
����������
�������

Citation: Fragoso-Mandujano, J.A.;

Pérez-Patricio, M.; Camas-Anzueto,

J.L.; Vázquez-Delgado, H.D.;

Chandomí-Castellanos, E.; Gonzalez-

Baldizón, Y.; Guzman-Rabasa, J.A.;

Martinez-Morgan, J.C.; Guillén-Ruíz,

L.E. Towards an Approach for

Filtration Efficiency Estimation of

Consumer-Grade Face Masks Using

Thermography. Appl. Sci. 2022, 12,

2071. https://doi.org/10.3390/

app12042071

Academic Editors: Antonio

Fernández-Caballero, Byung-Gyu

Kim and Hugo Pedro Proença

Received: 2 February 2022

Accepted: 12 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Towards an Approach for Filtration Efficiency Estimation of
Consumer-Grade Face Masks Using Thermography
José Armando Fragoso-Mandujano 1 , Madain Pérez-Patricio 1,* , Jorge Luis Camas-Anzueto 1 ,
Hector Daniel Vázquez-Delgado 1,* , Eduardo Chandomí-Castellanos 1 , Yair Gonzalez-Baldizón 1 ,
Julio Alberto Guzman-Rabasa 1 , Julio Cesar Martinez-Morgan 1 and Luis Enrique Guillén-Ruíz 1

Tecnológico Nacional de México, I.T Tuxtla Gutiérrez, Posgrado en Ciencias de la Ingeniería,
Carretera Panamericana KM. 1080, Tuxtla Gutiérrez 29050, Mexico; d07270448@tuxtla.tecnm.mx (J.A.F.-M.);
jcamas@tuxtla.tecnm.mx (J.L.C.-A.); eduardo.cc@tuxtla.tecnm.mx (E.C.-C.); ygbaldizon@cenidet.edu.mx (Y.G.-B.);
jaguzmanrabasa@gmail.com (J.A.G.-R.); cesarmtzmorgan@gmail.com (J.C.M.-M.);
Imcguillen@live.com.mx (L.E.G.-R.)
* Correspondence: madain.pp@tuxtla.tecnm.mx (M.P.-P.); hector.vazquez@ittg.edu.mx (H.D.V.-D.)

Abstract: Due to the increasing need for continuous use of face masks caused by COVID-19, it is
essential to evaluate the filtration quality that each face mask provides. In this research, an estimation
method based on thermal image processing was developed; the main objective was to evaluate the
effectiveness of different face masks while being used during breathing. For the acquisition of heat
distribution images, a thermographic imaging system was built; moreover, a deep learning model
detected the leakage percentage of each face mask with a mAP of 0.9345, recall of 0.842 and F1-score
of 0.82. The results obtained from this research revealed that the filtration effectiveness depended on
heat loss through the manufacturing material; the proposed estimation method is simple, fast, and
can be replicated and operated by people who are not experts in the computer field.

Keywords: COVID-19; thermography; face mask; filtration efficiency

1. Introduction

Coronavirus disease 2019 (COVID-19) is a highly contagious and pathogenic viral
infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), first
reported in Wuhan, China, and currently widespread around the world [1,2]. COVID-19
has been spread primarily from person to person through tiny droplets of fluid expelled
from the nose or mouth of an infected person by coughing, sneezing, or talking [3].

According to the World Health Organization (WHO), by ensuring strict hygiene
measures, correct handwashing, and a distance between people of at least 1.5 m, the trans-
mission of the virus is reduced [4,5]. Furthermore, governments around the world have
recommended the use of face masks to all their citizens [6], because face masks prevent
the infection of COVID-19 between people [7]. However, face masks’ effectiveness in
preventing the spread of COVID-19 and other respiratory diseases has decreased mainly
due to their misuse and poor fitting [8], including low-quality manufacturing processes
and unsuitable materials [7].

The pandemic caused by COVID-19 has opened a path to the developing technolo-
gies in the field, such as deep learning and artificial intelligence (AI), both of these have
made everyday life easier by providing solutions to several complex problems in different
areas [9]. Modern computer vision algorithms are approaching human-level performance
in visual perception tasks.

