSTP-DANN network is used to model the data and predict the PM2.5 concentration
for the 3rd hour in the future. Appropriate hyperparameters are set to the model to produce
the best performance. The prediction time step is set to 8. In order to use all source domain
data and target domain training data, the batch sizes are set to 275 and 18 for the source and
target domain data, respectively. A back-propagation algorithm is used to train all models,
with regression losses for PM2.5 prediction as MSE loss functions and losses for domain
label classification defined as dichotomous cross-entropy loss functions. During training,
small-batch stochastic gradient descent is used combined with the Adam optimizer, setting
the upper limit of the training period to 120, and the learning rate to 0.001. Each attention
module uses a layer of LSTM network, where the hidden state of LSTM network is set to
the same, that is, m = p = q = 128. In order to improve the prediction accuracy, we use the
minimum-maximum normalization method given in the formula for normalization:

x =
x−min

max−min
(28)

For evaluating the effectiveness of the method, three metrics are used in the experiment,
including the root mean square error (RMSE), the mean absolute error (MAE), and the
mean absolute percentage error (MAPE). These three metrics are often used to evaluate
the performance of the deep learning-based prediction methods [25,36], which are defined
as follows:



Appl. Sci. 2022, 12, 3597 12 of 18

RMSE =

√
1
n

n

∑
i=1

(
yi − y′i

)2 (29)

MAE =
1
n

n

∑
i=1

∣∣yi − y′i
∣∣ (30)

MAPE =
1
n

n

∑
i=1

∣∣yi − y′i
∣∣

yi
, (31)

where yi is the true value and yi
′ is the predicted value. The smaller the value of these three

indicators, the higher the prediction accuracy and the better the performance of the model.

3.2. Model Comparison

In this paper, we use some state-of-the-art models to test the superiority of the pro-
posed model (TL-DSTP-DANN). In these comparison experiments, the hyperparameters
of the compared models are set as following principle: For the models that provided the
hyperparameters, we use the original hyperparameters directly. Otherwise, we adjust the
hyperparameters to achieve the best performance. The compared models are introduced
as follows.

TL-LSTM: LSTM is used to learn from the long-term dependence of PM2.5, and transfer
learning is applied to transfer the features of the source domain to the target domain.

TL-BiLSTM [25]: the TL-BiLSTM model is proposed to predict the air quality of new
stations lacking data. This approach uses data from existing sites to pre-train the Stacked
BiLSTM model. Then, freeze the first few hidden layers of the basic model, and fine-tune
the remaining hidden layers using the data of the newly-built sites.

TL-DSTP [24]: This method uses an improved DSTP model to transfer source domain
site data to assist in predicting PM2.5 concentrations at target domain sites.

The results of the proposed model compared to the baselines are shown in Table 2. As
can be seen from the results in Table 2, the combined results of TL-BiLSTM outperform
TL-LSTM, indicating that the accuracy of transfer learning experiments using the Stacked
BiLSTM model is better than that of LSTM. Meanwhile, the combined results of the TL-DSTP
model outperform the TL-BiLSTM, indicating that transfer learning using the improved
DSTP model is better than the BiLSTM. Compared with the model TL-DSTP, the proposed
TL-DSTP-DANN model reduces 13.09%, 8.90%, and 13.04% in MAE, RMSE, and MAPE,
respectively. The results show that the proposed model have good prediction performance
for the PM2.5 concentrations at target domain sites with less data.

Table 2. Results of comparison between the proposed method and baselines.

Methods MAE RMSE MAPE

TL-LSTM 21.80 26.26 0.43
TL-BiLSTM 17.40 20.94 0.33

TL-DSTP 13.52 17.53 0.23
TL-DSTP-DANN 11.75 15.97 0.20

To verify the performance of the proposed method, the true and predicted values of
PM2.5 concentrations at the Tianjin site predicted by the four models from 23 April 2015 to
30 April 2015 are shown in Figure 4. As can be seen from the figure, compared with the
TL-DSTP and TL-DSTP-DANN models, the predicted values of TL-LSTM and TL-BiLSTM
models are quite different from the true values. At the same time, the error between the
predicted value and the true value of the TL-DSTP-DANN model is smaller than that of
TL-DSTP.
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Figure 4. Performance comparison of four models for predicting PM2.5 concentration at Tianjin site.

