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Abstract: To evaluate the service performance of the track substructure of heavy axle load (HAL)
railway transportation, an inverse analysis was performed to estimate the resilient modulus values of
the track substructure, based on the deflection data obtained from light falling weight deflectometer
testing. Subsequently, a three-dimensional finite element model was developed to simulate the effect
of the train speeds (v) and axle loads (F) on the typical dynamic responses in the railway track system.
The results convincingly indicated that increasing v or F can amplify the track vibration. Finally, a
critical stress ratio method was adopted to evaluate the service performance based on the numerical
results. A recommended range of v and F was determined to maintain the long-term stability of the
HAL railway line. The findings can provide guidance for designing the track and maintenance plans
to avoid track support failures and ensure track infrastructure resiliency.

Keywords: service performance evaluation; empirical equation; dynamic response; light falling
weight deflectometer; finite element method; heavy axle load railway

1. Introduction

The rapid growth of the world’s freight transportation network has accelerated the
development of heavy axle load (HAL) railway transportation. The HAL railway system,
which is influenced by dynamic train loads, can adversely impact the reliability of the
roadbed, owing to the high amplitude and frequency of the associated loading cycles.
Therefore, it is necessary to evaluate whether the existing HAL railway tracks can satisfy
the requirements to support trains with a higher speed and larger axle load to improve the
transportation capacity of the HAL railway system [1].

In particular, railway tracks can exhibit a deteriorated performance after being sub-
jected to large axle loads or high train speeds, thereby failing to provide the required
stability [2]. The service performance of tracks is generally evaluated considering the
dynamic response caused by moving trains [3], and the dynamic behavior of the railway
system can be examined using numerical simulations. In this regard, the train speed (v)
and axle load (F) have been identified as the main factors that contribute to the dynamic
response of HAL railways [4,5]. Several numerical models for the railway track have been
established to determine the effect of v and F on the dynamic responses [5–8]. However, in
these studies, the combined effect of v and F was not considered; that is, the results were
limited to a single factor (v or F). Therefore, it is desirable to develop a united empirical
equation of the dynamic response, taking into account the numerical results, which can be
used to predict the acceleration and dynamic stress under the combined effect of v and F.

Furthermore, the abovementioned numerical models usually require elastic param-
eters (i.e., resilient modulus and Poisson’s ratio) to be determined for each layer of the
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substructure. They are both usually obtained by conducting laboratory tests or in situ
measurements under those of the loading environment [9,10]. However, collecting soil
samples is often not feasible owing to cost and time limitations and the occurrence of
traffic disruption. Moreover, soil samples alone cannot sufficiently indicate the track per-
formance [11–13]. A method to efficiently and accurately determine the modulus is being
considered as the foundation for further development of railway engineering and thus has
considerable theoretical and practical significance. One measurement technique, originally
developed for road and airfield pavements, involves the use of a light falling weight de-
flectometer (LFWD), which has been widely applied to investigate the track substructure
in the United Kingdom, Ireland, Germany, USA, and Canada [13–18]. However, a com-
plete description pertaining to the estimation of the resilient modulus of the HAL track
substructure in China has not been provided yet.

Analyzing the deflection data collected using the LFWD is a prompt and reliable
approach to characterizing the properties of the subgrade layers, and extensive efforts
have been made to discuss the use of these data as a performance measure for the railway
behavior [19–22]. In addition, several methods to evaluate the performance of railway
crossing rails have been presented [23,24]. However, most of these research efforts were
directed toward understanding the effects of the materials, moisture, and seasonal variation.
Until now, the problems of the service performance evaluation of HAL railways under
the dynamic impact of HAL trains have not been focused on. Therefore, it is necessary to
evaluate the stability of HAL railways considering an increase in the v and F of HAL trains.