Convolutional neural networks (CNN) are essential in artificial vision processes to
detect objects, monitor, and classify images, among others. A CNN uses convolution
kernels to extract higher-level features from original images or feature maps, resulting in a
powerful tool for computer vision tasks. Computer vision has proven to be a revolutionary
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aspect of modern technology in a world battling the pandemic [10]. Furthermore, deep
learning has allowed researchers and clinicians to evaluate large amounts of data to forecast
the propagation of COVID-19, running as an early warning mechanism for potential
pandemics and classifying vulnerable populations. AI addresses and predicts new diseases
by understanding infection rates, helping to provide a fully automatic and quick diagnosis
for COVID-19 from X-ray images [11], and evaluates the prediction performance of death
by COVID-19 based on the demographic and clinical factors [12], among others [13]. In this
sense, to address the COVID-19 pandemic, AI’s intrinsic benefits are being harnessed [14].

The current development of artificial intelligence has allowed researchers to provide
an approach for automatic detection of the conditions of the appropriate use of face masks
and distancing [15], which in combination with the super-resolution of images with a
classification network (SRCNet), can contribute through technological innovations in deep
transfer learning and computer vision [8] to personal protection against and public preven-
tion of epidemics. In [14], the authors presented a model that used classic and deep machine
learning to detect face masks. The proposed research consisted of two parts. The first
component focused on feature extraction using Resnet50; the second component classified
face masks using decision trees, support vector machine (SVM), and ensemble algorithm.
Furthermore, in [16], the authors used the YOLOV v3 algorithm with some improvements,
adjusting the algorithm to detect small faces. The proposed method was trained on two
databases: WIDER FACE and CelebA, and it was also tested on the FDDB database, achiev-
ing a precision of 93.9%. Furthermore, recently, there has been some research about the
effectiveness of the proper use of face masks and their variations. Although previous
studies have shown the effectiveness of using face masks to filter particles, each face mask’s
effectiveness depends on its characteristics [17].

A particle generator with a mean diameter of 0.05 µm was used to measure face masks’
filtering effectiveness in [18]; the authors equipped each face mask with sampling probes
to take particle samples within the face mask, and used condensation particle counters to
monitor particles (0.02–3.00 µm) in the environment and behind the face mask.

Although the studies previously mentioned supported face masks’ potential beneficial
effect, the substantial impact of face masks on the spread of laboratory-diagnosed respira-
tory viruses has remained controversial due to their characteristics in terms of materials
and quality [3], thus requiring new analyses with different approaches, making use of
deep learning and image processing.

The upper airway heats and humidifies the air reaching the lungs at the internal body
temperature (37 ◦C) during inhalation. When exhaling, the mucosa only recovers part of
the heat and humidity added during inhalation, which causes a significant loss of heat and
moisture to the environment; therefore, both the loss of heat and moisture changes can
demonstrate the ineffectiveness of a face mask [19].

This research presents a computer vision system based on infrared thermography
and deep learning to estimate the filtration quality of different consumer face masks. This
system allows images of the air distribution that pass through the face masks; once the
images are obtained, they are compared with the training images selected for the CNN to
know which face masks provide the best protection against the dispersion of SARS-CoVo2
in the air.

The main research contributions are as follows:

• A novel method for the estimation, evaluation, and custom classification of face masks.
• The image acquisition and processing system are fast, low-cost, versatile, and scalable

to other platforms and thermal sensors.
• A qualitative demonstration of filtration efficiency is presented.

The rest of the article organize as follows:
In Section 2, the materials and methods used in this work are presented, and the

experimental process is described. Section 3 describes the results and discuss them. Finally,
Section 5 presents the conclusions obtained in this article.
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2. Materials and Methods
2.1. Thermographic Imaging System

For the heat distribution images acquisition, a test bench was built following the
scheme shown in Figure 1; an embedded system (Raspberry Pi 3 Model B +, Raspberry Pi
Foundation) was used with Python 3 installed as the development language. Images were
acquired using a shutterless radiometric thermal module (FLIR Lepton 2.5, FLIR Systems,
Wilsonville, OR, USA). The FLIR Lepton module had a resolution of 80 × 60 pixels resized
via software (Open CV library for Python) to 618 × 450 pixels, an 8–14 µm spectral range,
and thermal sensitivity of 0.050 ◦C. A heat diffusion screen made of a wooden frame
covered with kraft paper 125 g/m2) was made to make the residual air heat distribution
visible, and it was placed at a distance of 10 cm from the test subject. The thermal properties
of the kraft paper are presented in Table 1; finally, the thermal camera was placed 25 cm
away in front of the frame.

