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Abstract: The metro transportation system will have emergency passenger flow for various reasons,
resulting in passenger flow congestion, affecting efficiency and risks. In this paper, the LSTM
network is applied to predict the normal passenger flow and emergency passenger flow of metro
transportation based on transfer learning to solve the imbalanced data set problem when the amount
of emergency samples is too small. The results show that under normal and emergency conditions,
the average prediction error is less than 5%, which provides an alarm for the operating company
to take preventive measures in advance. Compared with the strategy without transfer learning, it
proves that the strategy proposed in this paper has advantages in predicting emergency conditions.

Keywords: LSTM; transfer learning; passage flow prediction; metro station

1. Introduction

Compared with private car travel, public transport has greater traffic volume and
communication efficiency, lower energy consumption and air pollution. As an effective
measure to alleviate the pressure of urban traffic, the urban metro transportation system is
widely used in the world. However, it is common for passenger flow congestion to occur
during the peak period of transportation. Therefore, it is necessary to predict the passenger
flow of metro transportation.

1.1. Passenger Flow Forecast

Passenger flow forecast is divided into two categories. One is analyzing the time
sequence characteristics according to the existing data and then predicting the future pas-
senger flow. In this way, a short-term passenger flow forecast can be obtained. Traditional
methods can realize the analysis of time series characteristics, such as regression model,
Bayesian network, Markov method, etc.

In ref. [1], Sun et al. present a traffic flow prediction method based on a Bayesian
network, and the joint probability distribution between the cause node (data for prediction)
and the effect node (data to be predicted) is described as a Gaussian mixture model (GMM).
Cai et al. [2] use a hybrid regression model, considering both local and global information,
to solve the limited training sample size and achieve short-term passenger flow forecasting.

With the development of machine learning and neural network technology, machine
learning technology has also been applied to metro passenger flow forecasting. Sun et al. [3]
use SVM learning combined with wavelet analysis technology to divide passenger flow data
into high-frequency and low-frequency sequences for learning. Li et al. [4] use a dynamic
radial basis function (RBF) neural network to forecast passenger flow and analyze its
performance in different periods. LSTM network is often used in time series prediction.
Many researchers combine it with different methods to predict subway passenger flow and
have achieved good results [5–7].
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In the operation process of metro transportation, the best design is generally consid-
ered to make the passenger flow close to the maximum transport capacity of the metro
transportation network, to maximize the operating efficiency. When the external environ-
ment is affected by some unpredictable factors, the potential transport passenger demand
increases, or the transport capacity of metro transportation decreases. It will lead to passen-
ger congestion and potential safety problems, which is called emergency passenger flow.
If we can have an accurate forecast of emergency passenger flow, we can take targeted
measures to alleviate the pressure of the metro transportation system.

1.2. Emergency Passenger Flow

Li et al. [8] established the mathematical prediction model of emergency passenger
flow by analyzing the passenger flow data within 35 days. Gao et al. [9] analyze the change
of passenger flow and give the guidance method of passenger flow evacuation according
to the special situation of subway service interruption. However, with this analysis method
using mathematical modeling, it is difficult to take full use of the huge amount of passenger
flow data obtained from the subway.

Compared with normal passenger flow, the characteristics of emergency passenger
flow lie in its uncertainty and contingency. The causes of emergency passenger flow are
often different, and the impact of different reasons on passenger flow fluctuation is also
different. Emergency passenger flow is often rare. Compared with normal passenger flow,
the sample size is much smaller, and the distribution is more discrete, so it is difficult to
summarize the regularities.

Based on the above problems, the traditional learning method is not suitable for
emergency passenger flow forecasting, and the data enhancement strategy usually used
for small sample learning is not suitable because the sample spaces of emergency cases
are unknown.

1.3. Transfer Learning

Transfer learning is to apply the prior knowledge obtained in primary fields to other
target fields. Pan [10] published a survey paper on transfer learning in 2010, summarized
the history of the existing transfer learning, and defined the classification of different
transfer learning methods. In fact, transfer learning can not only be used in machine learn-
ing but also has outstanding performance in data mining and other fields. Weiss, K. et al.
summarized the application of transfer learning in data-mining-related tasks such as classi-
fication, regression and clustering, and further standardized the definition of terms related
to transfer learning in different fields.

