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Abstract: Accurately assessing image quality is a challenging task, especially without a reference
image. Currently, most of the no-reference image quality assessment methods still require reference
images in the training stage, but reference images are usually not available in real scenes. In this
paper, we proposed a model named MSIQA inspired by biological vision and a convolution neural
network (CNN), which does not require reference images in the training and testing phases. The
model contains two modules, a multi-scale contour prediction network that simulates the contour
response of the human optic nerve to images at different distances, and a central attention peripheral
inhibition module inspired by the receptive field mechanism of retinal ganglion cells. There are two
steps in the training stage. In the first step, the multi-scale contour prediction network learns to
predict the contour features of images in different scales, and in the second step, the model combines
the central attention peripheral inhibition module to learn to predict the quality score of the image.
In the experiments, our method has achieved excellent performance. The Pearson linear correlation
coefficient of the MSIQA model test on the LIVE database reached 0.988.

Keywords: no-reference image quality assessment; convolutional neural network; deep learning;
image multi-scale; biological visual inspiration

1. Introduction

Image is an important source of information for human perception and machine
recognition [1–3]. In order for machines to have visual perception, not only does the
equipment need to be capable of predictive maintenance [4], but it also needs to capture
high-quality images. Image quality plays a decisive role in the sufficiency and accuracy
of the acquired information. However, the image is inevitably distorted in the process
of acquisition, compression, processing, transmission, and display. How to measure
the quality of the image and evaluate whether the image meets a specific requirement
becomes a problem. To solve this problem, it is necessary to establish an effective image
quality assessment (IQA) system. At present, IQA methods can be divided into subjective
evaluation methods and objective evaluation methods. The former relies on the subjective
perception of experimenters to evaluate the quality of the object. The latter simulates the
perception mechanism of the human visual system based on the quantitative indicators
given by the model. According to the classification of images, IQA can be divided into
facial image quality [5,6], synthetic image quality, and so on. Below, we introduce the
perspective of model improvement.

Objective image quality assessments are quite meaningful. They can provide feedback
and optimization for denoising algorithms, provide early evaluation and preprocessing
of image data for computer vision tasks, and even indirectly reflect the quality of the
shooting equipment. According to whether a reference image is needed, the objective
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image quality assessment is divided into full-reference image quality assessment (FR-IQA),
reduced reference image quality assessment (RR-IQA) and no-reference image quality
assessment (NR-IQA). The FR-IQA [7–10] method requires a distortion-free reference
image and compares the information or feature similarity of two images to obtain the
evaluation result of the distorted image. The RR-IQA [11–13] method is based on part
of the characteristic information of the reference image. The NR-IQA method directly
evaluates the quality of distorted images. Despite some NR-IQA methods not needing
reference images in the testing phase, they still need reference images in the training
phase [14,15]. According to the type of distortion, the method is divided into specific
types of distortion and general image quality assessment. Classical methods are based on
natural scene statistics (NSS) [10,16–19], transform domain [9,20], gradient features [17]
and unsupervised learning [21,22], etc.

Since 2014, most of the NR-IQA methods have adopted CNN-based models, and
researchers have constantly changed and deepened the model structure. CNN is a simula-
tion of the biological visual system. With research on the physiology and anatomy of the
biological optic nerve, an increasing number of scholars have begun to use mathematical
models to reveal the processing mechanism of visual information. Inspired by the biological
vision, we simulated the mechanism of the biological optic nerve and receptive field, and
proposed a two-stage training method that does not require reference images. This was
tested on the LIVE [23] data set and TID2013 [24] data set. The innovations of this article
are as follows :

(1) Using multi-scale contour features as the one-stage regression target to solve the
problem of too few data sets.

(2) Designing the different learning labels of different layers of the model to simulate the
evaluation of human eyes on images at different distances.

(3) Designing a central attention peripheral inhibition module to simulate the mechanism
of the receptive field of retinal ganglion cells.

