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Abstract: In this study, the superhydrophobic composite coatings for self-cleaning were fabricated
by mixing fluorine resin and two kinds of nanoparticles of carbon nanotubes (CNTs) and SiO2.
When the mass ratio of CNTs to SiO2 is 2:3 and the added amount of nanoparticles is 75 wt. %, the
superhydrophobic composite coatings with a water contact angle of 156.8◦ show the best self-cleaning
property and 3.6◦ of contact angle hysteresis. Furthermore, the superhydrophobic composite coatings
demonstrate good properties such as chemical resistance, thermal stability, and mechanical stability.
The superhydrophobic composite coatings could be used for oil/water separation and could be
applied to various substrate surfaces such as glass plates, cloth, board, steel plate, PVC plate, and so
on. The superhydrophobic composite coatings show practical value in many fields because of their
low cost and large area preparation.

Keywords: superhydrophobic; fluorine resin; composite; robust; self-cleaning

1. Introduction

Due to their wide applications in self-cleaning, oil/water separation, corrosion resis-
tance, anti-icing, anti-fogging, and anti-bacterial, superhydrophobic surfaces have attracted
much attention over the last ten years [1–4]. A superhydrophobic surface is characterized
by a water contact angle (WCA) over 150◦ and a sliding angle lower than 10◦ [5]. It is
widely known that two key factors play important roles in preparing superhydrophobic
surfaces: suitable multi-scale surface roughness and low surface free energy [6]. Many
ways have been reported to fabricate superhydrophobic surfaces in recent years, such as
chemical vapor deposition [7,8], plasma etching [9,10], hydrothermal synthesis [11,12],
electrospinning [13,14], dip coating [15,16], sol-gel method [17,18], templating [19,20], and
so on. There are many ways to prepare superhydrophobic surfaces, but most methods
usually involve specialized equipment or multistep procedures, high cost, inconvenience,
and the inability to fabricate a large area of superhydrophobic surfaces, which limits their
practical uses. Simplifying the preparation procedure will greatly benefit the practical use
of superhydrophobic surfaces. Facile, low cost, and suitable for large area preparation of su-
perhydrophobic surfaces is the goal of scientific researchers in this field. Moreover, the very
common problem of artificial superhydrophobic surfaces is poor mechanical properties.
Recently, many researchers have attempted to solve the problem.

At present, although several researchers have chosen to fabricate fluorine-free su-
perhydrophobic surfaces due to environmental problems [21], it is undeniable that the
excellent performance of fluorine-containing materials [22–24], such as excellent weather
resistance, high chemical stability, extraordinary water repellency, oil repellency, stain
resistance, and so on. Jia et al. have prepared a superhydrophobic composite membrane
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of (polyvinylidene fluoride-co-hexafluoropropylene)/(polystyrene) via a novel hybrid
electrospin-electrospray process [25]. Cui et al. prepared the superhydrophobic coat-
ings using nanofibrous poly(vinylidene fluoride)/stearic acid [13]. Nanoparticles of SiO2,
TiO2, ZnO, and carbon nanotubes (CNTs) are often applied to make surface roughness to
fabricate superhydrophobic coatings [26–29]. One-dimensional CNTs with hydrophobic
property and high aspect ratio are suitable to construct superhydrophobic surfaces [30].
SiO2 nanoparticles are also widely used in superhydrophobic surfaces [31–33].

We propose a facile way to prepare superhydrophobic composite coatings by inte-
grating CNTs/SiO2 nano-additives on fluorine resin in this study. The two nanoparticles
of hydrophobic silica and carbon nanotubes were used to prepare superhydrophobic
coatings. The surface energy of SiO2 was low because their surfaces were modified by
alkyl groups. The addition of hydrophobic nano-silica can reduce contact angle hysteresis
and increase the self-cleaning property of the superhydrophobic composite coating. The
superhydrophobic coatings exhibited good properties such as chemical, thermal, and me-
chanical stability. Moreover, the superhydrophobic composite coatings could be applied
to oil/water separation and could be applied to various substrate surfaces. The superhy-
drophobic composite coatings show practical value in many fields because of their low-cost
and large-scale preparation.