Generally, the network comprising feature extraction layers and classifier layers has
been trained in the primary field. Then the feature extraction part is reused and fixed in
the target field training where only the classifier will be trained based on the samples in
target fields.

In this way, it can solve the problem of insufficient sample size in the target field. It
has been proved to be one of the effective methods to deal with small sample learning. It
has been widely used in natural language processing [11–13], computer vision field [14,15].

The biggest advantage of transfer learning is that it can be further trained based on
existing high-performance models to adapt to different situations. This usage is widely
used in the field of natural language processing. BERT [16] is one of the most advanced
natural language processing models. Based on it, researchers have produced a large number
of research results [17–19] using transfer learning. Based on the original Bert model, they
retrained the model with data sets in different target fields. In the case of retaining part of
the original network structure, some parameters are added or deleted to optimize the effect
in the corresponding target field.

Based on this feature, transfer learning can solve the problem of small sample learning,
especially fault-related problems. Transfer learning can extract features from massive
source data and apply them to similar but smaller fault data. Xiao et al. [20] use the CNN
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network based on transfer learning to solve the problem of the small amount of mechanical
fault data in industrial applications, and uses motor fault data to verify the accuracy of its
fault analysis model.

This paper takes Shanghai Metro as an example and uses the transfer learning method
based on LSTM to establish a prediction model for metro transportation emergency pas-
senger flow. The problem of small samples in the training process is solved by using
transfer learning. The results show that the model has good accuracy under normal and
emergency conditions.

The rest of this paper is organized as follows. Section 2 introduces the relevant
knowledge and work; Section 3 introduces the data set and the method used in this paper;
Section 4 shows the experimental results. Finally, Section 5 summarizes and discusses the
future research.

2. Materials and Methods
2.1. Time Series Analysis

Considering that the focus of this paper is the decline of metro transportation capacity,
this paper uses the section passenger flow in each time period of the metro as the analysis
data set. The so-called section passenger flow is defined as the number of people who are
transported from one station to the adjacent station by the metro every hour. It is assumed
that there are n + 1 stations in a metro line, which is represented as Sati. Then the whole
line can be divided into n sections, and the passenger flow per unit time of the i section can
be expressed by ki, that is ki = [Sati−1 → Sati].

The section passenger flow has directivity to reflect the current metro transportation
capacity in a certain section for either uplink or downlink direction. The characteristics
of uplink and downlink passenger flow are usually different, so it needs to be considered
separately. The passenger flow of the section in a certain period of the whole station
interval can be expressed as wt =

(
kt

1, · · · , kt
n
)

(t is the time period, n is the total number
of sections).

2.2. Factors of Emergency Passenger Flow

Metro faults are one of the main causes of emergency passenger flow. On 25 April 2018,
Shanghai Metro Line 2 was delayed for more than 2 h from 6 a.m. due to signal system fault,
resulting in a large number of passengers being stranded and having to choose other ways
of transportation, which also increased the burden of other ground public transportation
and brought potential risks.

As shown in Figure 1, the passenger flow in the fault period of the day is compared
with that in the same period of a week. It can be seen that the transportation passenger
flow has decreased significantly.

According to the different metro faults, we can use the severity of the fault to measure
its impact on the metro operation. Fault severity can be measured from two dimensions
of time and space. The time dimension of fault refers to the duration of fault, including
the duration of the fault itself, the time needed to alleviate or repair the fault, and the time
needed to clear the impact caused by the fault; The spatial dimension of fault refers to the
location of the fault, including the type of fault, the equipment with the fault, the operation
section affected by the fault, etc.

The metro fault situation is complex and changeable, and the situation of different
lines is also different, so it is difficult to use a unified algorithm to describe it. In addition,
we do not need accurate quantitative descriptions. Therefore, this paper uses the expert
evaluation method to quantify the fault severity qualitatively. The advantage is that
the relevant personnel dealing with the line fault are familiar with the situation of the
corresponding metro line, and have sufficient experience and knowledge of metro faults,
which can more accurately measure the severity of the metro fault.
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Figure 1. Impact of an emergency event on passenger flow.

