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Abstract: The modeling of the structural behavior of composite materials is an interesting but complex
task since the response of the material to loading structural may be difficult to predict, and the failure
may be manifested in different forms. In cross-ply fiber-reinforced composites, the major failure
mechanisms include: (i) the failure of the matrix material (transverse cracking), (ii) delamination
and (iii) the breakage of the fibers. The process of the transverse cracking is a well studied damage
mechanism and can be used in numerical simulations, in order to study the effects of various
parameters on the crack density. In this paper, the finite element modeling of a cross-ply composite
under uniaxial loading in tension is performed using ABAQUS software, considering all the potential
damage mechanisms. The model takes into account shear-lag effect for the determination of the
stress transfer and furthermore it adopts a homogenization procedure for the calculation of elastic
and viscoelastic material properties. Stochasticity is introduced by assigning various interfacial
strengths that follow a Gaussian distribution, so as to predict the cracking sequence up to saturation
in the transverse to the 0◦ layers. The results are directly compared with available experimental
measurements showing reasonable agreement. Finally, a cross-ply RVE model was created and
loaded in uniaxial tension and crack propagation is modelled with the Extended Finite Element
Method (XFEM). The stress concentration calculations around the crack tips are in agreement with
the mesoscale model.

Keywords: composite laminates; mean-field homogenization; cross-ply composites; transverse
cracking; finite element analysis

1. Introduction

Composite materials are extensively studied numerically and experimentally due to
their increasing application in industry. Their behavior can be examined meticulously by
incorporating multiscale methods that help achieving an in-depth understanding of the
damage mechanisms. The transferring of information between scales allows for extracting
the response of every material combination that consists of the microstructure and proceed-
ing with the macroscale analysis, taking into account each phase’s behavior. Furthermore,
mean field methods are computationally fast methods that allow for obtaining the full
microstructural information for the entire simulation domain without the need to perform
the modeling in such small scales. The combination of multiscale methods with fracture
mechanics’ formulations permits the prediction of any damage mechanism that may appear
in laminated composites under realistic constraints providing information with industrial
relevance and value.

The mechanism of transverse cracking positions and delaminations in cross-ply com-
posite materials is a well studied problem [1–3]. The scale at which the composite material
is modeled has a significant role in terms of the accuracy and the type of the damage
mechanism that can be simulated. The smaller and more detailed the scale is, the more
accurate the model will be and the more damage mechanisms that may be predicted.
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The governing damage mechanisms in a cross-ply Glass Fiber Reinforced Plastic (GFRP)
loaded in uniaxial tension is the transverse cracking and the delaminations that could occur
between the different oriented layers near the crack tips. There are different approaches
and theories that can be applied to simulate cracks and delaminations successfully. In
this study, a mesoscale and a microscale model are developed. The mesoscale approach
is used in a dynamic explicit analysis along with rate dependent materials to predict the
saturation of the transverse cracking and delaminations by using cohesive zone modeling
techniques. The microscale approach is used to model the initiation of cracks and their
propagation in a 3D cross-ply Representative Volume Element (RVE) using an extended
finite element method (XFEM) in a quasi static analysis framework. The stress fields at
the concentration areas around the crack tips of both methods are compared using strain
concentration tensors to link the two scales.

In the existing literature, there are models that have been suggested concerning the
simulation of interfacial properties. The most common and widely used approach is
the XFEM [4]. This method allows the modeling of discontinuities existing in the finite
elements. Thus, it provides a tool for the insertion of matrix cracks independently of the
mesh orientation. Despite the fact that most of the simulations of cracking initiation and
propagation are performed using XFEM, this method has a limitation mainly imposed
by the chosen analysis which has to follow the Implicit integration framework and not
the Explicit. In the present mesoscale model, Explicit analysis is adopted where complex
dynamic problems with contacts and large deformations can be solved. Another important
fact introduced in the present investigation is the use of a cohesive interface instead
of cohesive elements [5] thus reducing the continuum shell elements of the model and
avoiding the matching restrictions for the mesh of the adjacent layers.

