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Abstract: Detecting defect patterns in semiconductors is very important for discovering the fun-
damental causes of production defects. In particular, because mixed defects have become more
likely with the development of technology, finding them has become more complex than can be
performed by conventional wafer defect detection. In this paper, we propose an improved U-Net
model using a residual attention block that combines an attention mechanism with a residual block to
segment a mixed defect. By using the proposed method, we can extract an improved feature map by
suppressing irrelevant features and paying attention to the defect to be found. Experimental results
show that the proposed model outperforms those in the existing studies.
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1. Introduction

Semiconductor chips, which are used in industries and electronic products that we
often talk about, are semiconductor integrated circuits. Semiconductor wafers can be
manufactured by eight different processes [1], but these are largely divided into front-end
and back-end processes. The front-end process is used to design a semiconductor chip and
engrave it on the wafer; the back-end process is used to cut the chip engraved on the wafer
and wrap it with an insulator to lay wires to receive power stably [2,3]. In particular, in
the front-end process, also called the wafer process, a single semiconductor chip is made
by repeatedly forming and cutting various types of films on the wafer surface to create an
electronic circuit [4]. Techniques such as Photolithography, which transfers semiconductor
circuit patterns onto a wafer; Etching, which cuts off parts other than circuit patterns;
Deposition, which forms an insulating thin film for separation and protection between
metal, circuitry, and metal for transmitting electrical signals; and Metallization, which
forms wiring, are included in the previous process [5,6]. Because of these various processes,
the types of defects that occur on the wafer are also diverse. After wafer fabrication, several
tests are performed to identify defects and represent them as binary values on the wafer
map. In this way, the classification results for the dies on the wafer map form a specific
pattern and are visually displayed [7]. The various defect patterns on the wafer map are
related to the manufacturing process. Therefore, accurately classifying the defect patterns
on the wafer map allows defect sources from the manufacturing process to be identified.
Such classification is also important because it provides engineers with clues for solving
problems [8].

Because of recent advances in miniaturization technology and an increase in wafer
size, the probability of generating two or more mixed defect patterns has increased [9,10].
Detecting defect patterns is more complex, because mixed defects can have many com-
binations of causes, such as location, size, type, and number. Recently, because of the
development of artificial intelligence, research based on deep learning is being widely
conducted. Kyeong and Kim [11] proposed using convolutional neural networks to classify
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mixed defect patterns, and Wang et al. [12] proposed deformable convolutional networks.
Kim et al. [13] proposed an infinite warped mixture model for clustering mixed defect
patterns. Ming-Chuan Chiu et al. [14] proposed data augmentation and mask R-CNN for
instance segmentation in mixed-type defect patterns.

As a method for detecting defects, segmentation is used one step further from classifi-
cation. Classification simply classifies the target image, while segmentation can infer data
on a pixel-by-pixel basis. This can greatly aid in decision making by providing additional
information to the user. In particular, many segmentation studies are being conducted for
the purpose of finding diseases in the medical field. Ozan Oktay et al. [15] proposed a
model applying an attention gate to U-Net for medical image segmentation. Through the
attention gate, the model learns by automatically focusing on target structures of various
shapes and sizes. Xiaocong Chen et al. [16] proposed a novel U-Net architecture using
aggregated residual blocks and a soft attention mechanism for segmentation of regions in-
fected with COVID-19. Yu-Cheng Liu et al. [17] proposed a cascaded atrous dual-attention
U-Net for accurate tumor segmentation. They introduced a cascade structure to extend
low-resolution quality prediction, and proposed a dual-attention module to improve the
functional expression of tumor segmentation.

In this study, the residual attention block and the integrated residual block and atten-
tion module were combined with U-Net to provide engineers with segmentation results
focused on the defect area. We make specific contributions as follows:

1. Applying an attention-guided U-Net for classification of wafer defects.
2. Reducing unnecessary human resources and time by generating the ground truth essen-

tial for training the segmentation model with an automatic defect masking technique.
3. Performing detection of mixed faults using only a single fault using the training of

the proposed model.