3. Prediction Model for Emergency Event

The purpose of this model is to realize passenger flow prediction under normal and
emergency conditions. Therefore, this paper is divided into two parts. The first part is to
complete the normal passenger flow forecast of metro transportation, and the second part
is to forecast the emergency passenger flow based on the normal passenger flow forecast,
as shown in Figure 2.
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3.1. Calculation Process

Under normal conditions, according to the surrounding environment, line distribution,
and other factors of the metro, there will be a stationary passenger flow demand R0 per unit
time, that is, R0 = f (X). X is the set of environmental factors, which is only related to the
physical space environment of the metro and has nothing to do with the operation behavior.

Similarly, according to the Metro operator’s strategy, such as operation speed, depar-
ture interval, number of passengers in the carriage, there will be a stationary maximum
transport capacity Capmax per unit time, that is, Capmax = g(Y). Y is the metro opera-
tion strategy set, and Capmax can change with the operator’s strategy. Obviously, when
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Capmax approaches to R0 and is slightly greater than R0, the metro operation efficiency is
the highest. Here, we might as well assume that under normal conditions, the transport
capacity of the metro can fully meet the demand of transport passenger flow. At this time,
the normal transport passenger flow is the demand of normal transport passenger flow
and just reaches the limit of transport capacity, that is, R0 ≈ Capmax.

As shown in Figure 3, when the metro breaks down suddenly, the transportation capac-
ity of the metro will decrease, but the passenger flow demand will not be affected. Currently,
R0 remains unchanged, Cap′max = g(Y′) < Capmax. The difference N between the two is the
passenger flow stranded in the station due to the emergency, that is, N = Capmax − Cap′max.
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To simplify the model and improve the universality of the model, we use the LSTM
network to forecast the normal passenger flow, taking into account the working day and
time period; For the emergency passenger flow, we use the method of expert evaluation to
quantify the severity of the fault qualitatively. Taking the severity of the fault as a reference
factor, we use the method of transfer learning to predict the emergency passenger flow
based on the normal passenger flow prediction network. The input parameters are shown
in Table 1.

Table 1. Input parameter list.

Input Symbol Form

passenger flow wt 3× n matrix
time period t 0~24

whether workdays wd 0 (no) or 1 (yes)
fault level flv 0~9, 0 means no fault.

3.2. Loss Function

It can be found that even in the peak period, for the departure and terminal stations
in remote areas of the city, the passenger flow will not be very high. If the traditional
percentage error function is used, even if there is a small error at these stations, it will have
a great impact on the whole network. In addition, we are not very concerned about the
situation of small passenger flow, so in order to reduce the impact of small passenger flow
on the results, we use the rewritten weighted percentage error function.

The traditional mean percentage error function (MAPE) is as follows:

MAPE =
1
n

Σ
∣∣y′ − y

∣∣/y, (1)
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It can be seen that when y is small or even 0, MAPE cannot produce appropriate results.
Therefore, we use the improved weighted mean percentage error function (WMAPE).

WMAPE = Σ
∣∣y′ − y

∣∣/Σy, (2)

Table 2 shows an example to compare the advantages and disadvantages of the
two algorithms, if the passenger flow and predicted value of each station in a certain
period are shown in the table below, the corresponding MAPE and WMAPE are calculated
according to the data. We can see that when the passenger flow of the station itself is
large, such as station 5 and station 6, the impact of the fluctuation of the forecast passenger
flow deviation on the two algorithms is basically the same. When the passenger flow of
the station itself is small, such as station 2, the predicted number of people is only one
person different, but the result of the MAPE algorithm has a huge change. In addition, for
unmanned sites, such as site 1, the MAPE algorithm cannot give results.

Table 2. Comparison of different error calculation methods in a hypothetical case.

Station 1 2 3 4 5 6

real flow 0 5 50 500 5000 50,000
predict flow 1 4 49 498 4998 49,998

error 1 1 1 2 2 2
MPE err 0.2 0.02 0.004 0.0004 0.00004

WMPE 0.00002 0.00002 0.00002 0.00004 0.00004 0.00004
MAPE 0.03741

WMAPE 0.00016

3.3. LSTM Network Structure

In this paper, the input of the network is the time of the passenger flow to be predicted
(time), the workday (workday), the fault severity (LV), and the section passenger flow in
the first few time periods of all stations. The output result is the passenger flow of the
whole station section, that is, the transportation capacity of the whole station.