2. Materials and Methods
2.1. Materials

Fluorine resin (CF-803) and curing agent were purchased from Shanghai De Yude Trad-
ing Co., Ltd. (Shanghai, China). CF-803 is a solvent-based two-component fluorocarbon
resin that is a product of the copolymerization of chlorotrifluoroethylene with vinyl ester
and other functional monomers. Silica sol (xylene) with a particle size of approximately
20 nm (30 wt. %) was supplied by Wuhan Green Chemical Technology Co., Ltd. (Wuhan,
China). CNTs were purchased from Qingdao Haoxin New Energy Technology Co., Ltd.
(Qingdao, China). Butyl acetate was purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Cloths, boards, steel plates, and PVC (polyvinyl chloride) plates were
purchased through Taobao online shopping. Glass plates (7.5 cm × 2.5 cm) were purchased
from CITOTEST® Scientific.

2.2. Preparation of the Coatings

A dispersion containing fluorine resin, curing agent, and butyl acetate was prepared
by 30 min of magnetic stirring. Then, a mixed solution was obtained by mixing a certain
ratio of silica sol (xylene), CNTs, and the as-prepared fluorine resin solution by 10 min of
ultrasonic dispersion and 30 min of magnetic stirring. The total solid content of the mixed
solution was regulated to 2 wt. %. All substrates (cloths, boards, steel plates, PVC, and
glass plates) were ultrasonically cleaned in the detergent solution, rinsed with deionized
water, and dried in air dry oven at 40 ◦C as the preparative. About 1.5 mL of the mixed
solution was dripped onto the glass plate through a pipette. The coatings were dried for
12 h at room temperature.

Below was an optimal formula (1.5:1 of the mass ratio of silica sol to CNTs nanopar-
ticles, 75 wt. % of total nanoparticles): fluorine resin (0.180 g) and curing agent (0.018 g)
were homogeneously mixed with butyl acetate (14.32 g) by 30 min of magnetic stirring.
Then, the above solution was mixed with silica sol (1.20 g) and CNTs (0.24 g), then there
was 10 min of ultrasonic dispersion and 30 min of magnetic stirring. The mixed solution
was dripped onto every substrate through a pipette. The composite coatings were dried for
12 h at room temperature. Note here that the silica sol used in this study was a solution of
30 % solid content.

2.3. Characterization

KRÜSS DSA 100 (Hamburg, Germany) was used to test water contact angle (WCA).
WCA was measured at room temperature through 5 µL water drop and the result was
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an average of 6 fresh points. Advancing and receding contact angles were measured
through the growth and shrinkage of a drop, respectively. Cloths, boards, steel plates,
and PVC plates were used as substrates to investigate the superhydrophobic coatings on
different substrates. The chemical resistance of the superhydrophobic composite coating
was tested by dipping the coating into HCl (pH = 2), NaOH (pH = 12), and 3.5 wt. %
NaCl solution, respectively. Field emission scanning electron microscopy (FESEM, Nova
NanoSEM400) was used to characterize the surface topography of the coatings. Thermal
gravimetric analysis (TGA) was performed on NETZSCH F1 Libra® (TGA209F1D-0315-L)
under air atmosphere from room temperature to 600 ◦C with 10 ◦C/min of a constant
heating rate. The superhydrophobic composite coatings were placed in an electricity heat
drum wind drying oven at 200 ◦C for 3 days to further test the thermal stability of the
superhydrophobic composite coatings. Mechanical stability was measured by sandpaper-
abrasion and the experimental steps were as follows: (1) the sample was placed face-down
to sandpaper (standard sandpaper, grit no. 1000); (2) moved for 15 cm along the ruler under
a weight of 100 g; (3) the sample was rotated by 90◦ (face to the sandpaper) and moved
for 15 cm; and (4) the operation was repeated 3 times. The method of the self-cleaning test
of the superhydrophobic composite coatings was as follows: (1) river sand as the model
contamination was placed to the surfaces of the superhydrophobic composite coatings;
(2) the water droplets were dripped; and (3) the river sand was removed with water drops
rolling off the surfaces of the superhydrophobic composite coatings. A camera was used to
record the self-cleaning behavior of the superhydrophobic composite coatings.