The structure of the paper is as follows. Section 2 describes related work. Section 3
describes in detail the architecture and features of the proposed model. Section 4 describes
the experimental procedure and results. Finally, Section 5 presets the conclusions and
suggestions for future research.

2. Related Work
2.1. Semiconductor Wafer Map

A semiconductor wafer is a circular plate in which a single crystal pillar made by
growing silicon (Si), gallium arsenide (GaAs), etc., as a core material for semiconductor
integrated circuits is sliced to an appropriate thickness. A semiconductor integrated circuit
is an electronic component in which many devices are integrated into a single chip to process
and store various functions. In other words, the wafer is the basis of the semiconductor,
because the semiconductor integrated circuit is elastic by making the circuit on a thin
circular plate, that is, a wafer.

Wafer mapping is widely used for data analysis in semiconductor manufacturing
processes. Wafer mapping creates a map in which the performance of the semiconductor
device on the wafer surface is color-coded according to the test result of each chip defect.
The generated wafer map has one or several patterns that depend on the distribution
of defective chips. Since the defective chip pattern is formed differently depending on
the cause of the abnormality in the semiconductor process, various defect patterns are
generated. Therefore, the analysis of defective chip patterns, that is, wafer map defects,
provides important information for detecting abnormalities in the semiconductor process
and identifying the causes of defects. Figure 1 shows the wafer map.
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Figure 1. Example of wafer map.

2.2. U-Net

Semantic segmentation is the task of classifying objects in pixels in an image [18]. In
deep learning, an object means a class to be classified [19]. Segmentation needs to obtain a
label from the input image that each pixel belongs to. For this, one-hot encoding is used to
create as many output channels as there are classes. After that, one output is calculated
by means of argmax. In this way, semantic segmentation considers only whether pixels
are binarily included for each class. It is mainly studied in the medical and transportation
fields and has been recently applied to autonomous vehicle technology. Representative
studies include the fully convolutional networks proposed by Jonathan Long et al. [20] in
2015, DeepLab proposed by Liang-Chieh Chen et at. [21] in 2015, and U-Net proposed by
Olaf Ronneberger et al. [22].

U-Net is a model based on an end-to-end fully convolutional network (FCN) proposed
for the purpose of biomedical image segmentation. U-Net uses data augmentation to learn
enough with only a small amount of data. Data augmentation improves model performance
by increasing the amount of data and is important because it simply improves most of the
model performance [23,24]. U-Net is shaped like a U and mainly consists of a contracting
path and an expansive path. The contracting path is the stage that captures the context
of the input image. Context refers to the relationship between neighboring image pixels
and can be thought of as understanding the overall image context by looking at a part
of the image. In general, it consists of a convolutional layer and a pooling layer. In each
step, the number of channels in the feature map is doubled, but the size is cut in half. The
expanding path is a step for accurate localization, and up-sampling is performed several
times to increase the resolution that has gone through the contracting path. It plays a role
in more accurate localization by combining with the context of the feature map captured in
the contracting path. U-Net removes the fully connected layer and uses only convolution
to enable segmentation even when images of arbitrary size come in by the overlap tile
strategy. Overall, the contracting path and expanding path are symmetrical and constitute
a U-shaped network.

2.3. Attention Mechanism

Attention mechanism is a technique to deal with the fact that the translation quality
deteriorates as the input sentence lengthens in the field of machine translation [25]. The
basic idea is that every time the decoder predicts the output word, it once again consults
the entire input sentence at the encoder. The concept of attention in the convolutional
neural network (CNN) series has been mainly used in feature selection using multi-modal
relationships such as image captioning [26,27]. Attention itself is ‘attention’ on a certain
characteristic, and in image classification or detection problems, it is necessary to focus on
an important part according to the input image.
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In 2018, Jongchan Park et al. [28] proposed two self-attention modules to improve the
performance of CNNs. The Bottleneck Attention Module (BAM), as the name suggests, is
located at the bottleneck of each network, which is the part where spatial pooling takes
place. Spatial pooling is an essential part of the CNN abstraction process, and the spatial
resolution of the feature map becomes smaller. A key feature of BAM is to increase the
value of the important part with attention and to decrease the value of the less-important
part by adding the BAM before the amount of information decreases in this section. BAM
takes 3D conv features as input and output conv features refined with attention. The
attention of the channel axis and the spatial axis is divided and calculated, each output
value is added, and a 3D attention map of the same size as the input is generated by means
of the sigmoid. The channel axis collects the global context of each channel through global
average pooling. It then passes through the MLP and outputs the same size as the input
channel. The spatial axis calculates the final 2D attention only by convolution in order to
maintain the meaning of the channel. BAM shows significant performance improvement
without significantly increasing the parameters and computations of the existing backbone.