The input and output of the traditional machine learning model based on time series
are usually time-series data. However, in this paper, the time period, working day and
fault severity data are the properties of the passenger flow, and they are not time series.
Therefore, they cannot be used as the input of the LSTM network, and need to add a dense
layer. A multi-input and single output neural network is constructed, in which the LSTM
part is responsible for extracting the time-series features of section passenger flow, and the
dense layer part is responsible for mixed judgment of time period, working day and fault
severity. The whole network is shown in Figure 4.

The first half of the network is a two-layer LSTM network. The sliding window
algorithm is adopted. Taking the passenger flow of each station section in the first three
hours of the predicted time period as the input data, the input is win1 = (wi−3, wi−2, wi−1).
Finally, after the integration of the whole connection layer of the first layer, the output of
wout1 is achieved.

Assuming that no other non-time-series input is considered, the above wout1 can
output the final prediction result wout. Due to the addition of other input variables, LSTM
does not output the result but outputs 256-dimensional time series eigenvalues. After
merging with another time period, working day and fault severity three input data win2
through a merging layer, it is input into a network composed of two dense layers, the final
output of the current period of the whole station passenger flow forecast, as shown in
Figure 5.
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3.4. Model Training Procedure

Based on the above work, the network is trained with data without fault conditions.
At this time, the input of fault severity is disabled by setting to zero to get the first network
K. K = K1 + K2, where K1 is the weight matrix of the LSTM network part and K2 is the
weight matrix of the dense layer network. The prediction results can be calculated by the
following formula:

y = f (K2[g(K1win1); win2], (3)

where [:] represents merging operation, g represents LSTM partial operation, and f repre-
sents full connection layer partial operation.

Let us assume that the network K′ = K1
′ + K2

′ for the prediction of passenger flow
in emergencies.

For the passenger flow forecast in the period of fault occurrence, since the fault will not
affect the passenger flow in the period before the fault occurs, the occurrence of emergency
will not affect the characteristics of the first half of the network, that is, K1

′ = K1. Therefore,
for K′, we can fix the weight matrix of the first half of the network, and only change the
weight of the second half of the network through training, That is K′ = K1 + K2

′. Then the
forecast passenger flow can be expressed as

y′ = f (K2
′[g(K1win1); win2], (4)

4. Simulation and Results

The data set adopted is the passenger flow data of Shanghai Metro Line 2 from 2017 to
2019. The operation time of line 2 is from 5:28 to 23:30.

4.1. Data Pretreatment

Considering the data integrity, the two time periods of 5:00–6:00 and 23:00–24:00 are
excluded when selecting the data set. Only 17 time periods between 6:00–23:00 are selected
as the data set, and the passenger flow in the non-operation time period of 0:00–5:00 is zero.
There are 29 sections of data in each time period. Finally, about 27,000 normal passenger
flow data and 20 available emergency passenger flow data are obtained.

For data with particularly large scales such as people flow, the maximum-minimum
normalization method is used to normalize the data.

xnor =
x− xmin

xmax − xmin
, (5)

xmin is the minimum value of passenger flow, which is 0 in this paper, xmax is the
maximum value of passenger flow.

4.2. Simulation Setup

Because the neural network based on LSTM is one of the common schemes for passen-
ger flow prediction, we take the LSTM network without migration learning as the control
group. In this experiment, we compare the results of using transfer learning and not using
transfer learning to prove the effectiveness of the experimental design.

For this model, we build it through the following steps:

1. All data sets were randomly divided into a training set and test set, accounting for
70% and 30% respectively;

2. The normal passenger flow training set data are used as input to train the network,
and the normal passenger flow test set is used to verify the network performance to
obtain the normal passenger flow prediction network K;

3. Freeze the LSTM part of network K, use the training set of emergency passenger flow,
train the network again based on network K, and then use the test set of emergency
passenger flow to verify the network performance, and get the prediction network K′.
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The trigger uses Selu and Adam optimizer. Considering that there are 17 samples in
a whole day, the learning step is set to 34, and other parameters are adjusted according to
experience and learning effect. The above-mentioned weighted average percentage error
function was used for model evaluation.