To this end, this paper presents an approach involving LFWD testing to estimate
the resilient modulus of the track substructure. In particular, a finite element (FE) model
is established using ABAQUS software, in which an inverse analysis subroutine is used
to estimate the subgrade modulus from LFWD field test measurements. Herein, a user
subroutine within ABAQUS (i.e., UMAT, user-defined materials) was used to present
the nonlinear of the subgrade. To demonstrate the approach, a case study is performed
using data obtained from an existing HAL railway line in northwest China, which runs
between Baotou and Shenmu. Furthermore, a 3D FE model is established to investigate the
HAL-train-induced vibration behavior of the track, and the model was validated via field
testing. It should be noted that the ABAQUS software is used to conduct the inverse and
dynamic analysis in this research. In addition, certain empirical equations for the typical
dynamic response are formulated considering the combined effect of v and F, and the
method of service performance evaluation is discussed. The critical stress ratio is adopted
as an indicator to assess the long-term stability of a HAL railway line under suitable v
and F.

2. Inverse Analysis Pertaining to LFWD Test
2.1. Overview of LFWD Test and Its Inverse Analysis

The section DK65 + 629 on the Baotou–Shenmu HAL railway is selected to carry out
the LFWD field test (Figure 1) [25,26]. As shown in Figure 2a, the LFWD used in this study
is developed and manufactured by the Rincent BTP company. The operation mode of the
device is simple. As the sliding drop weight is released, it strikes the cylindrical shock
absorbers so that an impulse load of 40 ms duration with a maximum force ranging up to
35 kN is transferred through the loading plate into the ground [27]. The force is measured
using a load cell on the center of the plate, and geophones are used to measure the surface
accelerations at various distances from the footplate [14]. The vertical displacements (dn)
can be then obtained by integrating the accelerations. On this basis, the surface deflection
at different points away from the load application point can be then determined.
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Figure 1. LFWD test plan: (a) location of the Baoshen heavy axle load (HAL) railway; (b) test site;
(c) LFWD test; (d) LFWD device; (e) vibration pickup (891-II); and (f) data acquisition system (DH5922D).
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Figure 2. Inverse problem (a) input: LFWD field test; (b) process: finite element modeling; and
(c) output: comparison of measured and computed deflections.

The geophone distances were selected to target the displacement responses that are
a result of, and representative of, the differing layers of material that comprise a railway
track bed (see Figure 2a). They were based on previous works that empirically relate the
depth of materials affected by the load to the displacement responses measured at differing
distances from the applied load [14,18,28]. The geophones at 0.2, 0.3, and 0.6 m (M1–M3)
provide a combined measure of the whole of the support structure; and the 1.2, 1.5, and
1.8 m (M4–M6) geophones provide a measure of the combined stiffness of the embankment
and subgrade. The depth of materials varies over the length of the railway structures and,
as a result, the geophone placements are rarely optimal; however, experience has shown
these placements to be practical [14,18,28].

Subsequently, the deflection data resulting from an LFWD test can be used in combi-
nation with a model of the railway track structure to determine the values of the resilient
modulus necessary to characterize the material properties of the track substructure [14,29].
To this end, in the initial stage, the estimated values of the modulus are adopted for each
layer of the substructure in the FE modeling (Figure 2b), and the comparison between the
resulting deflections from the model and the field is then conducted.

In the end, the influence of the resilient modulus and Poisson’s ratio of each layer on
the magnitude of the deflections can be determined by performing a trial and error process
or a sensitivity analysis (Figure 2c).
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2.2. Three-Dimensional Numerical Model

The ABAQUS standard software is adopted to develop a three-dimensional FE model
to realize the LFWD testing on a railway track (Figure 3). Considering the symmetry of
the cross-section, a half-track model is developed. The load is assumed to act at the same
position as the test point of M0, and the load pulse is idealized using a half sine function
with a duration of 40 ms and an amplitude of 35 kN. It should be noted that the duration
and amplitude of the load pulse used in the FE model are consistent with LFWD loading
obtained in the field tests. Moreover, it has been demonstrated that the load pulse using a
half sine function form is reasonable, following the study of Burrow et al. [14]. A 20-node
quadratic brick reduced integration element (C3D20R) is used to represent the ballast,
subgrade, and ground elements. In any dynamic analysis, the finite element size has to
be selected carefully to ensure the accuracy of results. In general, the element size of the
FE model was estimated based on the smallest wavelength that allows the high-frequency
motion to be simulated correctly [30]. Accordingly, the sizes of used 3D finite elements
were taken as 0.05 × 0.15 × 0.1, 0.075 × 0.08 × 0.1 0.13 × 0.11 × 0.1, 0.13 × 0.24 × 0.1,
and 0.4 × 0.56 × 0.1 for the ballast, top layer, bottom layer, embankment, and foundation,
respectively. Hence, the FE mesh contains 235,812 elements and 253,518 nodes.
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2.2.1. Boundary Conditions