Figure 1. General configuration of the experiments: (A) test subject and heat source; (B) hot air;
(C) heat diffusion screen; (D) thermal camera module; (E) embedded system to display data, record,
and process.

Table 1. Thermal properties of the Kraft-paper ™ [20].

Thermal Property

k (W/m K) 0.066
ρ (kg/m3) 104
Cp (J/kg K) 1355
α (m2/s) 4.70 × 10−7

2.2. Testing Procedure

The leakage tests were carried out between August and November 2020 in an exposure
chamber (Tecnológico Nacional de México/I.T de Tuxtla Gutiérrez. In Tuxtla Gutiérrez,
Chiapas). The following environmental conditions were maintained to avoid reflections
and temperature changes inside the exposure chamber: temperature and humidity during
the tests ranged from 23 ◦C to 28 ◦C and 10% to 50%, respectively. The environmental test
conditions used for this study were laboratory conditions. In this study, all the face masks
were fitted on a man with an 85 kg weight, a 180 cm height, and a 60 cm head size.

The testing bench collected temperature distribution videos of the air that passed
through each face mask; to obtain this, the test subject performed a series of repeated
movements of the torso, head, and facial muscles as described in the Occupational Safety
and Health Administration (OSHA) quantitative fit test protocol [21] to simulate the typical
occupational activities experienced by a face mask user. The total testing time for each
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face mask was approximately three minutes. The measurements were made every 20 min,
sufficient for the diffusion screen to reach room temperature.

2.3. Products Tested

One characteristic of consumer-grade face masks is the lack of quantitative information
on filtration efficiency. In general, the face masks specifications do not have information
about the porosity of the fabric and the particle size allowed to pass through the fabric.
We tested the following consumer face masks for this study (Figure 2): (1) a two-layer
woven cotton face mask (98% cotton, 2% spandex) with ear loops, tested without an alu-
minum nose bridge (Figure 2a), (2) a two-layer woven polyester face mask (100% polyester)
(Figure 2b) with ear loops and tested without a nose bridge, (3) a three-layer nonwoven
face mask made of neoprene (100% neoprene) with fixed ear loops and tested without a
nose bridge (Figure 2c), (4) a three-layer nonwoven face mask made of melt-blown fabric
(100% nonwoven melt-blown fabric) with elastics ear loops and aluminum nose bridge
(Figure 2d), (5) a three-layer face mask of woven cotton (100% cotton) with fixed ear loops
and plastic nose bridge (Figure 2e), and (6) a three-layer surgical face mask (70% nonwoven,
30% melt-blown fabric) with elastics ear loops and aluminum nose bridge (Figure 2f).

(a) (b) (c)

(d) (e) (f)

Figure 2. Consumer-grade face masks. (a) 98% cotton; (b) 100% polyester; (c) neoprene; (d) KN95;
(e) 100% cotton; (f) 3-layer pleated.

2.4. Leakage Percentage

The thermal module translates the environmental temperature information into a gray
intensity matrix, where the ambient temperature is zero and the maximum temperature
recorded in the scene is 255; therefore, for the approximation presented in this work, some
thermal parameters were neglected during the measures. From each test, a video was
produced; a three-dimensional matrix T(x, y, z) ∈ Rmxnxp was obtained from each sequence
of images. All pixels in each image were averaged together according to Equation (1).
The result was an average value for each image; each value was stored in a .CSV file and
plotted versus time to obtain the temperature’s temporal behavior (Figure 3).

āk =
1

n ·m
m

∑
i=1

n

∑
j=1

Ti,j, for all k ∈ {1, 2, 3, 4, . . ., p}, (1)
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where i and j represents the pixel coordinates, m and n the image dimensions, and āk is the
gray intensity values summary of each image pixel divided by the total number of pixels
(n ·m) for each video frame (k).
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Figure 3. Temperature’s temporal behavior by product.

The obtained data were rearranged in such a way that all the tests done without
wearing a face mask were considered as a 100% leak; taking into consideration its mean
value of gray and its corresponding leakage percentage, we were able to estimate the
leakage percentages of each face mask. The summary of the data is shown in Table 2.
The values were taken from the leakage percentage. column to label the training images
and the test images.