4.3. Results and Analysis
4.3.1. Normal Passenger Flow

For the normal passenger flow forecast results, although the WMAPE algorithm used
in the model can well measure the forecast error, we cannot see the intuitive performance of
the model from it. Therefore, after the training, we use the mean percentage error function
to evaluate the performance of the model site by site.

Consider the following questions:

1. The purpose of this paper is to predict in advance the passenger flow congestion
problem that may occur when there is an emergency passenger flow;

2. The samples with small passenger flow are often in the starting station or the early
morning when the subway is running. For these samples, most of the input passenger
flow is 0, so accurate results cannot be obtained.

Based on the above two points, we investigate the performance of the model in
different situations, and the results are shown in Table 3.

Table 3. Prediction effect under different passenger flow ranges.

Sample Size Error Rate

>500 585,289 12.95%
<1000 44,254 147.82

1000~5000 230,557 19.75%
>5000 325,854 4.91%

For all the samples with passenger flows of more than 500, there are 585,289 samples,
accounting for 97.31% of the total, and the average error is 12.95%.

Although for the sample with less than 1000 passengers (7.36% of the total sample),
the average error of the model is larger, reaching 147.83%, which is nearly double the error,
but for the sample with more than 5000 passengers (54.18% of the total sample), the average
error is only 4.91%. For the situation we focus on, this model has high accuracy. Here we
divide into different sections to observe the accuracy of the prediction results.

Section 1 shown in Figure 6 is from Nanjing East Road station to people’s Square
Station, which is a representative large passenger flow interval of line 2. A total of 14 days
are randomly selected, and the prediction results are shown in the figure below. It can be
seen that when the passenger flow is large, the prediction of normal passenger flow has
high accuracy.

Section 2 shown in Figure 7 is the downward start section from Pudong International
Airport Station to Haitian 3rd road station. Similarly, 14-day data are selected. The
prediction results are as follows. It can be seen that for the low passenger flow range,
the prediction error is large, especially in the first hour and the last hour of the operation
period, but on the whole, except for individual stations, the error remains within a certain
acceptable range, and the model performance is still acceptable.
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4.3.2. Emergency Passenger Flow

For emergency passenger flow, there are 20 available data and 580 samples, and the
overall prediction error is 4.29%.

Figures 8–10 shows the forecast results of some emergency passenger flow. It can be
seen that due to the small number of samples, compared with the normal passenger flow,
the prediction error of emergency passenger flow is larger, but the overall error is still less
than 10%, which has a certain guiding role.
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4.3.3. None Transfer Learning

As mentioned above, when the transfer learning strategy is not used, the accuracy of
normal passenger flow prediction is still high when the passenger flow is high, and low
when the passenger flow is low, but the overall network performance decreases. For the
grouping of different passenger flows, the error increases by about 1% on average.

However, for the prediction of emergency passenger flow, the network accuracy is
greatly reduced without transfer learning, with an average error of 12.6%, but the average
error is only 9.74% compared with the predicted normal passenger flow, which means that
the predicted value of emergency passenger flow is actually closer to the predicted normal
passenger flow and cannot correctly predict the emergency passenger flow we need. The
following Figure 11 is a representative example.
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5. Summary

This paper presents an LSTM prediction network based on transfer learning, which
can accurately predict the normal passenger flow and emergency passenger flow of the
metro transportation system. Compared with the traditional research using entering and
leaving data or IC card data, this paper creatively uses the section passenger flow data
which can better reflect the transportation capacity of the metro transportation system. In
addition, compared with the traditional algorithm, this paper uses transfer learning to
solve the problem of the too-small sample size of emergency passenger flow. In the case of
an algorithm without using the transfer learning, due to the interference of the sample size
of normal passenger flow, the prediction result will be closer to the normal passenger flow
rather than the emergency passenger flow reflecting the real situation. The error rate of the
final prediction result is less than 10%, which can provide help for the decision-making of
the operating company.
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