The following sections of the paper are organized as follows. Section 2 introduces the
current status of the CNN-based NR-IQA. Section 3 details the framework of the model
proposed in this paper. Section 4 presents the test results of the model. Section 5 concludes
the paper.

2. Related Work

The current NR-IQA methods based on convolutional neural network (CNN) are
divided into image-based and patch-based according to the input image [25]. In the
early years, in order to increase training data, most of the methods were based on patch-
based methods.

In 2014, Kang et al. [26] used CNN for the NR-IQA for the first time. The author first
normalized the image, and then divided it into 32 × 32 non-overlapping image patches,
used the CNN network to estimate the quality score of each image patch, and the final
image quality score was the average score of all image patches. The CNN network used in
this method has one convolutional layer with max and min pooling, two fully connected
layers and an output node. Although this method has better results than traditional manual
feature extraction methods, it has the following shortcomings when the distortion types
are complex and diverse: (1) It is unreasonable to use the average of the quality scores of
all image patches as a quality score for the entire image. (2) It is unreasonable to use the
global subjective score as the image local quality score for training.

In order to solve the problem 1, Bosse et al. [27] proposed a method including a weight
estimation module. During the training stage, a sub-network is used to train the weights
of image patches. The method proposed by [27] used a deeper and more complex neural
network structure than the method of Kang et al. [26] Therefore, the network learned more
image features, and its performance was improved. However, as the network deepens, the
problem of too few training data sets becomes more serious. As in the previous method,
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with the aim of increasing the training data, the network input was the 32× 32 image patch,
and the quality score of the image patch was still the quality score of the entire image.

For the purpose of solving problem 2, many researchers have proposed a method of
first generating the local quality score of the distorted image as the one-stage regression
target. In 2017, Kim proposed a two-stage method (BIECON) [14]. The first step is to use
the FR-IQA method to obtain the local quality score and use the local quality score as the
target label of the CNN model to predict the quality score of image patches. In the second
step, the subjective quality score of the distorted image was used as the target label, and all
model parameters were optimized at the same time. In spite of the fact that the BIECON
method solved the unreasonable problem of using the subjective score of the entire image
as the quality score label of the image patch, the local quality score of the distorted image
generated by the FR-IQA method has an error in itself, and this method must use the
reference image.

The root cause of the patch-based method is that there are too few data sets. Therefore,
many researchers have proposed methods of pre-training CNN networks using data sets in
other fields. For example, DeepBIQ [28] proposed by Simone Bianco et al. In addition to
the pre-training method, Liu et al. proposed the RankIQA [29] method based on the idea of
ranking learning. Although it is difficult to directly estimate the quality score of a distorted
image, it is relatively easy to compare the relative quality of different degrees of distortion.
In 2019, the author of the BIECON method proposed the DIQA [15] method. This method
is still a two-stage method, but no longer uses the subjective quality score as the regression
target, instead, using the objective error map as the intermediate CNN learning target.

In addition to the aforementioned method of predicting image quality scores, Hossein et al.
proposed the NIMA [30] method. This method no longer trains the network to predict the
quality score of the image but predicts the distribution of human quality scores of the image.

In short, due to the lack of IQA data sets, which seriously affects the structural design
of the CNN network, this paper proposes a two-stage method to solve this problem.