Table 2. Summary of information for each face mask.

Face Mask Mean Pixels Leakeage Percentage

Without a mask 46.6 100%
100% cotton 32.43 69%
100% polyester 28.37 60%
3-layer pleated 18.28 39%
98% cotton 12.49 26%
KN95 11.99 25%
Neoprene 22.55 25%
Mask without any leak 0 0%

2.5. Data Set

The thermal images used extracts from previously recorded videos. The whole of
this study had a total of 172 images with 618 pixels (horizontal) × 450 pixels (vertical)
resolution, 138 of which (80%) were labeled as training images, and 34 (20%) remained as
test data. We used LabelImg to manually label these 172 images, ensuring that each image’s
temperature focus was located in the labeling box’s center. However, to improve detection,
we opted for the generation of artificial information.

The basic generation of artificial information was carried out as follows:
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Reflection X: each image was flipped vertically (Equation (2)); reflection Y: each image
was flipped horizontally (Equation (3)); reflection XY: each image was flipped vertically
and horizontally (Equation (4)).[

x′

y′

]
=

[
1 0
0 −1

][
x
y

]
(2)

[
x′

y′

]
=

[
−1 0
0 1

][
x
y

]
(3)[

x′

y′

]
=

[
−1 0
0 −1

][
x
y

]
(4)

where x and y represents the horizontal and vertical axis, respectively, on the image.
Rotation: each image changed its axis. For this rotation, the rotation matrix given in

Equation (5) was used, where θ represents the rotation angle of the image and R(θ) the
new pixel position.

R(θ) =
[

cos θ − sin θ
sin θ cos θ

]
(5)

Median filter: each pixel in the image is replaced with the median value of its neigh-
boring pixels (K) in the image. The operation is represented by Equation (6).

K =
1
9

 1 1 1
1 1 1
1 1 1

 (6)

Combining the fundamental data augmentation transformations (i.e., reflection x +
median filter, rotation + median filter, among others) enlarged the data set, in our case,
nine times larger than the original size. The additional training data helped the model
avoid the overfitting that occurs when training with small amounts of data. Therefore,
the data augmentation helped build a simple, robust, and generalizable model. Concerning
the artificial data, 80.0% (1247 images) were used as training data for the object detection
algorithm, and the remaining 20.0% (311 images) were used as test data to experiment and
verify. Figure 4 shows the results of the labeling of two percentages of air filtration.

69:1.00

(a)

39:0.9

(b)

Figure 4. Examples of labeled images. (a) Label, 60% leak; (b) Label, 36% leak.

2.6. Deep Learning System

The term deep learning system refers to a feedforward neural network with a deep
multilayer hierarchical structure [22].

Images are provided to the model through an input layer. Moreover, an output layer
returns the detected object’s category and its respective confidence score within bounding
boxes. Between the input and output layers, there are hidden layers. Each layer consists of
nodes connected to the nodes of the previous layers by weighted edges [23].
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The YOLO (you only look once) network is a deep learning algorithm for detecting
objects in one stage (Figure 5). It uses a single CNN to process images, and it can directly
calculate the classification and position coordinates of objects. With the positioning and ob-
jects classification from one end to the other, the detection speed increases considerably [24].
Additionally, [25] confirms that YOLO v4 tends to be the best object detector in terms of
accuracy and speed of object detection.

Figure 6 illustrates the proposed general deep learning model. Furthermore, to per-
form detection based on YOLO v4, the following steps were introduced:

Data organization: after collecting the data from the experimental images, all the
temperature distribution images from the thermographic imaging system were manually
labeled to complete the data set preparation.

Data augmentation: the data set was processed to generate artificial information, then
the data set was divided into a training set (1247 images) and a test set (311 images).

In configuration and network training, the model parameters were adjusted using
the pretrained YOLO v4 model, especially the batch size, the learning rate, the number of
category objects, and the number of iterations.

The network’s input size was 416 × 416 pixels (preset parameter by the YOLO v4).
The YOLO v4 parameters in this study are shown in Table 3.
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Figure 6. The proposed deep learning model.



Appl. Sci. 2022, 12, 2071 8 of 13

For this research, we used Nvidia CUDA v10.1 on a Tesla T4 (MSI, Taiwan) graphics
board provided by Google Colab servers.

Table 3. Parameters of the YOLO v4 face masks leakage model.