Convolutional Block Attention Module (CBAM) is a follow-up study of BAM [29].
BAM is implemented by adding channels and spatial to one 3D attention map, but CBAM
works better by sequentially applying channels and then applying spatial. Channel at-
tention utilizes the internal channel relationship of input feature F to generate a channel
attention map. Channel attention focuses on what is important in a given input. To compute
effectively, it compresses the spatial dimension of the input feature map to 1 × 1, and it
also applies average pooling and max pooling to incorporate spatial information. Using
the two pooling operations together improves performance. Since the two pooled features
are values that share the same meaning, one shared MLP can be used, and the number of
parameters can be reduced. For spatial attention, we compute spatial attention with only
one conv. The difference between spatial attention and channel attention is that spatial
attention focuses on ‘where’ information is. Spatial attention concatenates two values
generated by applying max pooling and average pooling to the channel axis in the feature
map generated by multiplying the channel attention map and the input feature map. A
7 × 7 conv operation is applied here to generate a spatial attention map. As such, the BAM
and CBAM network structures consist of simple pooling and convolution, and self-attention
is modularized so that it can be easily incorporated into any deep learning model.

3. Improved U-Net with Residual Attention Block
3.1. Network Architecture

In this paper, we propose a U-Net using a residual attention block for segmentation of
semiconductor wafer maps that include mixed pattern defects. Inspired by the residual
block and attention module (CBAM), we integrated the residual attention block into the
U-Net architecture. The proposed architecture is shown in Figure 2.

3.2. Residual Attention Block

Figure 3 shows the structure of the residual attention block. Residual block is a
structure used in ResNet as designed by Kaiming et al. [30]. It is a simple idea that takes
the input as it is and adds it to the learned function as a method designed to solve the
problem of inferior performance caused by the gradient vanishing as the layer of the model
gets deeper.

In this study, we used a residual block for each step of the contracting path and the
expanding path to solve the problem of degradation of the model’s performance, which can
help the model to extract more features from every layer. This process can be expressed as:

xi+1 = xi + F(xi) (1)
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U-Net concatenates the feature map generated from the contracting path and the
feature map generated from the expanding path step by step through skip connection. By
combining context information and location information of the shallow and deep layers,
important information in the image can be conveyed well, and a clearer image can be
obtained to make accurate predictions. We tried to improve the performance of the model
by using the attention module to focus on a specific area of the image.

CBAM sequentially applies channel attention and spatial attention as shown in
Figure 2. This process can be expressed as:

F′ = Ac(F)
⊗

F (2)

F′′ = AS
(

F′
)⊗

F′′ (3)



Appl. Sci. 2022, 12, 2209 6 of 17

Channel attention uses a combination of max pooling and avg pooling; when the input
feature F is input, channel attention Ac is output.

Ac(F) = σ(MLP(AP(F)) + MLP(MP(F))) (4)

In Equation (4), AP means average pooling, MP means max pooling and σ means
batch normalization. Spatial attention outputs spatial attention AS when the refined Ac in
the previous channel attention is input. If channel attention learns intensively on ‘what,’
spatial attention learns intensively on ‘where.’

As(F) = σ
(

f 7×7([AP(F); MP(F)])
)

(5)

The output result of the attention module is concatenated with the up-sampling feature
map of the output of the expanding path one step before. This process enables segmentation
to be improved by focusing on the area of the defect to find contextual information and
location information of the shallow and deep layers.

