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Abstract: Fisheye lens cameras are widely used in such applications where a large field of view (FOV)
is necessary. A large FOV can provide an enhanced understanding of the surrounding environment
and can be an effective solution for detecting the objects in automotive applications. However, this
comes with the cost of strong radial distortions and irregular size of objects depending on the location
in an image. Therefore, we propose a new fisheye image warping method called Expandable Spherical
Projection to expand the center and boundary regions in which smaller objects are mostly located. The
proposed method produces undistorted objects especially in the image boundary and a less unwanted
background in the bounding boxes. Additionally, we propose three multi-scale feature concatenation
methods and provide the analysis of the influence from the three concatenation methods in a real-time
object detector. Multiple fisheye image datasets are employed to demonstrate the effectiveness of the
proposed projection and feature concatenation methods. From the experimental results, we find that
the proposed Expandable Spherical projection and the LCat feature concatenation yield the best AP
performance, which is up to 4.7% improvement compared to the original fisheye image datasets and
the baseline model.

Keywords: fisheye lens; spherical projection; object detection

1. Introduction

Comprehensive information about the environment is one of the important properties
of advanced driver-assistance system (ADAS). In order to thoroughly understand the
road scenes, it is necessary to detect all the relevant surrounding objects with a sufficient
range of view. During the last few years, deep-learning based methods show the most
promising performance with the development of open-source frameworks [1–5]. This
approach requires a relatively large computational resource, but modern hardware can
easily be adapted to real-time detection.

One of the core features in systems-on-board autonomous vehicles is perception. A
combination of sensors, such as cameras, radar, lidar, and GPU, are used to collect the data
around the environment and extract the relevant information in the perception stage. In a
low-cost sensor setup, 2D cameras with a large field of view (FOV) can efficiently cover a
large area around the vehicle and ensure the safety of the autonomous driving. Especially,
the fisheye camera can obtain visual information with a more than 180◦ field of view, thus
the fisheye camera is widely used in ground, aerial, and underwater autonomous robot as
well as surveillance [6–8].
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However, this advantage comes at the cost of strong radial distortion. The resulting
issues, such as curving and diagonal tilting of objects are increasingly severe towards the
edges of the fisheye image. Therefore, the shapes of the objects in the same category are
less conformal to each other in different images and the target bounding box contains more
unnecessary background. Another notable feature of the fisheye camera is that both relative
size and distance are exaggerated. The ultra-wide angle lens shows nearby objects appear
much larger, while objects located far away or in the boundary appear much smaller than
the lens of perspective cameras. Consequently, the already poor performance of object
detectors for small or tiny objects is further degraded.

Due to the unique feature of the strong radial distortion, object detection in the fisheye
image must solve the two problems:

• Relatively different object size depending on the location and distance.
• Inherent Curving and diagonal tilting of objects in the boundary area.

To solve these problems, many investigations have been introduced and they are
categorized in the following two main approaches:

• Object detection using the original fisheye image.
• Object detection after fisheye image rectification or undistortion.

The first approach is using the original image. Instead of fisheye image rectification or
undistortion, they investigate distortion-invariant or rotation-invariant neural networks.
SphereNet [9] suggests a distortion-invariant neural network for the omnidirectional im-
ages, adapting the sampling grid locations of a convolutional kernel. The SphereNet kernel
uses the projection of the spherical camera model to the tangent plane on the sphere,
yielding filter outputs which are invariant to latitudinal rotations.

Alternatively, a rotation-invariant model which predicts object orientations is proposed
by [10,11]. In [10], the original fisheye image is used without undistortion to avoid the
bottleneck in achieving real-time recognition performance. The road object such as vehicle
and pedestrian are rotated in the boundary of the original fisheye image, thus the authors
proposes a rotation invariant deep neural network. In contrast, a rotation sensitive neural
network is proposed in [11] to detect objects in the original fisheye image. The bounding
box is rotated to fit the orientation of the detecting object. However, these two investigations
detect road or indoor objects which size is normal compared with the image size. In their
test images, the sizes of the bounding boxes of pedestrian, vehicle, and computer monitor
are generally large compared with the image size.

In [12], the original fisheye image is trained without any lens parameters or calibration
patterns. Instead, the authors propose a contour-based object detector to cope with the
distortion of the fisheye image. A ’distortion shape matching’ strategy is proposed to
train the contour information of objects using a fisheye image detection network. A small
object detection method in the fisheye image is proposed in [13]. The authors propose a
concatenated feature pyramid, which is a variant of the Feature Pyramid Network (FPN),
to find very small road objects in a fisheye image. They add an additional concatenation
network to the original FPN in YOLOv3 to increase the small object detection performance.

The second approach is based on the rectification or undistortion of the original fisheye
image. The generative-adversarial network is adapted to rectify the fisheye image in [14,15].
However, these studies require complex computations, hindering the real-time performance
that are required from one-stage object detectors. The cylindrical projection model is also
used to rectify the fisheye image and to find the 3D objects in the road scene [16]. The
authors propose that training the rectilinear images is better than using the original fisheye
image for detecting the 3D road objects. The authors use their own fisheye image database
for performance comparison. The images are captured by using a side view camera, thus
the number of road objects is smaller than that in the standard benchmark.

