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Abstract: As a convenient, economical, and eco-friendly travel mode, bike-sharing greatly improved
urban mobility. However, it is often very difficult to achieve a balanced utilization of shared bikes
due to the asymmetric spatio-temporal user demand distribution and the insufficient numbers of
shared bikes, docks, or parking areas. If we can predict the short-run bike-sharing demand, it will
help operating agencies rebalance bike-sharing systems in a timely and efficient way. Compared to
the statistical methods, deep learning methods can automatically learn the relationship between the
inputs and outputs, requiring less assumptions and achieving higher accuracy. This study proposes
a Spatial-Temporal Graph Attentional Long Short-Term Memory (STGA-LSTM) neural network
framework to predict short-run bike-sharing demand at a station level using multi-source data sets.
These data sets include historical bike-sharing trip data, historical weather data, users’ personal
information, and land-use data. The proposed model can extract spatio-temporal information of
bike-sharing systems and predict the short-term bike-sharing rental and return demand. We use a
Graph Convolutional Network (GCN) to mine spatial information and adopt a Long Short-Term
Memory (LSTM) network to mine temporal information. The attention mechanism is focused on both
temporal and spatial dimensions to enhance the ability of learning temporal information in LSTM and
spatial information in GCN. Results indicate that the proposed model is the most accurate compared
with several baseline models, the attention mechanism can help improve the model performance, and
models that include exogenous variables perform better than the models that only consider historical
trip data. The proposed short-term prediction model can be used to help bike-sharing users better
choose routes and to help operators implement dynamic redistribution strategies.

Keywords: bike-sharing; demand prediction; Graph Convolutional Network (GCN); Long Short-
Term Memory (LSTM); attent ion mechanism

1. Introduction

As an economical, convenient, and eco-friendly travel mode, bike-sharing systems
have grown dramatically worldwide during the last decade [1]. The systems can help
relieve air pollution and traffic congestion, and bring health benefits by involving more
physical activities [2]. A bike-sharing system is an access/egress mode service for public
transport. It supports multimodal transport connections and increases the reachable areas
of public transit [3]. By March 2021, 2012 bike-sharing programs have been put in operation
and 300 others are under construction around the world [4].

Bike-sharing systems can be categorized into the following two types: a docked bike-
sharing system and dockless bike-sharing system [5]. The docked bike-sharing system has
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stationary docking stations for users to rent and return bikes. For the dockless bike-sharing
system, riders can use mobile phone applications (APPs) to rent and return bikes in the
designated physical or electric-fencing areas [6,7].

These two bike-sharing systems help promote urban mobility. However, because
user demand distribution is asymmetric from a spatial and temporal perspective, shared
bike distribution is unbalanced. In order to better satisfy user demand and assist oper-
ators in scheduling the optimal routes and rebalancing the timetable, it is necessary to
accurately predict the short-run bike-sharing demand in advance to improve the efficacy
of bike-sharing systems [8]. Users could better plan travel strategies and change the ori-
gins/destinations in advance, which will eventually help balance the systems without
rebalancing the shared bikes. Furthermore, short-term predictive models could also be
applied to design a dynamic redistribution strategy and better balance the shared bikes
distribution between saturated and non-saturated stations/regions [9].

Previous studies mainly focus on the predictions of shared-bike usage at the city
level [10], station cluster level [11], and station/grid level [10]. Although the bike-sharing
usage aggregating at the city level and cluster level does simplify the problem, it neglects
the characteristics of and interactions among stations and fails to extract spatial effects
under fine-grained content. Therefore, the generated prediction models are unsatisfactorily
reliable [10,12]. Therefore, accurate station-level demand prediction for docked bike-
sharing and the TAZ/grid-level demand prediction for dockless bike-sharing will be better
for operators of bike-sharing systems to rebalance the imbalanced supply of shared bikes
and recommend stations to passengers [13]. Classical spatial regression includes spatial
effects in the demand prediction process; however, it can be limited by assumptions,
accuracy, and computer power. The Spatial-Temporal Graph Attentional Long Short-Term
Memory (STGA-LSTM) neural network model proposed in this study incorporates spatial
and temporal usage patterns to predict the short-run demand for docked shared bikes.
Moreover, the attention mechanism is useful to improve the accuracy and interpretability
of a deep-learning neural network [14]. As far as we know, it is one of the first efforts to
integrate the GC-LSTM model with the attention mechanism for the prediction of short-term
bike-sharing demand, and this method can be generalized for the demand prediction of
both docked and dockless bike-sharing systems. To facilitate the training and testing of the
proposed model, this paper uses smart card data of docked bike-sharing provided by the
Nanjing public bicycle company, points of interest (POIs) data obtained by calling the Amap
API [15], road network data downloaded from OpenStreetMap [16], and historical hourly
weather data extracted from Weather Underground [17]. By comparing the proposed model
with the leading prediction methods, it is shown that the proposed method is effective in
predicting the short-run demand for shared bikes.

The study makes contributions mainly in the following aspects:

• A novel GC-LSTM model with spatio-temporal attentional matrices is proposed to
predict the short-term demand for bike-sharing rental and return at the station level.

• Exogenous factors (e.g., weather information, POIs data, and users’ personal informa-
tion) are considered in the prediction model.

• Comprehensive performance comparisons are performed based on real-world datasets.

The sections of this paper are constructed as follows. In Section 2, the literature on
the prediction models for short-term demand of shared bikes is reviewed. In Section 3, the
framework of the novel GC-LSTM model and each component are illustrated. Section 4
conducts experiments and discusses the results. The final section concludes this paper and
proposes future research directions.