In the current case, the LFWD load is a transient dynamic load with a duration of
40 ms [14]. Meanwhile, the shear wave velocity Vs in the top layer, bottom layer, embank-
ment, and foundation can be approximately determined using the equation
(Vs =

√
E

2(1+ν)ρ
) as 232.9, 202.4, 196.9, and 150.0 m/s, respectively. Based on the description

mentioned above, during the 40 ms period of analysis, a wave will travel approximately
5.6 m away from the load. Therefore, the model is made sufficiently large (18, 20.75, and
16.6 m in the longitudinal (y), horizontal (x), and vertical (z) directions) to ensure that there
is insufficient time for the reflected shear waves to return to the part of the model of interest
during the analysis period of 40 ms. To this end, the bottom boundaries are restrained
(pinned) in the vertical and horizontal directions, and the side boundaries are constrained
in the lateral direction only. Moreover, due to half symmetry, the model is established with
the symmetrical boundary at the center surface.
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2.2.2. Track Substructure Properties Required for Structural Analysis

For granular materials, such as the coarse-grained materials used for the subgrade
layer, the stress is the primary factor affecting the resilient modulus. It has been noted that
the resilient modulus increases considerably with an increase in the confining stress and
only slightly with an increase in the repeated deviator stress. In this work, a widely used
model for the resilient modulus of granular materials, proposed by Tam and Brown [31],
was used to represent the granular material behavior, as shown in Equation (1).

E = K1

(
p
q

)K2

(1)

where E is the resilient modulus, p is the mean normal compressive stress, q is the deviator,
and K1 and K2 are material constants. In the three-dimensional stress state,

p =
σx + σy + σz

3
(2)

q =

√[(
σx − σy

)2
+
(
σy − σz

)2
+ (σz − σx) + 6

(
τ2

xy + τ2
yz + τ2

zx

)]
2

(3)

where σx, σy, and σz denote the normal compressive stresses in the x, y, and z directions
respectively, and τxy, τyz, and τzx represent the shear stresses in the xy, yz, and zx planes
respectively. For the ballast and foundation soil used for the ground, the linear elastic
model is adopted for the sake of simplicity.

2.3. Result of Inverse Analysis
2.3.1. Analysis

The analysis has three steps, i.e., Step I (when the FE model contains only the ground
layers, and an initial geostatic stress field is generated by performing a static analysis by us-
ing the ABAQUS initial condition option), Step II (the ballast and subgrade layers are added
to the model, and the resulting vertical displacements at the sensors are computed), and
Step III (the LFWD load is applied to the subgrade surface, and a time integration dynamic
analysis is performed). The time step is estimated through the Courant–Friedrichs–Lewy
condition. Because of the high density and elastic modulus of the top layer, ∆t adopted in
this model is primarily controlled by the top layer elements, which are around 5 × 10−4 s.
The deflection–time histories are computed by subtracting the deflections obtained during
Step II from those obtained in Step III.

