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Abstract: Advances in artificial intelligence-based autonomous applications have led to the advent of
domestic robots for smart elderly care; the preliminary critical step for such robots involves increasing
the comprehension of robotic visualizing of human activity recognition. In this paper, discrete hidden
Markov models (D-HMMs) are used to investigate human activity recognition. Eleven daily home
activities are recorded using a video camera with an RGB-D sensor to collect a dataset composed
of 25 skeleton joints in a frame, wherein only 10 skeleton joints are utilized to efficiently perform
human activity recognition. Features of the chosen ten skeleton joints are sequentially extracted in
terms of pose sequences for a specific human activity, and then, processed through coordination
transformation and vectorization into a codebook prior to the D-HMM for estimating the maximal
posterior probability to predict the target. In the experiments, the confusion matrix is evaluated
based on eleven human activities; furthermore, the extension criterion of the confusion matrix is also
examined to verify the robustness of the proposed work. The novelty indicated D-HMM theory is not
only promising in terms of speech signal processing but also is applicable to visual signal processing
and applications.

Keywords: discrete HMM; human activity comprehension; pose recognition; confusion matrix;
autonomous AI

1. Introduction

The trend of aging societies has attracted much attention globally, as an increasing
elderly population is accompanied with gradually decreasing long-term care and nursing
manpower. Advances in autonomous AI have led to the feasibility of developing AI
robots for elderly care. To investigate AI-based autonomous robots for elder care, visual
human activity recognition by AI machines plays a preliminary role for perceiving a user’s
mental and physical states as well as their daily life activities, etc. For example, elderly
people without mobility may use summoning gestures to summon a robot for a drink of
water, follow-me gestures to monitor their activities, or stop gestures to control a robot’s
movements. To reach such a goal, this work proposed discrete hidden Markov models
(D-HMMs) for visual human activity recognition of eleven daily home activities, using a
binocular camera with a Kinect v2 RGB-D sensor to extract embedded skeleton information
and to further recognize human sequential poses to understand the implications for specific
human activities.

Human activity recognition [1] has generally been categorized into two approaches,
i.e., vision based [2–4] and sensor based [5–7]. The vision-based approach to human activity
recognition utilizes computer vision methodology to reach a compromise between privacy
consideration and light dependency and to report initial approaches for human activity
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recognition [5]. The sensor-based approach to human activity recognition has also been
categorized into optical and non-optical methods [8,9]. The optical method applies a
binocular camera with an RGB-D sensor with active or passive markers to sense a person,
whereas the non-optical method uses inertial measurement units (IMUs) or a magnetic
system, for more complex environments [10]. For feature extraction, frame-based vision
systems process frames or sequences using visual sensors in two individual steps, where
the outcome is highly dependent on the quality of the captured frame [8]. Conventional
computer vision algorithms process each informational frame individually, regardless of
the noisy frame chip for performance efficiency, merely keeping the change rate in the
scene similar to the frame rate, wherein practical applications are sometimes without any
movement or in moments of fast or noisy motions. In addition, [11] reported that the
performance of human activity recognition was also affected by several sources of variation,
including, perspective, anthropometry, execution rate, personal style, etc.

HMMs are numerical methods that focus on representing and learning the sequen-
tial and temporal characteristics in activity sequences for human activity recognition.
Such dynamic models provide simple and efficient models for learning; however, per-
formance decreases if activities become complex for the Markov assumption [12–15]. To
overcome this shortcoming, explicit duration HMMs [16], segmental HMMs [17], and lay-
ered HMMs [18,19] have been investigated to extend HMMs and to enhance the capability
of distinguishing among classes.