In addition, homogenization theory was used to predict elastic properties for the
multiphase materials instead of properties from literature or material databases. Homoge-
nization methods and multi-scale analysis can easily be extended to the nonlinear regime [6]
for plasticity and damage to get a clear understanding about the inelastic response in the
microstructure and observe which component of the composite has conceived damage.
This multiscale modeling can be performed using a user defined material through a sub-
routine UMAT of ABAQUS usually coded in Fortran or coupling the solver with another
multiscale modeling dedicated software [3]. There are also other analytical and numerical
homogenization schemes appropriate for continuous fiber reinforced composites such as
Aboudi’s method of cells [7] and FE-RVE homogenization schemes [8,9] with comparable
results with the homogenization method used in this study [10].

In the present work, a 3D mesoscale model was developed, regarding the layers of the
laminate as a homogeneous, transversely isotropic medium and calculating their elastic
properties using a two-step mean field homogenization methodology. The viscous effect
of the matrix material during the homogenization strategy was taken into account. The
interface between the [0/90]s layers is modeled with cohesive contacts. A finite number of
cracks was placed at the 90◦ layers of the laminate assuming that their strength followed a
Gaussian distribution, thus avoiding the development of uniform stress. This approach
is different from the work by Fukunaga et al. [11], where a Weibull distribution was used
where a brittle behaviour for the 90◦ is assumed. The adopted methodology was preferred,
among others, for computational stability. Four rows of elements were placed through
the thickness of each ply so as to realistically model transverse cracking. By adopting this
approach, the stress redistribution and the damage evolution process can be predicted
and quantified.

2. Homogenization Procedure
2.1. Homogenization Method for Elastic Materials

The elastic properties of the material are obtained using a two-step micromechanics
homogenization algorithm. Firstly, all of the inclusion families were homogenized sepa-
rately as a composite material with two phases following the Mori–Tanaka homogenization
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scheme [12]. Secondly, all pseudo grains were homogenized to a single composite by adopt-
ing a Voigt homogenization approach, which is schematically depicted in Figure 1 and in
mathematical form can be described by Ce f f = ∑n

i=1 ViCi, where Ce f f is the homogenized
stiffness tensor, and Ci is the stiffness tensor of the pseudo grain i with volume fraction
Vi. In case of a two-phase composite material such as a glass fiber reinforced polymer
(GFRP) with unidirectional long fibers, the two-step method coincides with the simple
Mori–Tanaka method. The homogenized stiffness tensor is given from the Mori–Tanaka
formula:

CMT = Cm + [Vf < (C f − Cm)AEshelby >][VmI + Vf < AEshelby >]−1 (1)

where <> stands for orientation averaging of fiber orientations, which can be ignored
for aligned fibers. The quantities C f , Cm are the stiffness matrices of the epoxy and the
glass fibers, respectively. The volume fractions of the fiber and the matrix are denoted
with Vf and Vm. In addition, I is the fourth order identity tensor, and AEshelby is the strain
concentration tensor of the dilute solution defined as:

AEshelby = [I + EC−1
m (C f − Cm)]

−1 (2)

where E is the Eshelby tensor that depends on the aspect ratio of the inclusion and the
properties of the matrix material. The Eshelby tensor can be computed by using analytical
solutions that have been developed for certain inclusion geometries and matrix materials.
The general solution for inclusions of an arbitrary shape embedded in an isotropic matrix
is described as follows:

Eijkl = 1
8π(1−ν)

{δijδkl(2νIi + Jik) + (δikδjl + δjkδil)

[(1− ν)(Ik + Ii) + Jij]} (3)

Ii = I(λ) = 2πα1α2α3

∫ ∞

λ

(Ai + s)−1

∆s
ds (4)

Jij = Jij(λ) = Ai Iij(λ)− Ii(λ) (5)

Iij = Iij(λ) = 2πα1α2α3

∫ ∞

λ

(Ai + s)−1(Aj + s)−1

∆s
ds (6)

∆s2 = (A1 + s)(A2 + s)(A3 + s) (7)

where
Ai = α2

i (8)

The quantities involved are: the Poisson ratio ν of the matrix, α1, α2, α3 are the three
ellipsoid axes dimensions of the inclusions geometry, and δ is the Kronecker’s delta and
the numerical quantities Ii, Iij that are defined in terms of standard elliptic integrals and
details can be found in [12,13].