3. Approach

The overall framework of the MSIQA is shown in Figure 1. In the first stage of training,
the multi-scale contour prediction network is trained to predict the contour features of
diverse scale pictures in scale-spaces. In the second stage of training, the MSIQA model
combines the central attention peripheral inhibition module to learn to predict the quality
score of the image.
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Figure 1. Illustration of the MSIQA model. The model consists of a multi-scale Contour Prediction
Network and a Central Attention Peripheral Inhibition Module. The solid line is the first step of
training, and the dashed line is the second step of training.
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3.1. Model Architecture

The MSIQA model consists of two main modules: (1) a multi-scale contour prediction
network to simulate the response of human eyes on an image’s contours at different dis-
tances, and (2) a central attention peripheral inhibition module to simulate the mechanism
of the receptive field of retinal ganglion cells. We use four inception [31–33] modules
with the same structure to build the contour prediction network. Each layer has a batch
normalization (BN) [34] and a rectified linear unit (ReLU) [35]. After the inception module,
the PixelShuffle [36] method is used to upscale the input feature to the same size as the
input image. In the second stage of training, the outputs of different inception modules are
first fused and combined with the central attention peripheral inhibition module, then fed
into the convolutional layer and two fully connected layers.

3.2. Multi-Scale Contour Features

We believe that the sharpness of the edge contour of the image is an important feature
that affects the image quality. At the same time, the same distortion type of the distorted
images have different degrees of distortion, and the contour features of all images in the
image scale space can simulate images with different degrees of distortion. Multi-scale
features are used to simulate the contour response of the retina to images at different
distances, so we train the model in the first stage to predict the contour features of images
at different scales.

The scale-space of an image is the convolution of the image and the Gaussian function
of the variable scale. The two-dimensional Gaussian function is:

G(x, y, σ) =
1

2πσ2 exp
[
− (x2 + y2)

2σ2

]
(1)

The scale-space of an image I(x, y) is:

L(x, y, σi) = {I0(x, y), I1(x, y), . . . , Ii(x, y)} (2)

where

Ii(x, y) =
{

I(x, y), i = 0
G(x, y, σi) ∗ I(x, y), i 6= 0

(3)

The image subtraction of adjacent scales obtains the multi-scale contour features.
Therefore, the contour feature ground truth is defined as:

Di(x, y) = Ii(x, y)− Ii+1(x, y)
= G(x, y, σi) ∗ I(x, y)− G(x, y, σi+1) ∗ I(x, y)
= [G(x, y, σi)− G(x, y, σi+1)] ∗ I(x, y)

(4)

Figure 2 shows the generation of the multi-scale contour features ground truth. The
images shown in Figure 3a–e are an image scale space of Figure 3a. The images shown in
Figure 3f–i are contour features of different scales of the image in Figure 3a. Figure 4 is the
same as Figure 3.
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In the first stage of training, the contour prediction network learns to predict contour
features, and the loss function is defined by the mean square error between the predicted
value and the ground-truth:

L1 =
1
N

N

∑
i=1

(Dm
i − hθ(Ii))

2 (5)

where hθ(Ii) is the contour feature of the image Ii predicted by the model, θ is the parameters
of the contour prediction network, and m is the exponent number. In our experiment, we
choose m = 0.5.

3.3. Quality Score Prediction

In the second step of training, the central attention peripheral inhibition module
combines the brightness information of the image to weigh the multi-scale contour features
learned in the first stage. The central attention peripheral inhibition module adopts a
double Gaussian difference model, which is composed of two parts: the center position
of the image has strong attention and the edge position is weakened, which simulates the
different attention and different residence times of humans in different areas of the image.
The distribution is:

S(x, y) = kc
1

2πσc2 exp
[
− (x2 + y2)

2σc2

]
− kp

1
2πσp2 exp

[
− (x2 + y2)

2σp2

]
(6)

where kc is the central attention enhancement coefficient, kp is the peripheral inhibition coefficient.
Because the optic nerve has different sensitivity to images of different brightness, it is

necessary to add brightness information of the image while considering the attention of
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different areas of the image. We normalized the overall image brightness and increased the
quality score weight of image blocks with strong brightness.

The MSIQA model learns to predict image quality score. The loss function is defined as:

L2 =
1
N

N

∑
i=1

(S(Ii)− h′θ(Ii)) (7)

where h′θ(Ii) is the image quality score of the image Ii predicted by the model, θ is the
parameters of the CNN network, S is the ground truth subjective score of the input image Ii.