As described above, recent investigations on the fisheye image object detection mostly
utilize the original image rather than using rectification or undistortion method. This is
due to the strong radial distortion of the fisheye image. Some investigations utilize the
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conventional cylindrical or spherical rectification; however, the rectified images still contain
object size variation due to barrel or pincushion distortions.

Therefore, in this paper, we first propose a new spherical-based projection in real-time
speed to solve radial distortion and detect small objects with increased pixel information.
Second, we propose a multi-level feature concatenation to a convolutional neural network,
suggesting three types of concatenated YOLOv3 with Spatial Pyramid Pooling (SPP) mod-
ule [17–20]. We evaluate our solution with several public datasets, as well as our new
collection of images gathered with a 185◦ fisheye lens. The major contributions of this study
are noted as follows.

• Introduction of a new front-view fisheye dataset consisting of 5K bounding box
annotations.

• Proposal of an effective spherical projection model on fisheye images based on the
size of objects in the dataset.

• Proposal and analysis of three feature concatenation methods to reduce small objects
detection issues in real-time object detector.

Figure 1 shows some examples of object detection bounding boxes from several types
of fisheye images. The size of bounding boxes is different according to the size of the
detected objects. In the previous investigations, the detected objects are generally large in
the image. Thus, the detection is relatively easier than small or tiny objects. In contrast, in
this paper, we propose a deep neural network to detect not only regular but also small or
tiny road objects. In one of our results in Figure 1g, the bounding box size of the detected
object is very tiny compared with the size of the rectified image. To achieve the best
performance of tiny object detection, we propose a new spherical projection model and
feature concatenation methods.

Figure 1. Comparison of the size of bounding boxes: (a) Demirkus et al. [8]; (b) Coors et al. [9];
(c) Arsenali et al. [10]; (d) Chen et al. [11]; (e) Tangwei et al. [12]; (f) Elad et al. [16]; and (g) proposed
Fisheye-Dongseongro image.

In Section 2, we describe related works on commonly used fisheye camera projection
models, fisheye lens dataset, and deep-learning-based object detection models. Section 3
briefly describes the proposed projection algorithm, the details of the experimental setup,
and concatenated model design. In Section 4, we present the experiments and analysis of
the results. Finally, Sections 5 and 6 discuss the quantitative improvement of the proposed
method based on the results of four datasets and conclude the paper.

2. Related Works
2.1. Fisheye Camera Projection

Fisheye lens can cover large areas in a circular image with more than 100◦ horizontal
field of view, but results in considerable distortions. Figure 2 illustrates the common types
of the distortion from modern cameras. Barrel distortion, as shown in Figure 2b is the
apparent effect of the fisheye image. Image magnification of this distortion reduces with
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the distance from the optical axis, presenting straight lines to be curved outwards which
is a similar shape as the barrel. On the other hand, the pincushion distortion shown in
Figure 2c shows more magnification with the distance from the optical axis, showing the
lines curved towards the center of the image.

Figure 2. (a) Image without distortion and with two common types of radial distortion: (b) barrel
distortion and (c) pincushion distortion.

Consequently, several rendering methods have been studied to minimize these distor-
tions. The most representative method is to reproject the fisheye image to the undistorted
image by using the principle of fisheye camera models, such as spherical, cylindrical, and
rectilinear projection [11,21]. The camera model describes how three-dimensional (3D)
world points are projected into two-dimensional (2D) pixel coordinates. Fisheye image
correction can be accomplished by the process of mapping the points in the spherical
coordinates θ and φ to the image coordinates x and y.

2.1.1. Rectilinear Projection

Rectilinear projection, also called as “perspective”, “gnomonic”, or “tangent-plane”
projection, is mostly used for the calibration of general cameras. This projection maps a
portion of the surface of a sphere to a flat image [22], proceeding as follows:

x =
cos φ sin (θ − θ0)

sin φ1 sin φ + cos φ1 cos φ cos (θ − θ0)
,

y =
cos φ1 sin φ− sin φ1 cos φ cos (θ − θ0)

sin φ1 sin φ + cos φ1 cos φ cos (θ − θ0)
.

(1)

The main advantage is that it renders the straight lines in 3D world to the straight
lines in 2D images. However, the objects and structures are significantly stretched towards
the corners and look more unnatural with a larger view. Therefore, this projection is
recommended when a horizontal and vertical FOV is less than 120◦.

2.1.2. Cylindrical Projection

Cylindrical projection maps the horizontal coordinate to the longitude θ. For the
vertical coordinate, it projects a surface of a sphere onto a cylinder using the tangent of
latitude φ, which can be envisioned by surrounding the circumference of the sphere with
a flat piece of paper. Using the cylindrical projection, several authors estimate the depth
from wide angle cameras [21,23]. The projection is expressed as follows:

x = θ,

y = tan φ.
(2)

Since it stretches the object vertically with the tangential operation, the vertical field
of view has a physical limit of 180◦. In addition, vertically-longer-image distorts objects
narrower which can hinder the accurate detection when using square kernel type of
standard convolutional neural network.
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2.1.3. Spherical Projection

Spherical projection, also called as “equirectangular” or “equidistant cylindrical” pro-
jection, maps the longitude and latitude linearly to horizontal and vertical coordinates:

x = θ,

y = φ.
(3)

Because of its simple relationship between the position of an image pixel and its
corresponding 3D location, this projection is used in many applications for mapping a
surface of a sphere to a flat image.