Parameters Value

Input size 416 × 416
Learning rate 1 × 10−3

Batch size 64
Categories 7
Iterations 5000

2.7. Evaluation Procedure and Metrics

In this research, the YOLO v4 deep learning system evaluated the model performance
using the confusion matrix terminology [26] shown below:

• True positive (TP): it occurs when an object category is detected, and the image
contains this object class in the indicated position.

• False positive (FP): it means that an object category is detected, but this object class is
not in the position indicated in the image.

• False negative (FN): it occurs when an object category is in a specific position, and the
model cannot detect it.

• True negative (TN): no object category is in that specific position, and the model did
not detect any object.

The annotation and the bounding box’s expected shape did not match perfectly during
object detection, so an additional parameter was required to calculate the mentioned
variables. This parameter was called intersection over union (IoU) and determined the
required relative overlap α of the shape of the bounding boxes Bp and the ground truth Bgt
as defined by [27] in Equation (7):

α =
area

(
Bp ∩ Bgt

)
area

(
Bp ∪ Bgt

) (7)

The default value of this parameter is 0.5 [28]. Using the terminology of the confusion
matrix and IoU , the following metrics were calculated [26]:

Recall =
TP

TP + FN
(8)

Precision =
TP

TP + FP
(9)

Average precision (AP) measures an object detector’s performance related to a specific
category in the object detection task. The procedure to calculate the AP was as follows:

1. All the detections were sorted based on the confidence score.
2. The detections with the highest confidence score were matched to the ground truth

until a recall r higher than the expected r level was reached.
3. Precision values based on each level of recall r were calculated.
4. The precision Pinterp was interpolated by the maximum precision obtained for a recall

level r.

The precision Pinterp is defined by [28] in Equation (10):

Pinterp(r) = max p(r)
r:r≥r

(10)

where p(r) is the measured precision at recall r.
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For this research, we used eleven levels of recall r ∈ {0, 0.1; ..., 1} with the same
distance among them. Finally, we used AP, the arithmetic mean of the precision Pinterp at
different levels of Recall [28] as shown in Equation (11):

AP =
1

11 ∑
r∈{0,0.1;...,1}

Pinterp(r). (11)

Furthermore, the mean average precision (mAP) (Equation (12)) is the mean of the
AP values for each object category [29], and the higher the value, the better the result of
detecting temperature distributions.

mAP =
∑C

c=1 AP(c)
C

(12)

where C is the number of detection categories. For the specific case of this study, C = 7.

3. Results

Figure 7 showed a representative image of the thermographic spectrum corresponding
to each test. In tests without face mask restriction, 100% is considered (see Figure 7a). In
descending order, the 100% cotton face mask presented a 69% leakage (see Figure 7b); the
100% polyester face mask showed 60% leakage (see Figure 7c); the 3-layer pleated face
mask had 39% leakage (see Figure 7); Figure 7e–g shows the face masks that presented
the best performance, 98% cotton, neoprene, and KN95, with 26%, 25%, and 25% leakage,
respectively. Figure 7h shows the thermal spectrum of the ideal test where there was no
leakage. The results were congruent with those presented in related studies [18,30].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Representative thermographic spectrum images of each test captured by the imaging system.
(a) Without a mask, 100% leakage; (b) 100% cotton, 69% leakage; (c) 100% polyester, 60% leakage;
(d) 3-layer pleated, 39% leakage; (e) 98% cotton, 26% leakage; (f) neoprene, 25% leakage; (g) KN95,
25% leakage; (h) mask without any leak, 0% leakage.

The YOLO v4 object detection network trained with the data set previously mentioned
in Section 2.5 was used to verify the proposed method’s efficiency; the 311 images from
the test set were analyzed. Data obtained from the mAP showed 1143 detections, and
311 unique truth values were taken into account. Figure 8 shows the loss and mAP curve
during training. In the initial stage of training, the model’s learning efficiency was higher,
and the speed of convergence of the training curve was fast. As the training increased,
the slope of the loss curve gradually decreased. Finally, when the number of training itera-
tions reached around 5000, the model’s learning efficiency reached convergence, and the
loss fluctuated around 0.5. Table 4 showed each category’s testing performance metrics
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within the data set. Examining the confusion matrix for the performance metrics of the
classification task used (Figure 9), it can be seen that one category of leakage percent
was classified with a precision of 100% and one with precision more significant than
90%. The two worst-performing categories, 60%, and 26% had the most errors, including
confusion between neighboring categories.