As shown in Equation (1), the back-calculation parameters are base modulus value
(K1) and exponent coefficient (K2). Due to the complexity of Equation (1), it is difficult
to obtain the analytic solution to determine the back-calculation parameters. Therefore,
the method of trial-and-error was used in this study. In the calculation, the initial back-
calculation parameters (K1 and K2) were first set. A base modulus and an exponent
coefficient are set by experience from the previous studies [4,14,29], which is also listed
in Table 1. Using the initial estimated parameters of each layer, the peak deflections at the
sensors are computed and compared with those obtained from the field measurements.
Subsequently, the modulus values are modified by trial-and-error until the measured values
of the deflections closely match the corresponding values obtained from the simulation.
The difference between the calculated and measured LFWD deflections, which is known as
the percentage deflection fitting error and can be calculated using Equation (4) [14], must
be minimal. In this work, the value of this error is expected to be less than 3%.

εde f =
1
n

n

∑
i=1

|dm,i − dc,i|
dm,i

× 100% (4)
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where n is the number of sensors, dm,i is the deflection measured using sensor i, and dc,i is
the calculated deflection for sensor i.

Table 1. Properties of track component materials.

Sleeper

Young’s Modulus, E (GPa) 30
Poisson’s ratio 0.18

Density (kg/m3) 2500
Length ×Width × Height (m) 2.6 × 0.25 × 0.2

Ballast
Young’s Modulus, E (MPa) 180

Poisson’s ratio 0.25
Density (kg/m3) 1700

Top layer

1 Base modulus K1 (MPa) 275
1 Exponent K2 0.25
Poisson’s ratio 0.3

Density (kg/m3) 1950

Bottom layer

1 Base modulus K1 (MPa) 196.6
1 Exponent K2 0.2
Poisson’s ratio 0.25

Density (kg/m3) 2000

Embankment

1 Base modulus K1 (MPa) 186.1
1 Exponent K2 0.2
Poisson’s ratio 0.25

Density (kg/m3) 2000

Foundation soil
Young’s Modulus, E (MPa) 120

Poisson’s ratio 0.27
Density (kg/m3) 2100

1 Back-analyzed value.

2.3.2. Results

The analysis indicates that the FE model can be calibrated for the LFWD deflections at
the test site by using the appropriate constitutive equations, given as Equation (1), together
with the base modulus and exponent values presented in Table 1. In addition, the ballast
and ground are considered as linear elastic materials, and the corresponding parameters
adopted in previous research [6] are summarized in Table 1. The constitutive equations
can be used to represent the behavior of the subgrade layer, and the LFWD deflections
determined from the FE model are shown in Figure 4. The deflection fitting error obtained
using Equation (4) is 1.84%, which is less than the considered tolerance of 3% [14].
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3. Dynamic Analysis
3.1. Three-Dimensional Numerical Model
3.1.1. Track Geometry and Materials

The geometry and subgrade profile of the section DK65 + 629 on the Baotou–Shenmu
HAL railway line are shown in Figure 1b, and the 3D FE dynamic model, consisting of
190,078 elements and 201,812 nodes, is shown in Figure 5. The model dimensions were 18,
41.5, and 12.6 m in the longitudinal, horizontal, and vertical directions, respectively. All
the track components (i.e., sleeper, ballast, top layer, bottom layer, embankment, and foun-
dation) were modeled using 3D solid elements. To represent model geometry, 25 sleepers
were placed along the longitudinal direction at spacing intervals of 0.6 m. The interaction
between sleepers and ballast is set to be “hard contact” together with a friction of “rough”.
The sleepers, ballast, and foundation soils were considered as linear elastic materials,
whereas the top layer, bottom layer, and embankment were modeled using user-defined
materials, as expressed in Equation (1). The material constants were obtained based on the
LFWD inverse analysis described previously. The properties of all the materials considered
for this model are summarized in Table 1.
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In a dynamic analysis, the model boundaries must be selected carefully to ensure
the accuracy of the results. Furthermore, as described in Section 2.2.1, it is necessary to
simulate the effect of an unbounded domain for the case of long-term periodic or moving
loads. Hence, the FE meshes were surrounded by the infinite elements at the bottom and
side boundaries to absorb the stress waves at the boundary surfaces (see Figure 5b).

3.1.2. Train Loads

In the coupling calculation of the train–track system, the iteration convergence of the
two subsystems is required, which is extremely complicated and time-consuming [32].
Therefore, in this work, the train loads were calculated first and then applied to the rail
supporting nodes of the sleeper beam elements (Figure 5a).