Some works have successfully demonstrated in 2D object detection in panoramic
images with standard convolutions [24], and in omnidirectional images with non-standard
convolutions [9]. The advantage of spherical projection is that it can support the vertical
field of view of the fisheye lens over 180◦. Additionally, it generates fewer vertically-long
objects compared to cylindrical projections, since the spherical projection maps meridians
and latitude to the lines with constant spacing. Therefore we use spherical-based projection
to the fisheye images in this study.

2.2. Fisheye Dataset for Urban Driving
2.2.1. Synthetic Dataset

Generating a large volume of the dataset is a highly time-consuming task. To handle
this issue, some works suggest leveraging open-source datasets with commonly used
camera models.

In a similar way, two well-known datasets, VOC2012 [25] and Wider Face [26] are
synthesized to fisheye images in [27]. For the stereo algorithm, 45k synthetic fisheye images
in four orthogonal directions are presented in [28]. In our work, we use synthetic as well
as real fisheye datasets. The synthetic fisheye images are generated from CityScape [29]
and KITTI [30] dataset following the method in ERFNet [31]. Since the CityScape dataset is
intended for a semantic segmentation task, we convert original annotations to bounding
box format. The example images are shown in Figure 3.

Figure 3. (a) Original image. (b) Synthetic fisheye images from KITTI (top) and CityScape (bottom).

2.2.2. Real Dataset

Several authors have considered the fisheye cameras for ego vehicles. Among them,
some notable works are classification and tracking of cars and pedestrians using hybrid
cameras [32], pedestrian detection using a combination of synthetic and real images from a
360◦ horizontal FOV camera [33]. In addition, WoodScape [34] is a multi-camera fisheye
dataset, providing 360◦ sensing around a vehicle with four fisheye lenses.

At the beginning of our work, there was no publicly available fisheye dataset with
object detection-related labels. Therefore, we collected our own fisheye images with one
185◦ FOV lens and labeled the bounding box for nine object classes. In addition, we
employed the newly open-source dataset WoodScape which is comprised of nine tasks
including 2D bounding box detection.
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2.3. Object Detection Model

The latest object detection models are commonly sorted into two types: one-stage
detector and two-stage detector. For applications, where faster inference is required,
typically a one-stage detector which directly predicts bounding boxes (bbox) and classes is
used. On the contrary, the two-stage model first extracts region proposals, before predicting
the exact bboxes and the corresponding classes to those locations. Since we aim for real-time
performance, a one-stage detector will be chosen.

As for the one-stage model, anchor-based and anchor-free detectors are frequently
studied. The anchor box is a predefined bbox of a certain height and width. Among
anchor-free detection methods, keypoint detection [5,35,36] utilizes a center, or a corner
point, without using any predefined anchors. An alternative way is to detect the objects
with pixel-wise prediction [37].

In anchor-based detectors, the bounding boxes are defined to capture the scale and
aspect ratio of target object classes. During detection, the predefined anchor boxes are
tiled across the image. The most popular anchor-based network are the various versions of
YOLO [17,18,38].

YOLOv3 [17] makes the prediction at three different scales based on feature pyramid
networks structure [39]. Additionally, it adopts up-sampling layers concatenated with
the previous layers to preserve the detailed features. Moreover, this algorithm uses more
anchor boxes, logistic regression for label prediction, multi-label classification, and deeper
backbone model Darknet-53.

To develop a more efficient network, the YOLOv4 has been released by applying “Bag
of freebies” and “Bag of specials”. Bag of freebies are the training strategies that only
change the cost in the training procedure and Bag of specials includes plugin modules or
post-processing methods that only increase the inference cost for higher improvement in
the detection accuracy. Despite the advantages of YOLOv4, we employ YOLOv3 in this
study because it was used to lay the groundwork that is extended here from prior work.
Moreover, many functionalities of the “Bag of freebies” and “Bag of specials” of YOLOv4
can be implemented in this framework as well.

In this paper, we exploit the concatenation layer which can capture the spatial in-
formation from the shallower layer, and semantic features from the deeper layer which
improves the detection performance of small objects [13,40]. Therefore, we suggest addi-
tional concatenation modules with three variants based on YOLOv3-SPP for extracting
more meaningful information for small objects in fisheye images [41]. Figure 4 presents the
structure of the baseline and each concatenated model.

Figure 4. Different feature concatenation strategies. (a) YOLOv3 with Spatial Pyramid Pooling mod-
ule. (b) Short-skip Concatenation. (c) Long-skip Concatenation. (d) Short-Long-skip Concatenation.