In this work, discrete HMMs [20–22] are used for human activity recognition of eleven
proposed daily activities in a home scenario. An RGB-D camera is used to capture a total
of 25 skeletal joints along the entire human body skeleton, in which a set of feature points
can be extracted for classification of the different poses; however, in this work, only ten
skeleton joints are required for pose comprehension. Secondly, the relative positions of
the ten selected skeletal joints are transformed from a Cartesian coordinate system into a
spherical coordinate system for robustness on position invariance. Thirdly, the features
are quantized into vectors, such that the sequential observations can be treated as a type
of pose in terms of an observation sequence. Eventually, human activity recognition is
performed through a discrete hidden Markov model (D-HMM) to build the codebook of
trained pose sequences and to score the maximal posterior probability for target prediction.
The confusion matrix with extension criteria is also examined in detailed experiments, to
understand the misclassified rates for eleven poses in terms of the true classes with the
corresponding predicted classes. The D-HMM theory seems promising for speech signal
processing, on which D-HMM herein is successfully applicable on visual comprehension.

The remaining sections of this paper are organized as follows: in Section 2, we de-
scribe our proposed method for a human activity comprehension framework, including
feature extraction, pose sequences for human activity presentation, and noise elimination;
in Section 3, we explain the experiments and results in terms of a confusion matrix with
corresponding derivation for detailed results; finally, in Section 4, we discuss conclusions
and future work.

2. Human Activity Comprehension Framework
2.1. Overview

For human activity recognition, we use an RGB-D sensor of 3D skeleton joints [23–27]
to construct a database in terms of skeletonized human activities that occur in daily life.
The proposed framework, namely human activity comprehension (HAC), is elucidated as
follows: First, the features are extracted from ten selected skeleton joints of entire user poses
using the RGB-D sensor. After preprocessing of key element skeleton joints, the vector
quantization encoding procedure extracts the features as the codebook for the HMMs, of
which the hidden Markov model of unknown sensing human behavior is scored to target
the specific human activity through the maximum posterior probability. The details are
described in the following sections.
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2.2. Human Activity Comprehension Module

For an autonomous AI home robot, visual comprehension of user activities is a prelim-
inary step to prepare for interacting with the user. Therefore, in the proposed work, the
robot vision automatically comprehends the user’s activity through a prior training set of
known poses. There are two advantages to this approach, which include letting the HAC
module acquire a more compact representation of the sequences, and secondly, overcoming
the challenges of speed variations associated with different user activities.

To reach the goal of the HAC module, four factors are carefully inspected in this work.
First, the human profile images from the depth of the RGB-D sensor yield information
from a total of 25 skeleton joints, wherein the joints represent different poses in the frames;
however, our findings show that the information from only 10 skeleton joints is adequate
for pose detection, since not all joints are equally informative due to the intrinsic noise
of the sensor and the peculiarities of the human body. Secondly, the relative positions
among skeletal points are transformed from a Cartesian coordinate system into a spherical
coordinate system. The relative positions are extracted by the differences between positions
of joints, wherein the differences should not be influenced by the position and orientation of
the sensor or height/weight variations in user images in the spherical system. Thirdly, the
features are quantized into vectors, since the feature set in each frame can be regarded as an
observation symbol, such that the sequential observation from each frame in a video can be
treated as a type of pose in terms of an observation sequence, and then, saved as the specific
pose in the codebook. Finally, human activity recognition is performed through discrete
hidden Markov models (D-HMMs) built from the sequences of training poses. A discrete
HMM is trained for each activity on the poses for extracting as the observed symbols.
Next, each activity sequence is encoded as a sequence of pose vocabularies for learning the
HMMs, and then, the input testing sequence is estimated by scoring the models. Figure 1
shows the proposed D-HMM-based HAC framework.

Figure 1. The proposed discrete HMM human activity comprehension framework.
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2.3. Feature Extraction

The RGB-D sensor has built-in functions for 3D positions of 25 skeleton joints, includ-
ing head, neck, spine-shoulder, shoulder, spine-mid, elbow, spine-base, wrist, hand, hand
tip, thumb, hip, knee, ankle, and foot for the human profile shown in Figure 2. Assume the
real-world 3D positions of each skeleton joint, i, can be represented by the camera reference
system for each frame, t, of a sequence shown in Equation (1) as:

ji(t) = (xi(t), yi(t), zi(t)) (1)

Figure 2. Twenty-five defaulted joints of black-or-white circle points are provided by a third-party
sensor in (a), Only ten white circle points were selected for the relative position connection and
distance calculation by nine red lines shown as D1, D2 . . . . . . D9, from centroid (Spine Mid) to the
other 9 joints in (b), The remaining 15 unselected points labeled on the black circles points show no
affection during activity detection in (b).