The homogenization algorithm deals with the random orientations by performing
orientational averaging using a fiber orientation tensor after retrieving a fourth order
tensor using hybrid closure approximation [14]. To calculate the effective properties of a
continuous fiber reinforced composite, the ellipsoid principal dimension that corresponds
to the fiber’s axis is much bigger than the other two axes’ dimensions: α1 >> α2 and
α1 >> α3.
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Figure 1. Steps used during homogenization procedure: (i) pseudo-grain discretization, (ii) homoge-
nization of each pseudo-grain, (iii) homogenization of all pseudo-grains with Voigt approach.

2.2. Homogenization of Viscoelastic Materials

In the present study, the viscous effect of the matrix is manifested employing a viscoelastic
homogenization scheme that takes into account prony series viscoelasticity. On the other hand,
the glass fibers are considered as linear elastic for normal temperatures. The material model
of the viscoelastic matrix medium follows the following constitutive equation:

σ(t) = G(t) : ε(0) +
∫

G(t− τ) : ε̇(ve)(τ)dτ (9)

ε(0) = lim
t→0+

ε(t) (10)

G(t) = 2GR(t) Idev + KR(t) Î ⊗ Î (11)

where the stress (σ) and strain (ε) second order tensors are invoked, G(t) is the relaxation
tensor, ε̇(ve) the viscoelastic (indicated by the ve superscript) strain rate tensor, Idev is the
deviatoric part of the fourth order unit tensor, and Î is the second order unit tensor. The
juxtaposition symbol ⊗ represents the dyadic product. The prony series expression of the
bulk and shear modulus is given by:

GR(t) = G(0)[1−
n

∑
i=1

wi(1− e−t/τi )] (12)

KR(t) = K(0)[1−
n′

∑
i=1

w∗i (1− e−t/τ∗i )] (13)

where wi, w∗i are the weights for the respective relaxation times τi, τ∗i .
The relation σ̂(s) = Ê(s)ε̂(s) is the elastic analogous of Equation (9) for isotropic mate-

rials in the Laplace–Carson domain. The quantities invoked σ̂, Ê and ε̂ are the transformed
stress, stiffness and strain tensor in the Laplace domain, while s is the complex variable.
This leads to a fictitious RVE in the Laplace–Carson domain [15], and the homogenization
results are expressed as functions of s. Inevitably, an inverse Laplace–Carson transforma-
tion is required to calculate the results in the time domain [16]. The prony series values for
the viscoelastic homogenization are taken from the literature [17].
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3. Modeling a Cross Ply Composite Material [0/90]s

In the relevant literature, several micromechanical [18,19] or mesoscale [20–26] ap-
proaches have been proposed. In this study, the material at each ply is a transversely
isotropic material whose elastic properties were calculated with a Mori–Tanaka microme-
chanical formula based on Eshelby’s solution [13], and the structural simulation follows a
mesoscale approach. The material properties’ values used were the Young’s modulus of
epoxy resin (5.5 GPa), glass fiber (73.1 GPa) and the respective Poisson’s ratio values were
0.395 and 0.18. The shape of the glass fibers having Vf = 0.63 is described by their aspect
ratio, which was 10,000 .

The total composite elastic properties after homogenization procedure are reported in
Table 1. The viscous effects’ contribution of the matrix material to the whole composite with
respect to time can be seen in Figure 2. The strength values, including Interlaminar Shear
Strength (ILSS) for the homogenized GFRP material, are taken from the literature [27].

Table 1. Elastic Properties after elastic and viscoelastic Homogenization.