Appl. Sci. 2022, 12, 2403 7 of 23

3. Proposed Method
3.1. Training Data
3.1.1. Label Transformation

Among our datasets, the CityScape originally has fine pixel-level annotation files
for dense semantic segmentation. To employ this data to our algorithm, we first selected
necessary classes for object detection. Our custom categories are composed of 10 different
objects: person, rider, car, truck, bus, train, motorcycle, bicycle, caravan, trailer. For the
group classes consisting of multiple objects, such as person group, car group, and bicycle
group, we manually separated and re-annotated by one object unit. Second, we extract
four corner points of the objects xmin, xmax, ymin, ymax from the polygon values consisting
of pixel points (xi, yi) of object boundary which are expressed as follows:

xmin = min
xi

(x1, . . . , xn),

ymin = min
yi

(y1, . . . , yn),

xmax = max
xi

(x1, . . . , xn),

ymax = max
yi

(y1, . . . , yn).

(4)

Since the label format of YOLO is based on the relative values, we convert the absolute
corner points to a relative one center point with the size of the bounding box.

3.1.2. Dataset Collection

Circular fisheye images from the Fujinon FE185C057HA-1 lens with 1.8 mm focal
length and 185◦ FOV were captured with a FLIR Grasshopper 3 GS3-U3-28S4C-C Camera.
Since a front view is the most important vision of the autonomous driving, we installed the
camera to the front window of the vehicle as illustrated in Figure 5.

Figure 5. Fisheye camera installed on the front window of a test car.

The data, consisting of 21k road scenes in Daegu Dongseongro, South Korea, were
gathered during cloudy and drizzling weather. Bounding boxes were manually annotated
to 5k images.

3.2. Expandable Spherical Projection

The idea of spherical projection is to project the distorted fisheye image into the
undistorted cylinder image, whose equal distances measured from the center correspond
to equal steps in the angle of 3D scene. The mathematics of this projection can be expressed
in longitude and latitude coordinate systems.

xn =
xcy − xc

Wcy
,

yn =
ycy − yc

Hcy
,

(5)
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where xn and yn are normalized cylinder points, presented in (5) and xcy and ycy are pixel
points of cylinder image. xc and yc indicate the center point of the image and Wcy and Hcy
means the width and height of the image, respectively. The cylinder points are directly
mapped to the normalized longitude θn and latitude φn.

θn = xn,

φn = yn.
(6)

Then, the coordinates multiplied by θmax and φmax of the sphere are transformed into
3D sphere point P (Px, Py, Pz) in (7) and ( 8).

θ = θmaxθn,

φ = φmaxφn,
(7)

where θmax is half of the horizontal field of view and φmax is half of the vertical field of view.
In this paper, both horizontal and vertical FOV are set as 185◦.

Px = cos φ cos θ,

Py = cos φ sin θ,

Pz = sin φ.

(8)

Using real spatial coordinate P, we calculate r and θ
′

for the fisheye pixel points, as
shown in (9). The F is the field of view of the fisheye lens.

r =
2 tan−1(

√
Px

2 + Pz
2, Py)

F
,

θ
′
= tan−1(Pz, Px).

(9)

Finally, the transformation of the pixel coordinate (x f e, y f e) in the fisheye image is as
follows in (10). R and (cx, cy) are the radius and center of circular image, respectively.

x f e = Rr cos θ
′
+ cx,

y f e = Rr sin θ
′
+ cy.

(10)

Expansion Weight

The relationship between pixel point x of the cylinder image and longitude θ in basic
spherical projection is linearly mapped. Instead of using θ in (7), we suggest the expression
of θproposed which is the multiplication of expansion weight w and θ in expandable spherical
projection, as shown in (11). Compared to our previous study [41], we described the
equation of the θ in more details of normalization and scaling to the field of view. The
weight w is a non-negative parameter for increasing the marginal or central area of the
image, consisting of scale factor α for determining the expansion, and β for balancing the
effect of the edge areas, as shown in (12).

θproposed = θmaxθnw, (11)

w = α + β
|θ|

θmax
, (12)

where θ is a longitude from the spherical coordinate, and θmax is half the field of view. The
absolute value of θ divided by θmax represents whether a projected point is placed near the
middle or boundary regions.

Near the center of the image, the value of |θ|
θmax

is close to zero, where weight w ∼= α.
When α is lower than one, the cylinder point is projected into a larger value, which gives
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expanding effect to the center area. If α is higher than one, the center areas are projected as
narrower in the cylinder image. On the other hand, |θ|θmax

becomes one around the margin
regions, where w ∼= (α + β). When value of (α + β) is lower than one, the edge areas are
stretched more. When (α + β) is higher than one, projected areas are narrower than original
spherical image.

For synthetic fisheye images, objects near the edge areas appear smaller and narrower,
and objects near the center appear larger than their actual size. Therefore we set higher
expansion to margin, and lower expansion to center areas, where α and β are set as 1.2 and
−0.3, respectively.

In the case of a real fisheye image, smaller objects are frequently around the center
area. distant objects are more often located at the center and appear much smaller than
their real size. On the other hand, objects appearing near the margin are located closer to
the test vehicle and do not need much expansion. Therefore we extend more on the center
area with α = 0.7 and β = 0.17, giving higher expansion to the center than to the margin.
These parameters guarantee the projected pixels within the bounds of the image.