3.4. Training

Because there are fully connected layers in the MSIQA model, the input size of the
network must be unified. We have tested the effect of different sizes on the performance of
the model, and the results are given in Section 4.

In the first stage of training, 80% of the images in the data set are randomly selected
for training. First, the image is cropped into image patches of uniform size, and then the
four-scale space images of each image patch are fed to the network for training. In the
second stage of training, 80% of the images are randomly selected for training, and the
image patches are directly fed to the network for training.

3.5. Multi-Task Model

Humans have various intuitive perceptions of different types of distortions. The types
of distortions affect humans’ evaluation of image quality to a certain extent. Therefore, from
the point of view of IQA, the detection of the distortion type is also of certain significance.
At the same time, additional feature information of the distortion type is added to more
strongly constrain the model and reduce the risk of overfitting.

The multi-task learning model adopts the hard parameter sharing method and adopts
the basic structure of the MSIQA model proposed in 3.1. Task one is IQA, and task two is a
classification of image distortion types. The overall framework of the model is shown in
Figure 5.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 7 of 12 

 

 

 

Figure 5. The overall framework of the model. 

 The image convolution operation can only obtain the relationship between local 

channels, and the network should learn important feature information from different 

feature channels. Referring to the idea proposed by Hu et al. [37], a feature channel weight 

module is added to the model, and the framework is shown in Figure 6. 

 

Figure 6. The framework of channel weight module. 

First compress the input from size HWC   to HC 1 : 


=

=

W

i

ix
W

xFs

1

)(
1

)(  (8) 

where x is the input and W is the width of the input. After size compression, through two 

convolutional layers, the input channel weight is finally obtained, and then dot-multiply 

with input. 

The loss weight of the two tasks adopts a dynamic weighting method. The loss 

function is defined as: 


=

=

2

1

)(

i

ii LtLOSS   (9) 

where   is the weight of loss defined as: 

)1(

)(
)(,

)/)(exp(

)/)(exp(2
)(

−
==

 tL

tL
tr

Ttr

Ttr
t

i

i
i

i
i

i
i  (10) 

where )(tLi  is the loss of task i  in step t , T  is a constant. 

4. Experiments and Analysis 

4.1. Database and Evaluation Metrics 

TID2013 and LIVE are the current mainstream databases for image quality 

evaluation. These databases provide the subjective score for each distorted image. The 

LIVE [23] database images are color images of different sizes, with 29 reference images, 

including five common types of distortion: additive white Gaussian noise (WN), Gaussian 

blur (GB), JPEG compression and JPEG2000 compression (JP2K) and fast-fading (FF). The 

Inception ModuleInception ModuleInception ModuleInception Module

Task1:Quality score

0

Channel 

Weight 

Module

Channel 

Weight 

Module

Channel 

Weight 

Module

Channel 

Weight 

Module

Channel 

Weight 

Module

Task2:Distortion type

channel weight module

C×1×H

C×W×H

C×W×H

F s(·) FC FC

C×1×H

Figure 5. The overall framework of the model.

The image convolution operation can only obtain the relationship between local
channels, and the network should learn important feature information from different
feature channels. Referring to the idea proposed by Hu et al. [37], a feature channel weight
module is added to the model, and the framework is shown in Figure 6.

First compress the input from size C×W × H to C× 1× H:

Fs(x) =
1

W

W

∑
i=1

x(i) (8)
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where x is the input and W is the width of the input. After size compression, through two
convolutional layers, the input channel weight is finally obtained, and then dot-multiply
with input.
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The loss weight of the two tasks adopts a dynamic weighting method. The loss
function is defined as:

LOSS =
2

∑
i=1

ωi(t) ∗ Li (9)

where ω is the weight of loss defined as:

ωi(t) =
2 exp(ri(t)/T)

∑
i

exp(ri(t)/T)
, ri(t) =

Li(t)
Li(t− 1)

(10)

where Li(t) is the loss of task i in step t, T is a constant.