Property Instantaneous 270 s Quasi-Static

Longitudinal modulus E1 (GPa) 48.1621 46.396 46.386
Transverse modulus E2 (GPa) 18.7977 3.930 3.7541

In plane Poisson ratio ν12 0.252155 0.25029 0.25038
Transverse Poisson ratio ν23 0.485318 0.5658 0.56396

In plane shear modulus G12 (GPa) 6.32782 1.255 1.2002
Transverse shear modulus G23 (GPa) 6.88076 1.415 1.3505

Figure 2. Time dependent homogenized axial Young’s modulus E11 from viscoelastic homogenization.

In order to model the interfaces between the layers, cohesive contacts are used in a
nonlinear analysis framework. The adoption of cohesive contacts dominated the alternative
options of cohesive elements or XFEM. The cohesive elements approach has two unde-
sirable effects. The first one is the significant increase of the total finite elements number,
and the second one has to do with the meshing procedure of the different layers, which
should discretized in a rather restrictive similar manner. As should be stressed, the XFEM
approach cannot be used in the dynamic analysis framework with explicit integration. In
the traction-separation model of ABAQUS, a linear elastic behavior is initially assumed
followed by the initiation and evolution of damage. The elastic behavior is expressed in
terms of an elastic constitutive matrix that relates nominal stresses to nominal strains across
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the interface. The maximum shear stress criteria are employed to model the failure at
the contacts.

The model material geometry is represented by a domain between two adjacent cracks
that is undamaged and has a 30 mm length. Every layer has a 0.25 mm thickness value
and the composite is loaded uniaxially. Tabular data are employed for the incremental
application of the strain up to a total value of 1.5% using a loading duration of 270 s. The
geometry of the model is depicted in Figure 3.

Figure 3. Geometry of the cross-ply composite model.

For the geometry mesh generation procedure, four rows of continuum shell elements
along the thickness direction of each laminate were placed for higher accuracy, resulting in
a total number of 96,000 continuum SC8R type shell elements.

The placement of a high number of potential cracks permits the successful prediction
of random matrix cracking (Figure 4). For every potential crack location, different strength
values are attributed as non-uniform stresses are developed, as the latter would lead to the
simultaneous failure for all interfaces at the cohesion zone.

Figure 4. Modeling of the possible transverse cracks with a cohesive interface.

The contacts’ strength follows a Gaussian distribution with a mean equal to the
strength of the matrix and 15% standard deviation .

4. Results and Discussion

It should be pointed out that all the expected failure mechanisms appear in the present
simulation study. Initially, the first transverse cracks are formed. As the loading continues,
interfacial delaminations are evident. The existence of a shear lag zone ([28–30]) is being
revealed. In the sequel, the crack density simulation predictions are compared with existing
experimental measurements. Finally, it is shown how the ILSS affects the delamination
length and the total strength of the total composite material.

4.1. Delaminations and Shear Lag Zone

Cohesive zone modeling (CZM) provides a simulation pathway to model cohesion for
interfaces with zero thickness. In the present study, it is used to simulate matrix cracking
and delamination. As aforementioned, prior to damage, a linear elastic behavior is assumed
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in this traction separation model, which is valid. The aforementioned behavior is given by
the following equation: tn

ts
tt

 =

 Knn Kns Knt
Kns Kss Kst
Knt Kst Ktt

δn
δs
δt

 (14)

The quantities involved are the normal (tn) and the two (ts, tt) shear tractions, respec-
tively. The corresponding separations are δn, δs, δt. It is crucial to underline that the cohesive
contact is an interaction and not a material property, which is thus interpreted differently
from cohesive elements. Additionally, CZM necessitates a geometrical nonlinear analysis.

In Figure 5, the calculated quantity CSQUADSCRT = (tn/tn
0 )

2 + (ts/ts
0)

2 + (tt/tt
0)

2

denotes the criterion for damage initiation for the quadratic contact stress. If CSQUADSCRT
= 1, the criterion is fulfilled. It should be stressed that the CSQUADSCRT value cannot
exceed 1 so as to specify damage evolution. For CZM, damage progression is manifested
by the reduction of stiffness of the cohesive contacts, whereby, in the case of cohesive
elements, damage propagation corresponds to stiffness degradation for the material it-
self. The present work is adopted based on energy criteria, following the analytical forms
proposed by Benzeggagh and Kenane [31]. The aforementioned forms are useful in cases
where the critical energies become equal during separation along the two shear directions
(GC

s = GC
t ) and

GC
n + (Gshear/GT)

η(GC
s − GC

n ) = GC (15)

Gshear = Gs + Gt (16)

GT = Gn + Gshear (17)

with the quantities involved being the cohesive property parameter η, and GC
n , GC

s , GC
t are

respectively the required critical fracture energies for failure at the normal, the first and the
second direction.