3.3. Contracting Path

The contracting path consists of four residual blocks and four 2× 2 max pooling layers.
The input image is a 256 × 256 resolution black-and-white image with one channel. The
residual block consists of two 3 × 3 convolution layers, batch normalization following each
layer, and ReLU activation functions. In the first residual block, the 256 × 256 × 1 input
image is extracted as a 256 × 256 × 64 feature map. Then, the size of the feature map is
halved, and the number of channels is doubled by the down-sampling of the max pooling
layer, which then has a 32 × 32 × 512 feature map of four residual blocks through the
contracting path.

The bottleneck is the transition section between the contracting path and the expanding
path. It consists of one residual block and has a 16 × 16 × 1024 feature map. The output of
the bottleneck goes into the contracting path.

3.4. Expanding Path

The expanding path has four residual blocks, as does the contracting path. However,
since the size of the feature map reduced in the contracting path needs to be restored, a
2 × 2 transposed convolution layer is used instead of the max pooling layer to perform up-
sampling. Therefore, in each expanding layer, the size of the feature map is doubled, and the
number is halved. The feature map up-sampled in the previous layer is concatenated with
the output of the attention module. As a result, it has a feature map of 256 × 256 × 64 size
by means of four residual blocks through the expanding path. Finally, by means of a
1 × 1 convolution layer, each pixel generates a vector representing information about the
corresponding class.

3.5. Loss Function

In this study, we used the cross-entropy loss function as the loss function of the
proposed network [31]. The cross-entropy loss function is mainly used for segmentation or
classification problems. The loss is output by comparing the segmentation map and ground
truth generated by the model proposed in this study. The cross-entropy loss function is
expressed as

Cross Entropy = −∑
k

tk logc (yk) (6)

In Equation (6), k is the k-th element of the training data, t is ground truth, and y is the
output of the model.
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4. Experiments and Results
4.1. Experiment Environment

To find out how well the proposed model works, we performed segmentation using
wafer maps that include both single and mixed defects. We carried out all experiments
on a GTX 1080Ti GPU with Intel Core i7-8700K CPU, 12 GB memory, and 16 GB RAM,
and used a Keras open-source library based on Tensorflow. Table 1 summarizes the
system specification.

Table 1. System specification.

Hardware Environment Software Environment

CPU: Intel Core i7-8700k, 3.7 Ghz, Six-core
twelve threads 16 GB

GPU: Geforce GTX 1080Ti

Window
Tensorflow 2.0

Python 3.7

4.2. Dataset
4.2.1. Single Defect

The dataset we used in this study, WM-811K, is a large, publicly available wafer map
dataset, with 811,457 wafer maps collected from 46,393 lots [32]. The defect classes consist
of Center, Donut, Edge-Loc, Edge-Ring, Loc, Scratch, Random, and Near-full. In this study,
we used single defects as training data. To balance the training data, we randomly extracted
400 from each class. Afterwards, we increased the amount of data by data augmentation to
improve the performance of the model. Figure 4 visually expresses the defects of WM-811K.
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4.2.2. Mixed-Type Defects

We intended to identify not only single defects but also mixed-type defects. Therefore,
to assess the performance of the model, we used Mixed-type Wafer Defect Datasets pro-
vided by the Institute of Intelligent Manufacturing and Donghua University as a part of the
test data [12]. This dataset is a wafer map dataset collected from a wafer fabrication plant,
obtained by testing the electrical performance of each die on the wafer using test probes.
We used mixed-type defects as test data to find out how well the proposed model could
detect mixed defects. We used the two-mixed type, in which two defects are combined,
and the three-mixed type, in which three defects are combined. However, we excluded
the combination of Center and Donut from the experiment, because it may have many
locations or overlapping parts; we also excluded Edge-Ring and Edge-Loc for the same
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reason. For mixed-type defects, we randomly extracted 2400 pieces of data and used 1200 of
them; these included both two-type and three-type defects. Figure 5 shows the mixed-type
defects visually.
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4.3. Data Pre-Processing
4.3.1. Defect Masking

Since the proposed model is based on U-Net, an image and a mask that is the ground
truth of the image are required to train the model. In general, humans manually perform
labeling using a program for image masking. These existing methods take a long time
and require much manpower. To solve this problem, in this study, we used a method of
automatically masking defects. Defects appearing on the wafer map are representations
of a collection of defects in the die. Therefore, we performed masking in a way that
distinguishes pixels that are connected to a certain number or more. For convenient
masking, we converted the image to black and white and then masked it. Figures 6 and 7
show examples of black-and-white images and masking results for single and mixed defects.
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defect; (c) Center + Loc defect; (d) Donut + Loc defect; (e) Edge-Loc + Scratch defect; (f) Edge-Ring +
Center + Scratch defect.