Figure 8. Loss and mAP curve of the YOLO v4 model.

Table 4. Testing performance metrics per category.

Category n (Truth) n (Classified) Accuracy Precision Recall F1 Score

100% 40 42 98.71% 0.93 0.97 0.95
69% 45 45 96.78% 0.89 0.89 0.89
60% 58 43 92.6% 0.91 0.67 0.77
39% 34 41 93.89% 0.68 0.82 0.75
26% 47 43 92.28% 0.77 0.70 0.73
25% 71 75 91.64% 0.80 0.85 0.82
0% 16 22 98.07% 0.73 1.0 0.84

For a minimum threshold of 0.25, a precision of 0.815, a recall of 0.842, and an F1-
score of 0.821 were obtained. The proposed model correctly classified 255 images, only
56 prediction errors, and had an IoU average of 58.06%. The mean average precision
(mAP@0.5) for the data set was 0.9345 or 93.45%.
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Figure 9. Confusion matrix of testing recall.

4. Discussion

The global SARS-CoV-2 pandemic has led to the development and implementation of
personal protective equipment (specifically face masks) to prevent the virus spread from
person to person by air. This situation has allowed the creation of methods to demonstrate
the effectiveness of facial masks.

This research, based on thermography and deep learning, provides certainty to discern
the mask that best protects the general population and health professionals, unlike those
carried out in previous research. In [18,30], the fitted filtration efficiency was measured
by the Occupational Safety and Health Administration’s modified ambient aerosol CNC
quantitative fit testing protocol for filtering facepiece.

The results reveal that thermography represents significant advantages over other
methods used to monitor the efficiency of facial masks since heat loss through the microp-
ores is evaluated, and it represents the percentage of normal breathing that filters through
the face masks, either when inhaling or exhaling. It is worth mentioning that this heat
loss is proportional to the quality of the mask analyzed, that is, the higher the heat loss,
the higher the leakage percentage, and the lesser the quality; the lower the percentage of
leaks, the higher the quality of the face masks. As we know, previous studies have shown
that the effectiveness of using masks to filter particles depends on their characteristics [17].

Thermal images are a reliable tool to evaluate heat losses through the mask; as we
know, heat represents normal respiration; thus, it is an effective method that does not
require meaningful equipment and can be used in future similar situations. The proposed
work is a milestone for evaluating face masks for consumers and also for professional
use. One of the most excellent benefits of this study is that by having a trained network
and deep learning as a basis, a graphical visualization and obtaining images are fast and
efficient. However, the most significant limitation is that the images are only adequate



Appl. Sci. 2022, 12, 2071 12 of 13

when studied in a single individual at a time. Although thermographic vision can be used
within an open population and adequate results can be obtained, it can also lead to a bias
when applied en masse.

5. Conclusions

The thermography-based image acquisition system developed in this work proved
helpful in estimating the effectiveness of the microparticle filtering of consumer-grade
face masks. The exact filtration efficiency (FFE) required to prevent respiratory virus
transmission was not precisely known; however, evidence from previous studies suggested
that even face masks with an FFE of less than 95% (for example, surgical face masks) were
effective in preventing the acquisition of epidemic coronaviruses (SARS-CoV-1, SARS-
CoV-2). This article reported that heat loss through the micropores of various face mask
materials substantially influenced filtration efficiency. By combining thermal imaging with
deep learning tools, the consumer-grade face masks’ effectiveness depending on heat loss
through the manufacturing material was demonstrated. As a result, KN95 and neoprene
face masks in which the micropores were virtually impenetrable were found adequate and
efficient to prevent for the spread of COVID-19, unlike fabric or homemade face masks,
in which the function of micropores was not adequate. These tests were designed to
quantify the protection that face masks offer the wearer when exposed to other people who
may be infected.

One of the proposed method’s deficiencies is that if there are variations in the environ-
mental conditions (temperature and humidity) where the images are obtained, the error in
the measurement increases considerably. Improving the method accuracy is necessary to
increase the test bench by a considerable amount; the added images will be constantly up-
dated to feed the data set with the necessary information that will allow adequate network
training in order to generalize the results during the processing of the measurements.
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