To derive the train loads, a series of moving axle loads can be obtained according
to the train geometry shown in Figure 6a. Accordingly, the successive axle loads can be
expressed as a periodic function f (t) with a period of t4 [30]:

f (t) =


F 0 ≤ t ≤ t1
0 t1 ≤ t ≤ t2
F t2 ≤ t ≤ t3
0 t3 ≤ t ≤ t4

(5)
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Figure 6. Schematic of (a) train wagons, (b) normal force variation of wagon wheels, and (c) dynamic
load of a train with an axle load of 275 kN and speed of 60 km/h.

For the sake of simplicity, f (t) is supposed as a sufficiently smooth function, which
can then be transformed using the Fourier function, which is composed of a series of sines
and cosines.

f (t) = a0 +
∞

∑
n=1

[
an cos

(
2nπt

T

)
+ bn sin

(
2nπt

T

)]
(6)

where a0, an, and bn are the Fourier series coefficients. Therefore, the train loads can be
calculated if a0, an, and bn are determined. It should be noted that the principal frequencies
in Equation (6) range from 0 to ∞. However, according to Hamid et al. [33], considering
the frequency range from 0 to 25 Hz is sufficient to accurately calculate the train loads.
The adoption of this range of frequency is dependent on the previous study, which has
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shown that the dominant frequencies were found within 10 Hz [25]. Therefore, in this study,
only the first 46 terms of Fourier series that have a significant energy were considered, and
loads with frequencies greater than 25 Hz were ignored. Figure 6c shows the dynamic load
of a train with a wagon length of 11.094 m, an axle load of 275 kN, and a speed of 60 km/h.

The train loads calculated using the method described above were applied to the
sleepers with a shift in the loading time to simulate the passage of a train bogie. At a speed
of 60 km/h, for example, the train requires 0.036 s to traverse a distance of 0.6 m; thus,
0.036 s is the loading interval in the time domain. This method of loading has been used in
the previous study and demonstrated to be correct and reasonable [10].

3.2. Validation Using Experimental Data

The model performance was analyzed by comparing the vibration results to the field
trails collected in the Baoshen HAL railway between Baotou and Shenmu [25]. Figure 7
shows a comparison between simulation results and field experiments. Predicted soil
response has a high correlation of peak particle acceleration with the experimental result.
Figure 8 shows the attenuation of the vertical peak acceleration (Amax) with an increase
in the distance from the track centerline. Strong similarities can be noted between the
magnitudes and gradients of both the lines, and the correlation between the results is
0.98, which was rendered as sufficiently accurate by Connolly et al. [34]. Therefore, the
numerical model can be considered to be capable of effectively simulating the Amax both
near and far from the track, which demonstrates the reliability of the calculation method
adopted in this work.
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3.3. Result of Dynamic Analyses

Using the validated computation model, a parametric study was performed to eval-
uate the influence of v and F on the predicted dynamic response of the reference service
performance. The dynamic response of the reference track model was evaluated based on
the vertical peak values of the acceleration and dynamic stress observed within the track.

3.3.1. Effect of Train Speed

As a representative example, Figure 9 shows the resulting vertical peak values of the
acceleration and dynamic stress observed at the center of the top surface layer. As expected,
the acceleration and dynamic stress both tend to increase with an increase in v. A linear
amplification is observed in the considered range of v. The slope of the linear fitting
line of the dynamic stress is gentler than that of the acceleration, thereby indicating that
the increment of the vertical peak value of the dynamic stress is slower than that of the
acceleration. For example, as v increases from 60 to 160 km/h, the acceleration increases by
271%, whereas the dynamic stress increases by 18%. The amplification of the vertical peak
of the acceleration with v is more evident than that for the vertical peak of the dynamic
stress. The vertical peak values of both the acceleration and dynamic stress increase with
v in a linear manner for the range of tested speeds, and the respective relations can be
expressed as follows:

Ars,max = 0.083v− 2.1 R2 = 0.999 (7)