The image on the left is a black-and-white conversion of the original image, and the
image on the right is the result of masking. We could accurately mask only the defect
pattern without recognizing the surrounding defective die that was not a defect. For the
Donut and Center, there was no big problem in recognizing the pattern of defects, although
some parts protruding from the circle are also included. For the Edge-Ring and Edge-Loc,
there were few defective dies on the edge, so breakage occurred.

For the mixed defects, the left image is a black-and-white conversion of the original
image, and the right image is the result of masking. For the mixed defects, as shown in
Figure 7, when the defects are separated, they are well distinguished. Both the two-mixed
and three-mixed defects were mostly correctly distinguished. However, if the defects are
closely connected or small, they can be recognized as a single defect. Therefore, for accurate
verification, we excluded cases that could not be distinguished well from the test dataset.

4.3.2. Data Augmentation

We applied rotational data augmentation to improve the performance of the model.
Data augmentation is a simple but easy way to improve the performance of deep neural
networks. In this study, we adopted the image rotation method. First, we randomly
extracted 100 single defects for each class, balanced the data, and then rotated them by
30 degrees. Figure 8 shows the results of rotation data augmentation, by which we were
able to increase the size of the training dataset by 12 times.
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4.4. Evaluation Metrics

To evaluate the model, we defined recall, precision, accuracy, and F1-score by using
True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN), which
show the relationship between the answer presented by the model and the actual correct
answer [33,34]. Precision is expressed as the ratio of the ones that are actually true to the
ones that the model classifies as true.

Precision =
TP

TP + FP
(7)

Recall is expressed as the ratio of those predicted by the model to be true to the total
number of positive samples.

Recall =
TP

TP + FN
(8)

Accuracy is the amount of correctly predicted data divided by the total amount of
data. It is expressed as

Accuracy =
|TP|

|TP|+ |FP|+ |FN|+ |TN| (9)

In multi-label classification, multiple classes are allowed differently from a single class,
so the way to evaluate performance is used differently. In this study, we used multi-label
accuracy, because mixed defects must be classified. Multi-label accuracy is the ratio of the
total predicted data to the true predicted data. It is expressed as

Multi− label Accuracy =
1

W

W

∑
i=1

ŷi ∩ yi
ŷi ∪ yi

(10)

In Equation (11), W is the total amount ofwafer map data, ŷi is the amount of data
predicted by the model, and yi is the amount of data of actual defects.

F1-score is the harmonic average of precision and recall, and is expressed as

F1− score =
Precision× Recall
Precision + Recall

(11)
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Intersection over Union (IoU) [35] is a metric frequently used for segmentation and
object detection, and is expressed as

IoU =
Target∩ Prediction
Target∪ Prediction

(12)

4.5. Results
4.5.1. Training Model

In this study, we used a U-Net model with residual attention blocks. After we per-
formed defect masking to train the model, we obtained enough training data using rotation
data augmentation. In addition, we could solve the data imbalance problem that resulted
from the large differences in the ratio for each defect class. We used 9600 single-defect
images as training data and added mixed defects to the test data to verify the model. How-
ever, Random and Near-full defects can interfere with detecting mixed defects, because the
shape of the pattern is not clear, and most of them are composed of bad dies. Therefore, in
this study, we excluded mixed defects containing both classes.

Figure 9 graphs the training loss of the model. The validation loss increases after
12 epochs, which means overfitting, so we adopted the model just before overfitting as the
best model.
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4.5.2. Single-Defect Result

Figure 10 shows the accuracy graph and confusion matrix for single defects. The test
accuracy was more than 0.99 starting from epoch 5, after which it was possible to obtain
results that maintained accuracy above a certain level.