3. Results
3.1. Preparation and Characterization of the Superhydrophobic Coatings

The wettability of the composite coatings influenced with the SiO2 content was shown
in Figure 1. The mass fraction of CNTs in each of these coatings was fixed at 30%. With in-
creasing SiO2 nanoparticles content, the WCA of the composite coating improved gradually.
At the same time, the contact angle hysteresis of the composite coating decreased gradually.
When the total mass of the nanoparticles accounted for 75% of the coatings and the mass
ratio of CNTs to SiO2 was 2:3, the superhydrophobic composite coatings with a WCA of
156.8◦ and contact angle hysteresis of 3.6◦ were fabricated through mixing fluorine resin
and two kinds of nanoparticles of CNTs and SiO2. In fact, the hydrophobic property of the
composite coating could be improved slightly by further improving the amount of SiO2
nanoparticles used. However, it was not suitable to further increase the SiO2 nanoparticles
content considering the surface state and mechanical strength of the composite coatings.
In this study, the optimal formula is that the mass ratio of CNTs to SiO2 is 2:3, and the
loading of nanoparticles is 75 wt. %. Unless otherwise stated, the following superhy-
drophobic composite coating refers to the coating in this formulation. Many methods for
preparing superhydrophobic surfaces are based on specific substrates. The dependence
on substrates is due to the need for substrates to provide all or part of the roughness. For
example, the superhydrophobicity of metal surfaces can be achieved by chemical etching
and post-hydrophobic molecular modification [34]. If the superhydrophobicity of a surface
does not depend on the substrate, then the superhydrophobic coatings can be used more
widely. In this study, the superhydrophobic coatings can be used for various substrates. The
superhydrophobic composite coatings coated on cloth, board, steel plate, and PVC plate
are shown in Figure 2. In Figure 2, the superhydrophobic composite coating is suitable for
a variety of substrates. The superhydrophobic composite coatings were dipped into three
aqueous solutions for three days to investigate their chemical stability. The photographs
of the experiment are displayed in Figure 3. The superhydrophobic composite coating
could still maintain its hydrophobicity after being soaked in HCl (pH = 2), NaOH (pH = 12)
and 3.5 wt. % NaCl solution for three days. This result shows that the superhydrophobic
composite coating has good chemical stability. The surface topography of the composite
coatings are displayed in Figure 4. The CNTs are clearly visible in Figure 4a–c. In Figure 4d,
to the composite of silica nanoparticles and fluorine resin, a lesser degree of surface rough-
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ness of the composite coating can be observed. The mass fraction of silica nanoparticles is
75%. The surface roughness of the composite coating was significantly improved with an
increase in the use of CNTs. Compared to adding CNTs alone, the composite application of
silica nanoparticles and CNTs can further improve the hydrophobicity of the coating and
reduce the contact angle hysteresis. The difference between the three images (Figure 4a–c)
is not obvious because the silica nanoparticles have little change on the surface morphology
of the composite coatings. This may be because silica nanoparticles have good compatibility
with fluorine resin due to the large number of alkyl groups on its surface. Therefore, the
silica nanoparticles have little change on the surface morphology of the composite coatings.
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The mass fraction of CNTs in each of these coatings was 30%. The inserts were 5 µL water drop
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3.2. Thermal Stability Properties of the Superhydrophobic Coatings

High thermal stability is very important for superhydrophobic coatings to their practi-
cal application. In this study, two methods were applied to test the thermal stability of the
superhydrophobic composite coating. The results of the TGA test in air atmosphere are
displayed in Figure 5. As shown in Figure 5, CNTs showed the highest thermal stability.
Fluorine resins were almost completely weightless at 600 ◦C (Figure 5a). The addition of
nano-additives slightly increases the thermal stability of the composite coatings. These
composite coatings have almost no weight loss up to 250 ◦C. As Figure 5c shows, the
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superhydrophobic composite coatings lost about 5 wt. % at around 310 ◦C. The superhy-
drophobic composite coatings were processed by 3 days of heat treatment at 200 ◦C to
further test their heat resistance. The photos of the superhydrophobic composite coatings
before and after heat treatment are exhibited in Figure 6. From Figure 6d, the composite
coatings are still very hydrophobic with WCA of 154.5◦. These two kinds of test results
show that the superhydrophobic composite coatings have good thermal stability.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 9 
 

 
Figure 5. The TGA curves: (a) fluorine resin; the coatings with same CNTs of 30 wt. % and differ-
ent SiO2 nanoparticles contents: (b) 0 wt. %; (c)15 wt. %; (d) 45 wt. %; (e) the coatings with SiO2 
nanoparticles of 75 wt. %. 