σrs,max = 0.26v + 110.6 R2 = 0.934 (8)

where Ars,max and σrs,max, respectively, denote the vertical peak values of the acceleration
(unit: m/s2) and dynamic stress (unit: kPa) on the top layer surface; v represents the train
speed (unit: km/h); and R2 is the correlation coefficient.
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3.3.2. Effect of Axle Load

Figure 10 shows the calculated variation of the vertical peak values of the acceleration
and dynamic stress on the top surface of a subgrade bed with F varying from 200 to 300 kN.
With an increase in F, the vertical peak values of the acceleration and dynamic stress exhibit
different linearly upward tendencies, which can be fitted based on the calculated data
as follows:

Ars,max = 0.0152F R2 = 1 (9)

σrs,max = 0.649F + 0.021 R2 = 1 (10)

where F represents the axle load (unit: kN). The abovementioned linear fitting formulations
indicate that Ars,max and σrs,max increase with the increasing F. Furthermore, the increment
in the Amax is identical to that of the peak dynamic stress. For example, as F increases from
200 to 300 kN, both the acceleration and dynamic stress increase by 50%. The amplifications
for higher axle loads can also be inferred from these results as following a trend similar to
the material response; however, only a limited range of axle loads have been considered in
this study. This linear relationship is related to the fact that the kinematic energy transmitted
to the system, which increases with the mass of the axle is proportional to the vertical peak
values of the acceleration and dynamic stress.
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3.3.3. Dynamic Response Attenuation in Soil

The Amax commonly decreases with distance from source, and it seems that this general
rule can also be found in the responses of track bed as shown in Figure 11. The acceleration
levels along measurement line show significant decrease with increasing distance. The Amax
commonly decreases with distance from source, and only approximately 30–56% remains
after attenuation for a subgrade bed depth of 2.5 m, whose value can be remained around
5% after attenuation of 7.0 m subgrade. Furthermore, Amax tends to be uniform in the
embankment layer at different v and F, as the Amax values are nearly coincident at a soil
depth of more than 7.0 m. Additionally, Figure 11 also indicates that v and F have significant
effects on the Amax on the top layer surface. It increases with v and F. However, this effect
varies with depth from the source. The closer to the source, the greater the impact.

In this work, Amax is normalized by the corresponding values obtained on the top
layer surface and expressed as an attenuation ratio of vibration. As the attenuation ratio
deviation between the different conditions is low, all the cases can be averaged, as shown
in Figure 11b. A best-fit curve can exhibit the variation of the attenuation ratio profile with
increase in the depth, which can be expressed as an exponential function:

fAH = 1.07e−0.29H − 0.07 R2 = 0.996 (11)

where fAH is the attenuation ratio of the acceleration, e is the natural logarithm constant,
and H is the distance to the bottom of the ballast along the track centerline.

Figure 12a shows the vertical peak dynamic stress distribution (σd,max) against the
depth, as generated by moving trains for different v and F. The train loads are translated
through the top and bottom layers to the embankment in a wave form. In the process of
translation, a certain amount of energy is absorbed by damping, and the translating area
becomes wider. Similar to the attenuation characteristics of the acceleration, σd,max atten-
uates with an increase in the depth. However, Figure 12a indicates that σd,max attenuates
considerably faster than Amax does. For example, at the bottom of the top layer (0.6 m),
σd,max is attenuated by approximately 75%, whereas the attenuation is approximately 95% at
the bottom of the bottom layer (2.5 m). σd,max is attenuated by nearly 98% at the foundation
(8.1 m), resulting in a negligible value compared to the weight of the subgrade filling.
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A large proportion of σd,max is visibly attenuated in the top and bottom layers, and this
result is consistent with that reported in existing literature [35].
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The results of normalization of σd,max at different depths using σd,max at the top layer
surface are shown in Figure 12b. It can be noted that the data can be fitted well by using
the proposed empirical formula, that is Equation (12), which indicates that the vertical
attenuation laws of attenuation for different F are similar.