3.3. Concatenated YOLOv3-SPP

In this section, we propose additional concatenation modules to YOLOv3-SPP model
with three variants for extracting more meaningful information about small objects. YOLOv3-
SPP is a baseline model and Figure 6 shows the architecture of YOLOv3 network model.
In this baseline model, we modified the partial neck of the network to introduce three
different feature concatenation methods. Figure 7 shows a detail of the partial neck of
YOLOv3. Here, CBL is a combination of convolutional, batch normalization, Leaky ReLu
Activation layers and 2× Up indicates up-sampling module. Concat combines the feature
map from the backbone layer and the output from 2× Up layer.

Figure 6. The network architecture of YOLOv3.

Figure 7. Detailed architecture of YOLOv3-SPP. (’∗’ means the repetition of CBL).
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3.3.1. SCat: Short-Skip Concatenation Model

SCat model, illustrated in Figure 8, uses short skip-connections on the neck. We add
one concatenation module on the first scale prediction layer, and split five convolutional
layers in YOLOv3-SPP into two parts at the second and third prediction layer, then use the
skip-connection layer on the neck part of the model. Each concatenated skip-connection is
followed by five additional convolution operations to process the features more meaningful
to the detection.

Figure 8. Detailed architecture of SCat. (’∗’ means the repetition of CBL).

3.3.2. LCat: Long-Skip Concatenation Model

LCat merges the feature maps with longer skip-connection, employing shallower
layers than the baseline model. While YOLOv3-SPP brings the local feature maps from
layers 61 and 36, we draw lower-level features from layers 55 and 24 with one more
concatenation layer from layer 8, as illustrated in Figure 9.

Figure 9. Detailed architecture of LCat. (’∗’ means the repetition of CBL).

3.3.3. SLCat: Short-Long-Skip Concatenation Model

SLCat model, shown in Figure 10, combines core characteristics of the previous two
approaches which concatenate with short skip layer at first prediction layer and retain
more spatially detailed features to second and third prediction layer with longer skip-
connection. Using the extra three convolution layers after the concatenation, we prevent the
unnecessary features from decreasing the performance. Unlike the LCat model, we follow
the same concatenation scheme as the YOLOv3-SPP, and re-use the feature map at the
second prediction as well. Then we add one concatenation module at the third prediction.
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Figure 10. Detailed architecture of SLCat. (’∗’ means the repetition of CBL).

3.4. Pseudocode of the Proposed Networks

This section presents pseudocodes of the proposed networks. The proposed networks
employ YOLOv3-SPP as the baseline model, thus the pseudocode of the proposed networks
looks similar to that of the general convolutional neural network. Two pseudocodes are pre-
sented as ‘Algorithm 1’ and ‘Algorithm 2’. In below, ‘Algorithm 1’ shows the pseudocode
of the proposed training algorithm, and ‘Algorithm 2’ for the detection algorithm.

Algorithm 1 Training Algorithm.

1: Inputs:
The road view training set

2: Initialize:
N: number of epochs

3: Augment and resize the image
4: for i = 1 to N do
5: Forward-pass in YOLO-based model
6: Predict Bounding box (x, y, w, h, con f ) and class probabilities
7: Calculate Loss
8: Do Back-propagation
9: Update weight of the model

10: Calculate mean Average Precision
11: if m < mean Average Precision then
12: Save the model
13: m = mean Average Precision
14: end if
15: end for

Algorithm 2 Detection Algorithm

1: Inputs:
The road view Test set

2: Initialize:
N: number of epochs

3: Resize the test image
4: Forward-pass in trained model
5: Predict Bounding box B (x, y, w, h, con f ) and class id for each anchor
6: Do Non-Maximum-Suppression
7: return Detection Result
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4. Experiments
4.1. Overview

In this section, we evaluate the effect of different projection approaches to the YOLOv3-
SPP and different concatenated models from the fisheye and projected images. First, the
evaluation metrics will be discussed briefly, then we will present the detection accuracy
from four datasets: Synthetic Fisheye-CityScape, Syntehtic Fisheye-KITTI, WoodScape, and
Fisheye-Dongseongro.

4.2. Experiments on Synthetic Fisheye-KITTI
4.2.1. Implementation Details

We set 24 as the mini-batch size, 512 as the size of the image, 300 epochs, 0.00019 initial
learning rates, and apply the cosine decay learning rate scheduling strategy. The mo-
mentum and weight decay are, respectively, set as 0.937 and 0.0005. We take 7 different
categories into consideration for the evaluation: pedestrian, person sitting, cyclist, car,
van, truck, and tram. Finally, we use total of 7481 images and evaluate the accuracy with
1498 images.

4.2.2. Comparison of the Projection

We compare our expandable spherical projection to fisheye and basic spherical im-
ages. Even though computational time is almost the same, our result effectively increases
the information of the edge regions and reduces unnecessary pixels from the original
fisheye image.

Table 1 shows the result of the Average Precision (AP) from fisheye image and different
spherical images. Except for the medium size of objects, our proposed projection achieves
the best performance on overall detection accuracy, 4.4% higher in AP than the performance
using the fisheye dataset. The detection results are presented in Figure 11.

Table 1. Accuracy of different projections of YOLOv3-SPP model on Fisheye-KITTI. (In the all
accuracy analysis tables, the bold-typed number is the best performance in each measurement).