4. Experiments and Analysis
4.1. Database and Evaluation Metrics

TID2013 and LIVE are the current mainstream databases for image quality evaluation.
These databases provide the subjective score for each distorted image. The LIVE [23]
database images are color images of different sizes, with 29 reference images, including
five common types of distortion: additive white Gaussian noise (WN), Gaussian blur (GB),
JPEG compression and JPEG2000 compression (JP2K) and fast-fading (FF). The image size
of the TID2013 [24] database is 512 × 384, including 24 distortion types, each of which has
five different degrees. The summary of each database is tabulated in Table 1 [23,24].

The IQA algorithm performance depends on the correlation between the subjective
score and the prediction score. If their correlation is high, it means that the performance
of the algorithm is better. We used two standard measures, i.e., Spearman rank-order
correlation coefficient (SRCC) and Pearson linear correlation coefficient (PLCC). The SRCC
is defined as:

SRCC = 1−
6

N

∑
i=1

d2
i

N(N2 − 1)
(11)

where di is the difference between the predicted score and ground-truth score of the ith
image, and N is the number of images. The PLCC is defined as:

PLCC =

N

∑
i=1

(pi − p)(si − s)√
N

∑
i=1

(pi − p)2

√
N

∑
i=1

(si − s)2

(12)

where pi is the predicted score of the ith image, and si is the ground-truth score of the ith
image, p and s are the average of each.
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Table 1. Image distortion type.

TID2013 LIVE Distortion Types
√ √

Additive Gaussian noise√
Additive noise in color components√

Spatially correlated noise√
Masked noise√

High-frequency noise√
Impulse noise√

Quantization noise√ √
Gaussian blur√

Image denoising√ √
JPEG compression√ √

JPEG2000 compression√
JPEG transmission errors√

JPEG2000 transmission errors√
Non- eccentricity pattern noise√

Local block-wise distortions of different intensity√
Mean shift (intensity shift)√

Contrast change√
Change of color saturation√

Multiplicative Gaussian noise√
Comfort noise√

Lossy compression of noisy images√
Image color quantization with dither√

Chromatic aberrations√
Sparse sampling and reconstruction√

Fast-fading

4.2. Convergence Test

To validate the effect of the number of epochs in Step 1 on the performance in Step 2,
we compared different training epochs in Step 1 (5, 10, 15 and 20) in the LIVE database
shown in Table 2. For each test, the best is shown in bold. Therefore, 10 epochs were
selected for Step 1.

Table 2. Comparison of the performance of step 2 with different training epochs in step 1.

Epoch Numbers in Step 1 5 10 15 20

Performance
in step 2

SRCC 0.980 0.983 0.982 0.979

PLCC 0.985 0.988 0.986 0.982

4.3. Effect of Patch Size

In order to investigate the effect of patch size on the final prediction accuracy, we used
four different patch sizes (64, 112, 224, and 384). As shown in Table 3, the patch size of 64
and 112 shows better performance in SRCC and PLCC. For each test, the best is shown
in bold. Taking into account that when the patch size is too small, it is not conducive to
the quality assessment of large-size images. Thus, a patch size of 112 was used in the
following experiments.

Table 3. Comparison of the SRCC and PLCC with different patch size.

Patch Size 64 112 224 384

SRCC 0.983 0.983 0.979 0.963
PLCC 0.988 0.988 0.985 0.968
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4.4. Performances Comparison

We compared MSIQA with three FR-IQA methods (PSNR, SSIM [7], FSIMc [8]) and ten
NR-IQA methods (BLINDS-II [9], BRISQUE [10], CORNIA [22], Kang [26], BIECON [14],
Bosse [27], DeepBIQ [28], DIQA [15], Hallucinated [38], QualNet [39]). The test results of
the MSIQA model on the LIVE data set and TID2013 data set are shown in Table 4. The test
results of the MSIQA model for different distortion types in the LIVE data set are shown in
Table 5. For each test, the best two models are shown in bold.