4. Discussion
4.1. Comparison of Different Feature Extractors

The TL-DSTP-DANN structure proposed in this study uses the DSTP model as the
feature extractor. CNN, LSTM, and BiLSTM are then used as feature extractors in combina-
tion with the DANN module, and the regression predictor and domain classifier are left
unchanged to verify that the DSTP model is the most accurate as a feature extractor. In the
TL-CNN-DANN model, the convolution layer and the pooling layer are used to extract
features of the input time series. The LSTM model is used as the feature extractor in the
TL-LSTM-DANN model, and the BiLSTM model is used as the feature extractor in the
TL-BiLSTM-DANN model. The experimental accuracy of four different feature extractors
combined with the DANN module is shown in Table 3.

Table 3. Accuracy comparison of different feature extractors combined with DANN for PM2.5 prediction.

Methods MAE RMSE MAPE

TL-CNN-DANN 19.68 23.05 0.39
TL-LSTM-DANN 14.70 18.51 0.27

TL-BiLSTM-DANN 13.36 16.55 0.25
TL-DSTP-DANN 11.75 15.97 0.20

The results show that the TL-CNN-DANN model is the worst because CNN is more
suitable for extracting spatial features. The TL-LSTM-DANN model performs better than
TL-CNN-DANN because the LSTM model can better extract temporal features of long
time series than the CNN module. The TL-BiLSTM-DANN model performs better than the
TL-LSTM-DANN because the BiLSTM considers the information contained in subsequent
time series to adjust modeling and computation. The TL-DSTP-DANN model has the best
performance compared to other DANN-based structures, mainly because DSTP can extract
spatial–temporal features. The models using different feature extractors to predict PM2.5
concentrations at the Tianjin site are shown in Figure 5, from which it can be seen that the
TL-DSTP-DANN model has the smallest error between the predicted and true values.
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Figure 5. Prediction of PM2.5 concentrations at Tianjin site using models with different feature extractors.

4.2. Test of Generalization Ability for Different Regional Sites

The previous experiment was to transfer data from Beijing to Tianjin. Because Tianjin
and Beijing are very close, the effect of transfer learning is not universal. Cities farther
away from Beijing are now selected as the target domains to verify the generality of the
proposed method. In this study, the PM2.5 concentration in Guangzhou was predicted by
transfer learning from the Beijing sites data. The details of the dataset in Guangzhou are
as follows: the time range and the number of the samples are the same as those of Tianjin
site. The standard deviation and mean value of the dataset in Guangzhou are 22.48 and
37.02, respectively. To facilitate comparison, we intercepted the Guangzhou site at the same
point in time as the previous target domain. Seventy-five percent of the target domain
data are used for training, and the remaining 25% of the samples are used for testing. The
interpolation of missing values is the same as that in Section 3.1. The experimental results of
using different models to predict PM2.5 concentrations in Guangzhou are shown in Table 4.

Table 4. Performance of different models in predicting PM2.5 concentrations in Guangzhou.

Methods MAE RMSE MAPE

TL-LSTM 18.68 24.72 0.38
TL-BiLSTM 16.13 20.99 0.30

TL-DSTP 13.45 19.89 0.21
TL-DSTP-DANN 12.20 17.84 0.20

The results in Table 4 show that the indicators of TL-DSTP-DANN are the best, indi-
cating that the proposed method has good generalization ability. The true and predicted
values of PM2.5 concentrations at the Guangzhou site predicted using different models are
shown in Figure 6. It can be seen from the figure that compared with the TL-LSTM and
TL-DSTP-DANN models, the predicted and true values of the TL-BiLSTM and TL-DSTP
models in 24–72 h are quite different. However, the predicted results of the TL-LSTM
model in 120–168 h are not ideal, while TL-DSTP-DANN is relatively ideal for predicting
PM2.5 concentration in Guangzhou. Therefore, the comprehensive performance of the
TL-DSTP-DANN model is the best.
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Figure 6. Prediction of real and predicted PM2.5 concentrations at Guangzhou station using differ-
ent models.