Image AP AP50 AP75 APS APM APL

Fisheye 56.9 85.7 63.8 48.2 66.6 73.9
Spherical 59.1 86.5 66.2 46.5 64.6 75.2

Expandable Spher. 61.3 88.3 70.7 48.2 65.7 76.4
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Figure 11. Detection result from (a) Synthetic fisheye image, (b) Spherical-Projected image, and
(c) Expandable-Spherical-Projected image.

4.2.3. Comparison of the Concatenated Models

Table 2, Table 3 and Table 4 show the accuracy of three projection models when
using three different feature-fused methods, SCat, LCat, and SLCat, respectively. For the
feature-fused methods, SCat and SLCat show better AP than the baseline model, while
LCat only presents higher APL on fisheye and spherical images. For the task of small
object detection, SCat shows the positive effect, increasing the accuracy up to 0.9% at the
fisheye image. In this KITTI dataset, APS are mostly higher in the fisheye images than the
spherical-projected images.

Table 2. Accuracy of different projections of SCat model on the Fisheye-KITTI.

Image AP AP50 AP75 APS APM APL

Fisheye 57.2 86.6 64.2 49.1 66.8 74.7
Spherical 58.8 86.9 66.5 47.3 64.5 75.7

Expandable Spher. 61.5 88.8 69.6 48.2 65.0 76.3
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Table 3. Accuracy of different projections of LCat model on the Fisheye-KITTI.

Image AP AP50 AP75 APS APM APL

Fisheye 57.0 86.4 63.1 48.7 66.4 76.9
Spherical 58.8 86.4 65.1 44.5 65.0 76.9

Expandable Spher. 61.4 88.9 70.0 47.8 65.6 75.6

Table 4. Accuracy of different projections of SLCat model on the Fisheye-KITTI.

Image AP AP50 AP75 APS APM APL

Fisheye 56.9 85.5 63.7 48.8 66.4 76.2
Spherical 59.5 86.0 67.6 46.9 65.4 75.4

Expandable Spher. 61.6 88.2 71.0 48.0 65.9 76.0

4.3. Experiments on Synthetic Fisheye-CityScape
4.3.1. Implementation Details

We set 24 as the mini-batch size, 512 as the size of the image, 350 epochs, 0.00019 initial
learning rates, and apply the cosine decay scheduling strategy. The momentum and weight
decay are, respectively, set as 0.843 and 0.00036. Finally, we use total of 4075 images and
evaluate the detection accuracy from the validation dataset of CityScape.

4.3.2. Comparison of the Projection

Similar to Fisheye-KITTI, the expandable spherical image shows an expansion effect
on the margin area and a narrowing effect on the center. From Table 5, our proposed
approach achieves the highest score in overall AP, while basic spherical projection shows
mostly fewer scores than the original fisheye image dataset. Figure 12 shows the detection
result from fisheye and each spherical image.

Table 5. Accuracy of different projections of YOLOv3-SPP model on Fisheye-CityScape.

Image AP AP50 AP75 APS APM APL

Fisheye 22.4 42.5 20.7 5.6 28.0 58.7
Spherical 21.2 40.0 18.1 6.2 28.2 56.8

Expandable Spher. 24.3 45.5 22.3 6.9 31.0 66.9

4.3.3. Comparison of Concatenated Models

As reflected in Tables 6–8, SCat and SLCat mostly outperform than baseline model,
while the accuracy from LCat is less in fisheye and expanded projected image. SCat at the
proposed projection achieves the highest score, showing 3.4% AP improvement compared
to the base model at the fisheye dataset.
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Figure 12. Detection results: (a) Synthetic fisheye image; (b) Spherical-projected image; (c) Expand-
able Spherical-projected image from Fisheye-CityScape.

Table 6. Accuracy of different projections of SCat model on the Fisheye-CityScape.

Image AP AP50 AP75 APS APM APL

Fisheye 22.4 42.3 20.3 5.9 29.0 57.6
Spherical 22.9 42.9 20.5 6.2 30.8 63.0

Expandable Spher. 25.8 47.2 23.9 7.3 34.3 58.5

Table 7. Accuracy of different projections of LCat model on the Fisheye-CityScape.

Image AP AP50 AP75 APS APM APL

Fisheye 21.0 39.7 19.9 4.7 26.0 61.1
Spherical 22.4 41.7 21.0 6.2 30.0 62.3

Expandable Spher. 24.0 45.0 21.7 6.5 31.6 57.2
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Table 8. Accuracy of different projections of SLCat model on the Fisheye-CityScape.

Image AP AP50 AP75 APS APM APL

Fisheye 22.9 44.0 21.5 6.1 28.1 60.9
Spherical 22.8 42.5 21.3 6.9 31.0 58.4

Expandable Spher. 24.8 46.0 23.0 7.5 31.0 66.3

4.4. Experiments on WoodScape
4.4.1. Implementation Details

We set 24 as the mini-batch size, 512 as the size of the image, 350 epochs, 0.00019 initial
learning rates, and apply the cosine decay learning rate scheduling strategy. The mo-
mentum and weight decay are, respectively, set as 0.843 and 0.00036. Additionally, we
employ the idea of learning anchor boxes based on k-means and genetic algorithm with the
distribution of the bounding boxes in real fisheye image dataset, following the method in
YOLOv5 (https://github.com/ultralytics/yolov5 (accessed on 5 November 2020)). Finally,
we use total of 3217 images and evaluate the accuracy with 806 images.