Table 4. Comparison of the SRCC and PLCC with different methods on LIVE and TID2013 database.

Database LIVE TID2013

Metrics SRCC PLCC SRCC PLCC

FR
PSNR 0.876 0.872 0.687 0.706
SSIM 0.948 0.945 0.775 0.790
FSIMc 0.963 0.960 0.851 0.877

NR

BLINDS-II 0.912 0.916 0.536 0.628
BRISQUE 0.939 0.942 0.573 0.651
CORNIA 0.942 0.943 0.549 0.613

Kang 0.956 0.953 - -
BIECON 0.961 0.962 - -

Bosse 0.960 0.972 0.835 0.855
DIQA 0.975 0.977 0.825 0.850

Hallucinated 0.982 0.982 0.879 0.880
QualNet 0.980 0.984 0.890 0.901
MSIQA 0.983 0.988 0.877 0.880

Table 5. Comparison of the SRCC with different methods on LIVE for different distortion types.

Type PSNR SSIM FSIM BRISQUE CORNIA BIECON DIQA MSIQA

JP2K 0.895 0.961 0.972 0.914 0.921 0.965 0.961 0.983
JPEG 0.881 0.972 0.979 0.965 0.938 0.987 0.976 0.984
WN 0.985 0.969 0.971 0.977 0.957 0.970 0.988 0.998
GB 0.782 0.952 0.968 0.951 0.957 0.945 0.962 0.980
FF 0.891 0.956 0.950 0.877 0.906 0931 0.912 0.972

It can be seen from the results that our method performs very well on the LIVE dataset.
The performance on the TID2013 dataset is not very good. We analyzed some images with
large prediction errors and found that there are two reasons for this: (1) the TID2013 dataset
contains non-real synthetic images, and the model is not designed with the images which
synthetic and semantic information lacking. (2) Some of the distortion types in the TID2013
dataset are performed by changing the color of the image. Our model believes that in the
case of no distortion of image details, such distortion types have little impact on the quality
of the image, but have a greater impact on the aesthetic quality of the image. But the dataset
is manually annotated, and humans give lower scores to images with unreasonable colors.

4.5. Multi-Task Model Test

We tested the IQA and distortion type classification of the multi-task model proposed
by Section 3.5. Based on the MSIQA model, we trained the multi-task model. The test
results in the case of very few training epochs (1–3) are shown in Table 6. The joint tasks
complement each other by sharing information, and even improve the performance of IQA.
At the same time, we have made statistics on the classification accuracy of each distortion
type, as shown in Table 7.
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Table 6. SRCC and PLCC and classification accuracy on LIVE and TID2013 databases.

Database
LIVE TID2013

SRCC PLCC Accuracy SRCC PLCC Accuracy

MSIQA 0.983 0.988 - 0.877 0.880 -
MSIQA (multi-task) 0.988 0.996 0.846 0.879 0.881 0.811

Table 7. Distortion type classification accuracy on LIVE and TID2013 databases.

Database JP2K JPEG WN GB FF

LIVE 0.987 0.760 0.833 0.846 0.836
TID2013 0.887 0.701 0.812 0.801 -

5. Conclusions

In this paper, we propose a biological vision-based multi-scale fusion NR-IQA model
named MSIQA, which simulated the mechanism of the biological optic nerve and receptive
field and adopts a two-stage training method. The MSIQA model fully combines the image
contour feature, brightness and receptive field attention mechanism, and does not require
reference images in the training and testing stages. As a result, the SRCC of the MSIQA
model test on the LIVE database reached 0.983. On this basis, we propose a multi-task
model that can classify distortion types at the same time. In the future, we will compress
the model and increase the detection speed.
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