The original point (xi = 0, yi = 0, and zi = 0), in three dimensions, is located at the center
of the binocular camera, wherein xi is pointed toward the sensor’s left, yi is pointed up, and
zi is pointed in front of the sensor. Let Ni be the number of skeleton joints, which consists
of the posture of the skeleton at frame t in 3Ni dimension, as represented in Equation (2):

u(t) =
[
j1(t)j2(t)j3(t) . . . . . . jNj(t)

]
(2)

For an activity sequence composed of Nf frames, Nf feature vectors are extracted that
can be built as a feature matrix for the whole sequences as Equation (3):

Amat =
[
u(1), u(2), . . . . . . , u

(
N f

)]
(3)

Then, this matrix is represented as the variations of the joint positions over time. Each
size of the feature matrix is defined as 3Amat

i × Amat
f .

To effectively apply the joint information for pose detection, our findings show that
only 10 of the 25 joints are sufficiently beneficial for the proposed work, owing to the
intrinsic noise of the sensor and the peculiarities of the human body, particularly, the
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remaining unselected joints which are trivial, reflecting the dynamic variation of the activity.
For example, the poses of some trivial joints are redundant (e.g., wrists and ankles) due to
adjacent joints (e.g., hands and feet), in addition, some joints are completely irrelevant for
human activity recognition (i.e., neck and hip). Therefore, the remaining set of joints are
chosen for human activity recognition and categorized as: head, spine-mid, elbows (left
and right), hands (left and right), knees (left and right), and ankles (left and right). The set J
is defined as Equation (4):

J = {ji|i = 1, . . . . . . . . . , 10} (4)

Relative joint position is used because it is an intuitive and efficient way to represent
human motions. Consider, for example, the action “victory gesture”, which can be inter-
preted as “arms raised up over the shoulder” and is significantly useful to be characterized
by the relative positions. However, several essential factors are carefully considered when
representing the local position for each joint, owing to the fact that the feature descriptor
should be invariant in terms of the position, the orientation of the sensor, and the variance
in height and weight among different people. Raptis et al. [28] showed that using relative
positions between joints rather than using absolute positions originated at the sensor were
less dependent on perspectives.

For each joint i in the set, the relative positions are extracted by the difference between
the positions of joint i and spine-mid (herein treated as the center point of ten selected
skeleton joints) as Equations (5) and (6):

Dk = j1 − ji (5)

Dk(t) =
(
x′k(t), y′k(t), z′k(t),

)
(6)

where i ∈ J: i 6= 1, and each relative position Dk implied the 3D Cartesian coordinate system
at t-th as Equation (7):

D = {Dk|k = 1, . . . . . . . . . 9} (7)

where k is the index of the relative positions.
Normalization on the detected features is essential for scale-invariant consideration,

for example, the distance and the target rotation between the user and the sensor would
be variant for feature extraction. To overcome such a phenomenon, the transformation
from the Cartesian coordination system into the Spherical system is explored. As shown
in Figure 3, we convert the relative position Dk from Cartesian (x, y, z) into Spherical (r, θ, ϕ)
3D coordination. The polar angle θ is between the zenith direction and Dk (the differences
between Spine-Mid point and the other points). The azimuthal angle ϕ is the signed angle
measured from the azimuth reference direction to the orthogonal projection of Dk on the
reference plane. Note that γ is the length of Dk, which was not considered in the proposed
work; for the difference between user and sensor, γ has been normalized. Therefore, we
use the spherical representation f k(t) treated as the relative position, where the detailed
function is shown in Equations (8)–(10):

fk(t) = (θk(t), ϕ(t)) (8)

θk(t) = arccos(
z′k(t)√

(x′k(t))
2 + (y′k(t))

2 + (z′k(t))
2
) (9)

ϕ(t) = arctan(
y′k(t)
x′k(t)

) (10)

where k indicates the kth relative position and t is the tth frame. The feature set of a skeleton
on k relative positions in a frame is defined as Equation (11):

F = { fk|k = 1, . . . . . . . . . , k} (11)
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Figure 3. (a) Example of the relative position of the skeletonized summon pose in the Cartesian
coordinate system; (b) transformation from the Cartesian into the Spherical coordinate system with
corresponding azimuthal angle θk and polar angle ϕk.