As the first cracks appear and the loading continues, almost immediately delami-
nations [32] are initiated too. At the area over and under the tip of the cracks, stress
concentration is observed. The cracked composite material and the extension of the delami-
nation area around the cracks are depicted in Figure 5.

Figure 5. Modeling of the possible transverse cracks with cohesive interface. The existence of the
shear lag zone is apparent. The upper layer is hidden to get a more clear image of the cracks and the
delamination area. Values of CSQUADSCRT quantity are given in the colorbar.
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The shear lag zone is apparent. In this zone, the normal tensile stresses are almost
zero, while the shear stresses at the interface are high, and this constitutes the main reason
for delamination appearance. As we move away from that zone, the exact opposite seems
to happen; as the normal stresses are high, the next cracks of the composite will be far
enough from an existing crack. The zone’s size strongly depends on the: (i) layer thickness,
(ii) stiffness of the outer layers and the (iii) value of the interlaminar shear strength.

4.2. Comparison with Experiments

In the present section, comparisons with available experimental measurements [33]
are given. Due to strength stochasticity of the 90 ◦C layers, there is a continuous transverse
matrix cracking. Some representative screenshots during the analysis are presented in
Figure 6. Simulation predictions included in a crack density versus strain diagram are
compared with experimental data and depicted in Figure 7.

The initial cracking and cracking saturation occur for similar axial strain values for
both experimental and simulation data. The standard deviation value of the distribution
plays a significant role in the cracking density because it can lead to weaker or stronger
contacts affecting the final crack density. It is worth mentioning that, in the simulation
protocol, the load was applied at a constant strain rate through tabular data describing the
strain values at the corresponding time of the analysis. Finally, from the two simulation
curves of Figure 7, it can be observed that the increase of the composite’s stiffness increases
the crack density too.

For a strain value around 0.4%, the first crack develops and subsequently more cracks
appear. In Figure 6, where the second and third time steps are depicted, the total axial
strain values are 0.5% and 0.8%, respectively, while, for axial strain around 1.2%, saturation
of crack density takes place.

4.3. Mesh Sensitivity Analysis

In the framework of continuum mechanics, the stress–strain relations of a material
define the constitutive model. In case of strain softening behavior of a material strain,
localizations can appear, resulting in strong mesh dependency of the solution. As a result,
mesh refinement can decrease the energy dissipation. To alleviate mesh dependency, the
ABAQUS solver introduces a characteristic length in the formulations that is related to the
size of the element and expresses the strain softening part as a stress displacement relation.
Thus, the dissipated energy during damage is given per unit area and not per unit volume
and is treated as a material property that is used to calculate the critical displacement for
damage initiation. The above method is also consistent with the fracture mechanics concept
of the critical energy release rate where it is also treated as a material parameter [34].

The cross-ply composite model was solved for five different meshes to examine
the mesh dependency having 8000, 45,144, 96,000, 208,306, and 352,688 continuum shell
elements, respectively, and the results are shown in Figure 8. It can be concluded for all
four models that the cracking saturation occurs with the same number of cracks. The
only result that significantly differentiates in coarse meshes and seems to stabilize as the
mesh becomes finer is the mean delamination length (Figure 9). This result is calculated
as an average value from the sum of the delamination length of each crack divided by the
number of cracks.
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Figure 6. Middle layer transverse cracks at different time steps.

Figure 7. Crack density as a function of strain for experiment data [33] and simulation model data
for quasi-static loading and for total loading time of about 270 s.