4.4.2. Comparison of the Projection

Figure 13 shows the detection result from fisheye and spherical images. Contrary to
our expectations, the result shows that the model achieves the highest performance with
the fisheye image dataset and the projected image from the spherical-based method gives
no positive effect in the accuracy. Accuracy of different projections of YOLOv3-SPP model
on WoodScape is shown in Table 9

The assumption of our algorithm is that a principal axis of the camera is parallel to
the ground such that the distorted objects appear more vertically straight and conformal
when comparing the same category object in other photos. However, the images from the
WoodScape, as we understand, are captured with the camera looking down so that more
road scene and less sky view is visible, as illustrated in Figure 14.

Table 9. Accuracy of different projections of YOLOv3-SPP model on WoodScape.

Image AP AP50 AP75 APS APM APL

Fisheye 23.9 45.9 21.4 8.6 25.7 37.9
Spherical 22.0 44.3 19.1 8.0 23.3 39.6

Expanded Spher. 23.1 45.4 19.6 8.0 23.1 38.1

https://github.com/ultralytics/yolov5
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Figure 13. Detection results: (a) Synthetic fisheye image; (b) Spherical-projected image; (c) Expanded-
Spherical-Projected image.

Figure 14. (a) Camera with a principal axis parallel to the ground from Fisheye-Dongseongro.
(b) Camera looking downward from WoodScape. (i) and (iii) are the fisheye images and (ii) and (iv)
are the spherically projected images.

4.4.3. Comparison of the Concatenated Models

Tables 10–12 shows the AP of differently concatenated models on fisheye and spherical
image from the WoodScape. When evaluating the models with original fisheye images, the
YOLOv3-SPP obtains the best results. On the other hand, the SLCat achieves the best AP
on spherical and expanded spherical projection, improving up to 0.4% .
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Table 10. Accuracy of different projections of SCat model on the WoodScape.

Image AP AP50 AP75 APS APM APL

Fisheye 23.1 46.0 20.2 7.7 24.8 40.4
Spherical 22.3 44.6 19.6 8.7 23.7 38.1

Expanded Spher. 23.1 45.6 20.4 8.5 23.8 37.7

Table 11. Accuracy of different projections of LCat model on the WoodScape.

Image AP AP50 AP75 APS APM APL

Fisheye 23.0 45.7 20.4 7.9 24.0 39.3
Spherical 22.3 44.4 19.6 8.6 23.4 39.9

Expanded Spher. 23.1 45.6 19.8 8.6 23.2 37.1

Table 12. Accuracy of different projections of SLCat model on the WoodScape.

Image AP AP50 AP75 APS APM APL

Fisheye 23.0 45.7 20.4 8.7 24.1 36.9
Spherical 22.5 45.0 19.2 8.6 23.8 40.8

Expanded Spher. 23.5 45.7 20.9 8.9 23.7 38.1

4.5. Experiments on Fisheye-Dongseongro
4.5.1. Implementation Details

We set 20 as the mini-batch size, 640 as the size of the image, 350 epochs, 0.00019 initial
learning rates, and apply the cosine decay scheduling strategy. The momentum and weight
decay are, respectively, set as 0.843 and 0.00036. Additionally, the method of learning the
anchor boxes is employed in this dataset as well. Finally, our dataset consists of total of
4012 images, and we evaluate the proposed methods on a test dataset with 1004 images.

4.5.2. Comparison of the Projection

Since the proposed method expands in the overall region of the image, especially
the center areas where most of small objects are located, the accuracy result shows 11.4%
improvement in APS compared to the fisheye images, shown in Table 13. Additionally,
the expandable projection shows higher detection results in AP and APS from most of
the models. At YOLOv3-SPP model, our method achieves 2.6% improvement in AP. The
detection results are shown in Figure 15. Since most of the objects are much smaller than
the image size, we present cropped example images of the detection result on YOLOv3-SPP
from differently projected images.
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Figure 15. Cropped image of the detection result from different projection methods on YOLOv3-SPP.
(a) Fisheye image; (b) Spherical image; (c) Expandable Spherical image.

Table 13. Accuracy of different projections of YOLOv3-SPP model on Fisheye-Dongseongro.

Image AP AP50 AP75 APS APM APL

Fisheye 48.4 85.8 49.1 27.6 50.0 62.7
Spherical 48.0 86.2 45.0 38.5 56.8 63.7

Expandable Spher. 48.6 86.8 47.7 39.0 56.0 60.7

Since most of the objects are much smaller than the image size, we present cropped
example images of the detection result on YOLOv3-SPP from differently projected images
are shown in Figure 15.

4.5.3. Comparison of Different Concatenated Models

The detection results of differently concatenated models on the fisheye, spherical, and
expanded spherical images are reported in Table 14, Table 15 and Table 16, respectively.
The accuracy AP in expanded projected images at SCat is the highest score compared
to other types of image and models. Unlike other modified models, SCat can increase
overall accuracy across the IoU thresholds and scales without using lower level features
than the baseline model. Moreover, when the datasets contain more complex scenes such
as many overlapped objects with diverse scales in one image, SCat mostly obtains better
results. On the other hand, AP in LCat decreased than the baseline from our projection
images, same as Fisheye-CityScape. We assume merging the features with too low-level
details without a sufficient number of following convolutions can hinder the network from
correctly extracting relevant features.