2.4. Pose Sequences for Human Activity

To estimate a specific human activity from the sequential frames in a video clip, the
feature set in each frame is treated as an observation symbol, such that an identical activity
can be regarded as the composition of the sequential symbols, herein named pose sequences;
for example, the summoning pose activity is interpreted by five sequential poses, as shown
in Figure 4. However, the raw video contains numerous frames in which some noisy clips
might influence the corrective pose predictions, and thus, lead to a worse performance.
To overcome such a case, the features are clustered into sets in terms of pose classification
through vector quantization in order to downsize the number of poses, and accordingly,
given the feature set of each frame (F1, F2, F3, . . . FN), vector quantization is applied to
separate N observations into k sets.

Figure 4. Example of the skeletonized “summon-pose” activity sequences divided into five sequential
poses by time index accordingly.
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Several concerns regarding vector quantization (VQ) [29–32] in this work are addressed
below, given a vector source with its known statistical properties, such as F in Equation (11),
given a distortion measure, and given the number of codevectors to find a codebook with
minimized average distortion. In VQ, the set of quantized values for the vectors is a
codebook. By quantizing each component of the source vectors, i.e., the feature set F of the
frame, they can be subsequently substituted from a carefully chosen set and saved as an
index set to yield a much more compact representation of the frame. The detailed steps of
VQ are elucidated as follows:

Step 1: Generate the training vectors from the video dataset. The training vectors are
defined as in Equation (12):

T = {Fn|n = 1, 2, . . . . . . , N} (12)

where N is the number of training vectors, i.e., the number of frames. Let M be the number
of codevectors and let C represent the codebook in Equation (13) as follows:

C = {Cm|m = 0 , 1, . . . . . . , M− 1} (13)

Each codevector is k-dimensional, similar to the training vectors. Assume all training
vectors to be a cluster C0, i.e., codebook size M = 1 and codeword C0 = 1. Then, find the
k-dimensional cluster centroid as codevectors in Equation (14) as:

c0 =
1
N

N

∑
n = 1

Fn (14)

Step 2: Double the current codebook size M to 2 M by splitting each cluster into two
using Equation (15): {

c(l)i = ci(1 + ε)

c(l)M+i = ci(1− ε)
(15)

where M is the size of the current codebook, ci is the centroid of the ith cluster Ci, and ε is a
splitting parameter vector in k-dimension. In this work, we set ε = 0.001 for each dimension;
l is the iteration index.

Step 3: Classify each k-dimensional sample F of the training feature vectors into one
of the clusters at each iteration by the k-nearest neighbor (KNN) approach. For n = 1, 2, 3,
. . . , N, find the minimal value using Equation (16):

‖Fn − c(l)m ‖2 (16)

Step 4: Update the codeword, i.e., symbol Oi, of each cluster Cm by computing new
cluster centers in Equation (17):

c(l+1)
m =

∑Q(Fn) = m Fn

∑Q(Fn) = m 1
(17)

where m = 0, 1, . . . , M − 1 at the (l + 1)th iteration.
Step 5: Set l = l + 1. The average distortion of the lth iteration is given by Equation (18):

D(l) =
1

Nk

N

∑
n = 1

‖Fn − c(l)Q(Fn)
‖2 (18)

If|D (l) – D (l c 1)| is lower than the chosen threshold, go to Step 6, otherwise, go back
to Step 3.