Figure 8. Final cracking at the model material geometry for five different meshes for quasi-static
loading. At the right corner, a magnified local domain encapsulating crack is also given for each of
the five different meshes.
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This can be attributed to the small number of elements which translates to a small
number of integration points. Inevitably, the results are extrapolated to a larger but
unnecessary area. This phenomenon disappears by using an adequate number of elements,
which was higher than 45,000 elements for the specific geometry of the presented model. It
should be stressed that, for the consistent and successful simulation of the crack profile,
more than one row of elements are needed per layer of the composite material.

Figure 9. Mean delamination length as a function of the number of finite elements.

5. Crack Growth in Microscale Using Fracture Mechanics

As mentioned, XFEM is a popular method for the solution of quasi-static problems
containing cracks and interfaces that are mesh independent. The solution is attainable with
the enrichment of elements that are intersected by the discontinuity, using special shape
functions to handle the singularities and local discontinuities around the crack.

In Figure 10, a cross-ply composite RVE model (with characteristics as mentioned in
Section 3) is constructed and loaded in uniaxial tension that is applied through Dirichlet-
type boundary conditions by using the strain results of the macroscale model. The cracking
propagation simulated with XFEM is shown as the loading increases. In particular, as the
crack propagates, the stress in the middle layer reduces while stress concentration in the
crack tips is evident, in agreement with the macroscale model. In Figure 11, the stress
concentration values at the crack tips are compared against the simulation predictions of
microscale and macroscale models.

However, the stress profiles cannot be directly compared due to the different repre-
sentation scales. The macro model refers to the stress concentration upon a homogenized
material and the micro model refers to the stress concentration upon the fiber. For their
direct comparison, the stress in macro model needs to be localized using the stress concen-
tration tensor of Hill’s [35] theories, which invoke the following equations:

σf = B f : σ (18)

B f = (M−Mm)/[Vf (M f −Mm)] (19)

The quantities involved are the compliance tensors of the fiber (M f ), the matrix (Mm)
and the homogenized composite material M, Vf is the volume fraction of the fiber, and B f
is the Hill’s fiber stress concentration tensor. The stress concentration tensor connects the
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stress tensor of a constituent with that of the composite, making the direct comparison of
the two models possible.

Figure 10. Crack growth in a cross-ply RVE using XFEM.
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Figure 11. Stress concentration comparison between micro and macro models.

The maximum stress tensor of the homogenized material in the stress concentration
area that occurred from the macro scale analysis in Voigt notation is σ = [1833.04 −51.04
−53.82 1.71 0.56 −8]. The von Mises stress of the fiber that occurred from the stress
localization is 2958.3 Mpa, which is close to the prediction of the XFEM model around
2894 Mpa.

6. Conclusions

In this study, a model is proposed for the simulation of damage in cross-ply compos-
ite materials. The model incorporates shear-lag effect for the determination of the stress
transfer and furthermore it adopts a semi-analytical homogenization procedure for the cal-
culation of elastic and viscoelastic material properties based on the Mori–Tanaka and Voigt
approaches. The homogenization algorithm can take into account random orientations by
performing orientational averaging using the fibers’ orientation tensor. Random matrix
cracking was simulated by placing a large number of possible cracks with their strength
following a normal distribution and is modeled with a CZM technique. Mesh sensitivity
analysis has been performed showing that cracking saturation occurs with the same num-
ber of cracks guaranteeing the consistency of computations. The production simulations
revealed that all the anticipated damage mechanisms are evident. Initially, transverse
cracks appeared and almost simultaneously made their presence clear delaminations at the
interfaces near the crack tip. After the cracking initiation, stress redistributions were appar-
ent. Overlapping stress field may be observed too, in the case where two adjacent cracks
are in close proximity. Simulation predictions for the crack density as a function of strain
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are compared with available experimental data showing reasonable agreement. Finally, a
cross-ply RVE model was created and loaded in uniaxial tension in a crack propagation
analysis with XFEM. The stress concentrations around the crack tips are in agreement with
the mesoscale model.

The proposed methodology with the proper modifications and additional develop-
ment can be used towards the simulation of self-healing of materials and the authors work
in that direction.
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