4.3. Cross Validation Experiment

Cross-validation or Monte Carlo simulation method can be used to evaluate the
robustness of the model [37] . In this study, a five-fold cross-validation experiment is
conducted to further test the robustness of the proposed method (see [38] for details). Since
the data are too few, the early stopping strategy is adopted to prevent overfitting, and the
maximum batch of early stopping is 30. In this cross validation experiment, the target
dataset is divided into six subsets. Then, the first subset is used to predict the second
subset, the first two subsets are used as the training set to predict the third subset, and so
on in a similar fashion. The average value of the results of all subsets is used as the final
evaluation. The experimental results of the cross validation are as follows: MAE = 13.67,
RMSE = 17.98, and MAPE = 0.22. The results show that the proposed method can achieve
good prediction results, when the training data are too few, which mean that the proposed
model has good robustness.

4.4. Setting of Hyperparameters

The main hyperparameters in the proposed model are the batch size of source domain
data and target domain data, time step and hidden state size of LSTM. Most of the hyper-
parameters can refer to our previous work [24] and the related literature [27]. Here, just the
time step is discussed, which is the hyperparameter closely related to the proposed model.

Reasonable setting of the time step has a great influence on experimental accuracy
and speed. The larger the value of time step is, the more the characteristics of the sample
it contains. However, the influence of past data on the current PM2.5 concentration will
become weaker and weaker with the increase of the time step. If the time step is too
large, it will lead to the reduction of the experimental accuracy. At the same time, the
time of experimental training will increase with the increase of the time step. To get an
appropriate setting of the time step, some experiments are conducted. The experimental
results corresponding to different time steps are shown in Figure 7. It can be seen from the
figure that the comprehensive performance of the proposed model is the best when the
time step is 8. Thus, the time step is set as 8 in this study.
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Figure 7. The experimental results corresponding to different time steps.

5. Conclusions and Future Work

In this paper, a dual-stage two-phase model and an adversarial domain adaptation
hybrid transfer learning strategy are proposed to predict PM2.5 concentration, especially
for new sites with relatively little historical data. Firstly, the maximum mean discrepancy
(MMD) is introduced into the proposed model to select the most suitable source domain
site. Then, inputting data from the source domain and the target domain together into an
improved DSTP model, the DSTP model extracts the spatial–temporal characteristics of
both. DANN finds domain invariant features between source domain and target domain
by fusing extracted spatial–temporal features. Finally, the PM2.5 concentration in the
target domain is predicted by a regression predictor. To evaluate the performance of the
proposed model, we use air quality data from the Beijing sites to assist in predicting PM2.5
concentrations at the Tianjin and Guangzhou sites. The main experimental results are as
follows: (1) Compared with other transfer learning prediction models (including TL-LSTM,
TL-BiLSTM, TL-DSTP), the proposed TL-DSTP-DANN model decreases by more than 8.5%
in MAE, RMSE and MAPE; (2) Transfer learning can obviously improve the performance
of PM2.5 prediction in newly built monitoring stations with insufficient data; (3) The
comprehensive experimental results of the improved DSTP model combined with DANN
are better than those of CNN, LSTM, and BiLSTM. Compared with the BiLSTM, the MAE
of the improved DSTP model decreases by 12.05%, and the MAPE decreases by 20%.

In our future work: (1) The current dataset contains only historical air pollutant
concentrations and meteorological data, lacking relatively important geographical data, but
geographical factors have an impact on PM2.5 concentrations. In the future, the proposed
method could provide higher prediction accuracy if datasets containing geographical
information are available; (2) An algorithm needs to be investigated to determine which
of the multiple source domain data are most suitable for transfer learning to the target
domain; (3) Whether the method proposed in this paper can be used to predict other air
pollutants, such as O3 and SO2.
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Nomenclature
MMD maximum mean discrepancy
DSTP dual-stage two-phase
TL transfer learning
DANN domain adversarial neural network
CNN convolutional neural network
LSTM long and short-term memory
BiLSTM bidirectional long short term memory
GANs generative adversarial networks
GRL gradient reversal layer
G f feature extractor
Gy regression predictor
Gd domain classifier
θ f weights of the feature extractor
θy weights of the regression predictor
θd weights of the domain classifier
Ds source domain
Dt target domain
RMSE root mean square error
MAE mean absolute error
MAPE mean absolute percentage error
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