Table 2 details the single-detection performance of the model. Accuracy for single
defects reached 0.997. Because Center and Local defects have similar shapes, they may be
misclassified depending on the defect location. A Scratch defect was sometimes predicted
as an Edge-Loc defect. Nevertheless, since all single defects show an accuracy close to 1, it
can be evaluated that our model accurately detects them.
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Table 2. Single testing result.

Defect Type Accuracy F1-Score IoU

Center 1.000 0.987 0.742
Donut 1.000 1.000 0.721

Edge-Loc 1.000 0.974 0.650
Edge-Ring 1.000 1.000 0.686

Loc 0.995 0.976 0.712
Scratch 0.987 0.982 0.720
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Figure 11 shows some examples of segmentation results of single defects. It consists
of the original image, ground truth, and result of segmentation for each defect. You can
see that it accurately predicts a single defect when compared to the ground truth mask.
Because ground truth acts as a label, the segmentation result is output as being as similar
to ground truth as possible. Because the masking operation was performed automatically,
there were some parts that did not match the defect, but there was no problem in detecting
the defect.
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4.5.3. Mixed-Type Defect Result

Figure 12 shows the accuracy graph and confusion matrix for mixed-type defects. The
test accuracy was more than 0.97 by epoch 15, and we could obtain results that maintained
high accuracy without reduction.

Table 3 details the detection performance for mixed-type faults. The multi-label
accuracy for mixed-type defects reached 0.979. Sometimes, a mixed-type defect was judged
to be a single defect when it had a combination of defects with similar morphologies
or a combination of defects that mostly overlapped in positions. For this reason, the
performance of the model was lower than for a single defect.

Table 3. Mixed-type testing result.

Defect Type Accuracy F1-Score IoU

Two-types Mixed 0.979 0.982 0.645
Three-types Mixed 0.962 0.953 0.582
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Figure 12. Testing results of mixed-type defects: (a) testing accuracy graph. The accuracy of the
model according to the epoch is shown; (b) normalized confusion matrix (C + EL, C + ER, C + L, C +
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Figure 13 shows some examples of segmentation results of mixed defects. Mixed
defects were also able to accurately predict most of the defects. However, it was difficult to
detect all the defects when they overlapped by a certain ratio or more, for example, if Local
and Edge-Loc defects overlap and are considered to be one Local defect, or if Scratches
overlap with other defects and cannot be detected.
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Finally, we compared the performance with that of existing studies in Table 4. Our
model was superior to the basic models, U-Net and FCN, in all aspects. We obtained
improved results because the residual attention block focused on the defect and considered
the surrounding defective dies to be noise. The better performance can be confirmed even
in comparison with previous studies. A few studies did not provide IoU, so we could not
compare them, but for accuracy or F1-score, our model showed an improvement of 1%
to 18%.

Table 4. Comparison with other models.

Model Accuracy F1-Score IoU

Our Model 0.980 0.974 0.644
U-Net 0.958 0.868 0.482
FCN 0.942 0.841 0.464

Wang et al. [12] 0.826 0.824 -
Kim et al. [13] 0.962 0.962 -

Ming-Chuan Chiu et al. [14] 0.977 0.977 0.510

5. Conclusions

In this study, we propose an improved U-Net architecture using residual attention
blocks, by means of which we were able to create an excellent feature map that focused on
the defect information we wanted to find. Manual, subjective, and labor-intensive defect
labeling is a very inefficient method. In this study, we solved the inefficiency problem
by using automatic masking. By securing sufficient training data by using rotation data
augmentation, we improved the performance of the model. This allowed us to detect
not only single defects but also mixed defects. Our proposed method provided better
performance than did the existing method. Accuracy was 0.980, F1-score 0.974, and IoU
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0.644. These results will help engineers identify the cause of a problem by providing
the exact location of the fault. Through this study, we were able to detect mixed defects
with only a single defect, and the automatic defect masking technique was able to reduce
unnecessary manpower and time. This can save the labor of existing workers and provide
accurate defect detection performance.

We evaluated our model on two wafer map datasets, but further validation of the
actual dataset can be considered in future studies. In addition, methods such as transfer
learning can be used to improve the learning ability of the model. We plan to conduct future
research focusing on reducing the weight of the model and improving its performance.
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