Step 6: If the codebook size M is equal to the codebook size as expected, terminate the
iteration, otherwise, go back to Step 2.
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2.5. Noise Elimination

To increase the HAC accuracy recognition in terms of frame data, for pose sequence
extraction, data smoothing for noise elimination is applied to remove the trivial poses
or behaviors in the frame data, for noise data significantly influencing the entire activity
recognition performance. Our findings show that some poses give the lower confidence for
activity recognition. For example, as shown in Figure 5, the paradigms of unwanted pose
frames are remarkably lower than the confidence in training the sequential-pose model.
To eliminate such noise data, the threshold δ is proposed and set to examine the adjacent
frames by using Equation (19):

‖Fi − Fi−1‖2 ≥ δ (19)

where Fi represents the feature vector of ith frame and δ is a threshold.

Figure 5. Four examples (a–d) of noisy skeletonized poses in collected activity sequences, which
would be removed prior to encode the poses for discrete HMM on human activity estimation.

2.6. Discrete HMMs for Activity Recognition

The discrete HMM approach herein is used to estimate the human activity given
by the observation sequence X = (o1, o2, . . . , oT) to score the parameters λ = (A, B, π)
by maximizing the probability P(X|λ) for target estimation, where A is the initial state
probability, B is the state transition probability, and π is the state observation probability.
Accordingly, each activity with the extracted poses sequences trained by DHMM treated
as the observed symbols, of which the discrete time sequences implied the output of a
Markov process whose states cannot be observed directly. Consequently, each activity
sequence is encoded as a sequence of pose vocabulary to learn the HMMs. Once the
HMMs are trained, they can then predict the input testing sequences through the maximal
posterior probability.

In most cases, a very short time condition in micro perspective in a system can be
observed as the one of the system’s N states, denoted as S = {S1, S2, . . . , SN}, and the state
at time t is denoted as qt. Given the set of prior probabilities π = {πi} in Equation (20):

πi = P[q1 = Si], 1 ≤ i ≤ N (20)

where πi is the probability of Si of the initial state in a state sequence; the probability of
transition from the state Si to the state Si, i.e., the corresponding probability, A = {aij} in
Equation (21):

aij = P[qt+1 = Sj
∣∣qt = Si], 1 ≤ i, j ≤ N (21)
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Assume M is the number of different observation symbols in a state, the individual
symbol set is V = {v1,v2, . . . , vM}, and the observation symbol probability distribution in
state j and B = {bj(k)} in Equation (22):

bj(k) = P
[
vkatt|qt = Sj

]
, 1 ≤ j ≤ N, 1 ≤ k ≤ M (22)

The overall parameter set of a D-HMM model is the triplet in Equation (23):

λ = (A, B, π) (23)

Once the HMMs trained, they estimated the input testing sequence via the maximal
posterior probability by Equations (24) and (25):

decision = argmax{Li}, 1 ≤ i ≤ M (24)

Li = P(O|HMMi) (25)

where Li is the likelihood of ith HMM and HMMi is the input testing sequences.

3. Experimental Results
3.1. Dataset and Activity Implications

In this work, to validate the performance of the proposed D-HMM-based HAC frame-
work prior to autonomous AI vision interaction with user domiciliary, we assess its perfor-
mance on eleven daily life activities, including sitting, standing, walking, drinking water,
calling up, reading, stretch, akimbo, follow-me, summoning, and stopping. For example, in
elderly care, “slow-go” or “no-go” elderly people with aging mobility might be assisted by
homecare robots, such that users can use a summoning gesture to call for a robot’s help
and a follow-me or stopping gesture to control the actions of the robot mobilities. Akimbo
might be perceived by a robot as a user probably implying a spirit of competition, a strong
sense of attack, or an enterprising spirit. Sitting, standing, or reading activities may be
recognized by a robot as implying that the user is in a state of relaxation or concentration,
whereas the stretch pose, generally performed as an unconscious behavior, implies the user
is in a sleepy state. Images of the paradigms of the eleven activity poses with corresponding
pose skeletons are shown in Figure 6.