 
Figure 6. (a) The picture of the superhydrophobic composite coatings; (c) the picture of the super-
hydrophobic composite coatings after 3 days of heat treatment at 200 °C; (b,d) the picture of water 
drops on the composite coatings of (a,c), respectively. Water drops were dyed blue by methylene 
blue, dyed orange by coffee, and dyed red by methyl orange in acids. 

3.3. Mechanical Property of the Superhydrophobic Composite Coatings 
The mechanical robustness of the superhydrophobic composite coating was exam-

ined by an abrasion test. As can be seen in Figure 7, the superhydrophobic composite 
coating had partially peeled off after the abrasion test. The test had little effect on the 
hydrophobicity of the composite coatings. This result of the surface robustness test of 
the superhydrophobic composite coatings reflects the good mechanical stability of them. 

 

Figure 5. The TGA curves: (a) fluorine resin; the coatings with same CNTs of 30 wt. % and different
SiO2 nanoparticles contents: (b) 0 wt. %; (c)15 wt. %; (d) 45 wt. %; (e) the coatings with SiO2

nanoparticles of 75 wt. %.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 9 
 

 
Figure 5. The TGA curves: (a) fluorine resin; the coatings with same CNTs of 30 wt. % and differ-
ent SiO2 nanoparticles contents: (b) 0 wt. %; (c)15 wt. %; (d) 45 wt. %; (e) the coatings with SiO2 
nanoparticles of 75 wt. %. 

 
Figure 6. (a) The picture of the superhydrophobic composite coatings; (c) the picture of the super-
hydrophobic composite coatings after 3 days of heat treatment at 200 °C; (b,d) the picture of water 
drops on the composite coatings of (a,c), respectively. Water drops were dyed blue by methylene 
blue, dyed orange by coffee, and dyed red by methyl orange in acids. 

3.3. Mechanical Property of the Superhydrophobic Composite Coatings 
The mechanical robustness of the superhydrophobic composite coating was exam-

ined by an abrasion test. As can be seen in Figure 7, the superhydrophobic composite 
coating had partially peeled off after the abrasion test. The test had little effect on the 
hydrophobicity of the composite coatings. This result of the surface robustness test of 
the superhydrophobic composite coatings reflects the good mechanical stability of them. 

 

Figure 6. (a) The picture of the superhydrophobic composite coatings; (c) the picture of the super-
hydrophobic composite coatings after 3 days of heat treatment at 200 ◦C; (b,d) the picture of water
drops on the composite coatings of (a,c), respectively. Water drops were dyed blue by methylene
blue, dyed orange by coffee, and dyed red by methyl orange in acids.

3.3. Mechanical Property of the Superhydrophobic Composite Coatings

The mechanical robustness of the superhydrophobic composite coating was examined
by an abrasion test. As can be seen in Figure 7, the superhydrophobic composite coating had
partially peeled off after the abrasion test. The test had little effect on the hydrophobicity of
the composite coatings. This result of the surface robustness test of the superhydrophobic
composite coatings reflects the good mechanical stability of them.
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3.4. The Self-Cleaning Property of the Superhydrophobic Composite Coatings

The self-cleaning property plays an important function to the superhydrophobic
composite coatings in the practical application. As illustrated in Figure 8, the self-cleaning
test of the superhydrophobic composite coatings was measured by contaminating with
river sands. The river sands were taken away by water drops rolling. The surface of the
superhydrophobic composite coatings became clean after a short time, which suggested
that they could be applied for self-cleaning. The superhydrophobic composite coatings
could also be applied to oil/water separation and the oil/water separation results are
shown in Figure S1.
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