Table 14. Accuracy of different projections of SCat model on the Fisheye-Dongseongro.

Image AP AP50 AP75 APS APM APL

Fisheye 50.4 86.7 50.6 28.2 51.7 64.7
Spherical 48.4 86.4 45.5 39.6 56.0 64.9

Expandable Spher. 51.7 88.9 53.2 42.1 58.7 66.1
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Table 15. Accuracy of different projections of LCat model on the Fisheye-Dongseongro.

Image AP AP50 AP75 APS APM APL

Fisheye 49.4 86.4 47.8 28.8 50.7 63.9
Spherical 47.8 86.6 44.8 38.6 58.1 62.8

Expandable Spher. 50.5 88.0 51.5 40.4 58.2 61.8

Table 16. Accuracy of different projections of SLCat model on the Fisheye-Dongseongro.

Image AP AP50 AP75 APS APM APL

Fisheye 49.9 87.0 48.7 29.8 51.0 65.4
Spherical 46.7 85.5 44.0 38.5 55.6 61.5

Expandable Spher. 51.5 88.7 52.2 41.3 59.0 63.6

4.6. Computation Time

Table 17 shows the computation time of our proposed projection from each training
dataset. The undistortion process is divided into two steps: generating the rectification
map and updistorting the fisheye image. We create the rectification map with mapping
information between the cylinder and fisheye image, which can be run only one time at the
beginning of the program. Then, the program reads the mapped points from the map and
renders the undistorted cylinder image.

Table 17. Computation time of Expandable Spherical Projection. Rectification map is generated only
one time at the start of the program.

Dataset Image Size Rectification De-WarpingMap

KITTI (600, 600) 0.23 0.012
CityScape (640, 640) 0.26 0.015

WoodScape (1480, 966) 0.89 0.058
Dongseongro (1205, 905) 0.67 0.054

Table 18 presents the inference time [sec] from each image size in Titan V GPU. When
the size of the spherical image is around 600× 600 pixels and the size of test-image is
512× 512, the total computation time will be 0.034 seconds, processing the 29.4 frames
per second. The projected image will be the same size as the image of the inference in
future work, assuming that the whole process can be accomplished by increased speed
over 30 FPS.

Table 18. Inference time (s)at each image size in Titan V GPU.

Model 512 640

Baseline 0.020 0.023
SCat 0.023 0.026
LCat 0.020 0.023

SLCat 0.022 0.025

5. Discussion

As shown in the experimental sections, the proposed expandable spherical image yields
better performance than using the original fisheye image. In all cases of the feature concate-
nation methods, object detection performance is enhanced. In Table 19, the AP performance
enhancement of the proposed method is summarized. The numbers in the table are the
percentile (%) AP enhancement of the proposed expandable spherical projection model in
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each concatenation method. All percentile performance is positive, which means that the
proposed method is always better than using the original fisheye image.

The highest enhancement, 4.7%, is achieved when using the KITTI dataset. Overall
performance of the proposed method is better when using the two synthetic datasets.
However, when using the real image datasets, the amount of enhancement is low. This is
due to the fact that the proposed expandable projection model uses the ideal fisheye lens
parameters. The lens parameters for generating the synthetic fisheye datasets follows the
ideal fisheye lens model. Thus, the transformation of the fisheye image to the expandable
spherical image can be also considered as an ideal, without any inherent optical distortion.
As the future study, more sophisticated calibration of the real fisheye image can generate
more ideal spherical projection image.

Table 19. Percentile AP performance enhancement of the expandable projection compared with the
original fisheye image.

Concatenation KITTI CityScape WoodScape DonseongroMethod

SCat 4.3 3.4 0 1.3
Lcat 4.4 3 0.1 1.1

SLCat 4.7 1.9 0.5 1.6

6. Conclusions

This paper proposes a deep neural network for detecting small and tiny objects in
fisheye images. Nowadays, the use of the fisheye image is increasing because of the unique
advantage of obtaining ultra-wide field of views. However, object detection in the fisheye
image suffer from too small object size, curving and tilting in the image boundary. In
this paper, we propose to transform the original fisheye image to an effective spherical
projection image using the expansion weight. Using two scale parameters, central or
marginal areas of spherical images are expandable for reducing the effect of radial and
overall size distortions to the objects.

Additionally, we propose three multi-level feature concatenation methods and analyze
the effect of small object detection: SCat, LCat, SLCat. With short-skip concatenated layers
and additional convolutions, the SCat achieves higher accuracy on complex urban scene
datasets. From the LCat model, we have shown that the feature concatenation with a
too shallow layer without sufficient convolution layers increases the difficulties to extract
important features for the prediction layers. The SLCat network, combining short and long
skip-layers, mostly presents better performance compared to the baseline model. Finally,
we provide a fisheye dataset from one front view camera for autonomous driving with 2D
bounding box annotation files, hoping the release of this dataset can help the development
of fisheye lens related research.
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