Prior to validating the proposed work, eleven different human activities are filmed
and collected into a database through a single, fixed binocular camera with an RGB-D
sensor. The distance between the front of the camera and the participants ranged from
4 to 11 feet to yield RGB images with 1920 × 1080 resolution and depth information with
512 × 424 resolution, with skeleton joints at 30 fps for each pose sequence. In order to
further verify the robustness of the proposed D-HMM-based HAC, each activity is filmed
for five participants, five times. Particularly, to inspect the robustness of the drinking water
activity, left and right hands, respectively, each person was filmed two times. In total,
275 samples of sequences with 16,172 frames were collected into a database. The number
of frames for each sample video spanned between 33 to 156 frames. The sampling RGB
image with corresponding skeleton clips in the dataset are shown in Figure 6. Note that the
RGB images are just for illustration, and only the skeletonized joint information is used for
activity recognition. The evaluation platform featured a 3.6 GHz Intel Core i7 CPU laptop
and implemented by C#.
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Figure 6. Sampling images of the assessing eleven poses in activities snaps with corresponding
skeletons from videos of the collected database. Activities labeled from top to bottom, left to right,
including (a1,a2) standing, (b1,b2) sitting, (c1,c2) drinking water, (d1,d2) calling up, (e1,e2) reading,
(f1,f2) stretch, (g1,g2) akimbo, (h1,h2) summon, (i1,i2) follow-me, (j1,j2) stop gesture, and (k1,k2)
walking poses.
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3.2. Experimental Evaluation
Confusion Matrix Assessment

The proposed work is validated by using the collected 275 samples of sequences with
16,172 frames for the five-fold cross-validation experiments, wherein cross-validation is
a resampling method that uses different portions of the data to test and train a model on
different iterations, treated as phases in terms of testing and training datasets, whereas
the number of clusters in vector quantization is set as K = 128 and the number of states
in HMMs is set as N = 5. The average accuracy reached 95.64%, wherein some discrim-
inative poses, including standing, sitting, stop gesture, and follow-me, achieved 100%
recognition accuracy. However, the walking, drinking, and follow-me poses could be easily
misclassified, and therefore, they led to a lower recognition accuracy of 88%. To detail the
misclassified rates for 11 poses in terms of the true classes with the corresponding predicted
classes, a confusion matrix was derived, as shown in Table 1.

In Table 1, by observing the drinking pose, in which 8% is misclassified as the calling-
up pose. The aforementioned drinking pose is trained by left and right hands, respectively,
such that the right-hand calling-up skeleton joints might be easily classified as the right-
hand drinking skeleton joints, as shown in Figure 6(c2) of the drinking skeleton joints
and Figure 6(d2) of the calling-up skeleton joints. In particular, 4% in the reading pose,
8% in the stretch pose, 4% in the summoning pose, and 8% in the walking pose, with
the corresponding skeleton joints, as shown in Figure 6, are also partially misclassified as
the drinking pose. The raised-hand pose has similar skeleton joint characteristics as the
calling-up, the stretch, and the summoning poses, which leads to the misclassified rates,
whereas the reading and walking poses give the perspective paradox on the misclassified
rate, which is needed for further analysis. In addition, the akimbo pose is also partially
misclassified in 4% as the follow-me pose.

As an extension of the confusion matrix in Table 1, the derivative criteria, including
the conditional positive, conditional negative, true positive, true negative, false positive,
and false negative with F1 scores for the confusion matrix on the proposed 11 poses, are
also examined and are shown in Table 2, where the F1 score measures the test’s accuracy,
by considering both the precision p and the recall r of the test to compute the score.
The proposed D-HMMs with ground true data were validated in the previous section; then,
a real-world validation was conducted by using ten participants to test the proposed work.
Each participant performed 11 activities ten times in terms of differentiated acting speed
and personal action style. Once the individual-person case was evaluated, the multiple-
person case was further verified to entirely validate the robustness of the proposed work
in the cases of single user and multiple users. The results are shown in Figure 7. In most
cases, the classified rate of a single person is generally superior to the multiple person case;
however, the drinking pose and the follow-me gesture in the multi-person case performed
better classified rates than the single-person case, probably due to insufficient data.
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Table 1. The normalized confusion matrix for the proposed 11 poses activities, wherein each row represents an instance of the true class, whereas each column
represents an instance of the predicted class, and the values of the diagonal elements represent the degree of correctly predicted classes.