fSH =
0.18

0.18 + H
(12)

where fSH is the attenuation ratio of the dynamic stress.
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4. Evaluation of Service Performance

The dynamic stresses on the track structure, as induced by HAL trains, represent
a critical factor that must be considered in the design of HAL railways. In this work,
an integrated analysis of all the above mentioned numerical and empirical results was
performed to evaluate the service performance. As mentioned previously, the dynamic
stresses on the top layer surface are influenced by v and F, and this influence can be
expressed using Equations (8) and (10), respectively. Considering the vertical peak dynamic
stress on the top layer influenced by the two factors presented above, a function of the
variation in v and F is stated:

σd,max,v−F = σ0 × f (v)× f (F) (13)

where σ0 is a model parameter, and f (v) and f (F) depend on v and F, respectively. Based
on Equations (8) and (10), a nonlinear regression analysis of these numerical results in the
following equation:

σd,max,v−F = 0.0078× (0.26v + 110.6)× (0.649F + 0.021) (14)

By combining Equations (12) and (14), the distribution of σd,max under the track
structure with varying v and F can be predicted.

Figure 13 shows the ratio of σd,max to the self-weight stress (σs) at the bottom layer
(2.5 m below the top layer surface) with varying v and F for the locations directly below
the track centerline. According to the Code for the Design of Heavy Haul Railway [36] of
China, σd,max/σs should be less than 0.20 to maintain the long-term stability of a railway
subgrade. Consequently, the thickness of the top and bottom layers considered in the
existing HAL railway network can likely satisfy the requirements to realize a heavy-haul
train with a certain v and F within the available zone (see gray zone of Figure 13); however,
the operation of HAL trains with v and F outside the available zone cannot be realized
unless the top and bottom layers are reinforced. It should be noted that the operation
of HAL trains with different v and F for the existing railway lines [7,25,37,38] lies in the
predicted available zone (see Figure 13), which demonstrates that the proposed service
performance evaluation method is valid and accurate.
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5. Conclusions

This paper proposes the use of LFWD-based inverse analysis to estimate the resilient
modulus of the track substructure of the existing HAL railway systems. The resilient
modulus for each layer of the substructure are set to the elastic parameters of a 3D FE model
to perform a dynamic response analysis. In addition, a parametric study is performed to
investigate the effects of v and F on the track characteristics. Accordingly, based on the
numerical results, the necessary conditions to ensure long-term stability of the existing
HAL railway are discussed. The following conclusions can be drawn from this work:

(1) The LFWD, which has been proven to be a versatile and reliable non-destructive
testing device for road pavements, can be a valuable tool to realize the evaluation of
China’s HAL railway system. An agreement is noted between the 3D FE model and
the deflection data, which further demonstrates that the proposed approach can be
used to determine the resilient modulus with a satisfactory accuracy.

(2) The effects of various factors on the dynamic response are notable. The vertical peak
acceleration (Amax) at the bottom layer reduced by approximately 30–50% compared
to that at the top layer, whereas the dynamic stress reduced by approximately 95%.
Furthermore, the Amax and dynamic stress decayed with the depth exponentially and
hyperbolically, respectively.

(3) The method of service performance evaluation is established based on the results of
the parametric study on the effects of varying v and F. Based on the recommendation
that the critical stress ratio should be less 0.2, an endurance limit of v and F is assigned
to ensure the long-term stability of the existing HAL railways. It was noted that F
can be up to 260 kN, whereas v must be less than 60 km/h. However, if v needs to be
increased, the corresponding F must be reduced to ensure service safety.

It must be noted that the findings in this work were derived considering the case of the
HAL train C80, running between Baotou and Shenmu. It is expected that further analogous
parametric studies performed considering trains with different configurations or subgrades
with various resilient moduli, may lead to different results, which can help identify the
different critical regions to improve the current study. Additionally, future research will
need to be carried out to examine the vibration velocity of the subgrade which could not be
achieved in this study due to the limitation of the current testing apparatus. Furthermore,
various multi-body vehicle models will also be used to model the train load.
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