Predicted Classes

Standing Pose Sitting Pose Drinking Pose Talking Pose Reading Pose Stretch Pose Akimbo Pose Summon Pose Follow-me Pose Stopping Pose Walking Pose

Tr
ue

C
la

ss
es

Standing Pose 1 0 0 0 0 0 0 0 0 0 0

Sitting Pose 0 1 0 0 0 0 0 0 0 0 0

Drinking Pose 0 0 0.92 0.08 0 0 0 0 0 0 0

Calling up Pose 0 0 0.08 0.92 0 0 0 0 0 0 0

Reading Pose 0 0 0.04 0 0.96 0 0 0 0 0 0

Stretch Pose 0 0 0.08 0 0 0.92 0 0 0 0 0

Akimbo Pose 0 0 0 0 0 0 0.96 0 0.04 0 0

Summon Pose 0 0 0.04 0 0 0 0 0.96 0 0 0

Follow-me Pose 0 0 0 0 0 0 0 0 1 0 0

Stopping Pose 0 0 0 0 0 0 0 0 0 1 0

Walking Pose 0 0 0.08 0 0 0 0 0 0.04 0 0.88

Table 2. The derivate criteria from the confusion matrix in Table 1 for the proposed 11 poses.

P (Condition
Positive)

N (Condition
Negative)

TP
(True Positive)

TN
(True Negative)

FP
(False Positive)

FN
(False

Negative)

TPR
(True Positive

Rate)

TNR (True
Negative Rate)

FNR (False
Negative Rate)

FPR (False
Positive Rate)

ACC
(Accu_Racy)

F1
Score

Standing Pose 1 0 1 0 0 0 1 0 0 1 1 1

Sitting Pose 1 0 1 0 0 0 1 0 0 1 1 1

Drinking Pose 0.92 0.08 0.92 0.08 0.08 0.92 0.5 0.5 0.5 0.5 0.5 0.65

Talking Pose 0.92 0.08 0.92 0.08 0.08 0.92 0.5 0.5 0.5 0.5 0.5 0.65

Reading Pose 0.96 0.04 0.96 0.04 0.04 0.96 0.5 0.5 0.5 0.5 0.5 0.66

Stretch Pose 0.92 0.08 0.92 0.08 0.08 0.92 0.5 0.5 0.5 0.5 0.5 0.65

Akimbo Pose 0.96 0.04 0.96 0.04 0.04 0.96 0.5 0.5 0.5 0.5 0.5 0.66

Summon Pose 0.96 0.04 0.96 0.04 0.04 0.96 0.5 0.5 0.5 0.5 0.5 0.66

Follow-me Pose 1 0 1 0 0 0 1 0 0 1 1 1

Stopping Pose 1 0 1 0 0 0 1 0 0 1 1 1

Walking Pose 0.92 0.08 0.92 0.08 0.08 0.92 0.5 0.5 0.5 0.5 0.5 0.65
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Figure 7. Real-world validation in terms of single and multiple participants performing 11 poses.

4. Conclusions

In this paper, we propose a human activity comprehension framework based on a
discrete HMM approach. The spatio-temporal sequences of eleven collected visualized
human activities with corresponding skeletal information are extracted to yield pose
features, and efficient performance of human activity recognition is achieved through
coordination transformation, vector quantization, and HMMs. The evidential framework,
in the experiments, indicates that the proposed framework has a better capability to
manage the data in terms of uncertainty and imperfection. Accordingly, a confusion matrix
is conducted, and the derivative criteria are inspected to further analyze the experimental
results, in which the analysis shows very promising results and performance. Future work
should focus on learning with HMM-related approaches and comparing with real-world
testing for more useful applications.
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