2. Literature Review

Short-run bike-sharing prediction assists system operators in daily operations and im-
proves the system reliability and accessibility [18]. During the past decades, how to predict the
short-term demand of bike-sharing has been widely studied. The methods for bike-sharing
prediction can be divided into parametric methods and non-parametric methods.
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The parametric methods usually regard bike-sharing demand prediction as a time-
series issue from multi-source and heterogeneous data [19]. Auto-Regressive Moving
Average (ARMA) model-based models were adopted to predict the short-term bike-sharing
demand. Kaltenbrunner et al. [20] applied an ARMA model to predict available shared
bikes for stations with a some minutes/hours horizon window ahead. Yoon et al. [21] pro-
posed a modified Auto-Regressive Integrated Moving Average (ARIMA) model to forecast
the number of available shared bikes for each station considering temporal factors of and in-
teractions among stations. Gallop et al. [22] applied a Seasonal Auto-Regressive Integrated
Moving Average (SARIMA) model to analyze bike-sharing demand using hourly bike usage
and the corresponding weather data. They found that weather-related factors, especially
temperature and rain, significantly impacted bike-sharing usage. Previous ARMA-based
models can use temporal information to predict the bike-sharing demand. However, these
models cannot well extract the heterogeneous correlations among stations [3].

The non-parametric methods include machine learning approaches and deep learning
approaches. Using machine learning methods, several researchers worked to establish
nonlinear prediction model based on massive bike-sharing historical trip data. A few
studies adopted Random Forest [23], Bayesian network [24], Gradient Boosted Tree [25],
and Artificial Neural Networks (ANN) [26] to predict the bike-sharing demand at each
station at any given time period in the future, without including the spatial or temporal
correlations between stations.

In addition, recent studies used deep learning methods to predict the short-term
station-level bike-sharing demand. Wang and Kim [27] applied Long Short-Term Mem-
ory (LSTM) neural networks and Gated Recurrent Unit (GRU) to predict the short-term
availability of shared bikes at docking stations using historical data within one month.
Chen et al. [28] proposed the Recurrent Neural Network (RNN) to predict both rental
and return demand for every station in the system using time, weather, and station data.
Zhang et al. [29] adopted the LSTM model to predict the short-term bike-sharing usage by
considering the correlation between bike-sharing users and public transport passengers. To
extract spatial-temporal dependencies, some studies combined both network structures
and put forward a Convolutional LSTM network (Conv-LSTM). For example, Du et al. [12]
combined irregular CNN and LSTM units and used historical passenger flows and external
factors such as weather, traffic control, and social activities to explore the characteristic of
spatial-temporal traffic flows and predict hourly road traffic flows. Ai et al. [30] proposed a
Conv-LSTM model and predicted the dockless bike-sharing systems distribution within
a short-run period by considering spatial-temporal variables. Xu et al. [31] constructed a
Multi-Block Hybrid model by involving CNN and GRU to implement short-run dockless
bike-sharing prediction. Furthermore, Graph Neural Network (GCN) could detect the com-
plex heterogeneous spatio-temporal effects of bike-sharing ridership, by treating the bike
station as the vertices. San Kim et al. [32] developed a Graph Neural Network (GCN) pre-
diction model and estimated the bike-sharing demand in different hours of a day for each
station by considering the temporal patterns, spatial characteristics, and global variables
(weather and weekday/weekend). Pandya [33] applied spatio-temporal GCN (ST-GCN)
to predict shared bike flows across all stations in the next hour. Guo et al. [34] built an
ST-GCN to simulate bike-sharing demand at the city level. They used GCN to explore the
spatial connection and GRU to explore the temporal dependency. Yoshida et al. [35] put
forward a relational GCN-based method for the prediction of the station-level demand.
Chai et al. [36] developed a multi-Graph Convolutional LSTM (GC-LSTM) network for
prediction of bike-flow at the station level by catching the heterogeneous inter-station
spatial relationships. Recently, attention mechanism has been incorporated in the convo-
lutional network to predict bike-sharing demand, which has been proven to improve the
accuracy and interpretability of deep learning algorithms [12–14]. Zhou et al. [37] divided
the entire city into multiple regions and predicted the multi-step city-wide demand of
Didi, taxi, and bike-sharing at the region level by applying attention mechanism in neural
network models.
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In conclusion, deep learning has proven to be an effective tool for bike-sharing predic-
tion and numerous research studies have applied combined prediction methods of deep
learning to improve the prediction outcome. However, insufficient research has been done
regarding incorporating the advantages of GCN, LSTM, and the attention mechanism.
Furthermore, none of the aforementioned studies established an attention-based GC-LSTM
for the prediction of short-run docked bike-sharing demand at the station level. To fill the
aforementioned research gaps, a novel GC-LSTM model with the attention mechanism
has been proposed to predict short-run bike-sharing demand based on multi-source data.
The station-level shared-bike demand is influenced by multiple complex factors [32,38–40].
The data sets considered the multi-source heterogeneous information, including weather
conditions, land-use data around the bike station, and users’ personal information.

3. Methodology

This section elaborates every preliminary methodology covered by the proposed
model, including the LSTM model, GCN model, and attention mechanism. Then, the
proposed Spatial-Temporal Graph Attentional LSTM (STGA-LSTM) model is introduced.

3.1. Long Short-Term Memory (LSTM)

Recurrent Neural Network (RNN) is widely adopted in predicting sequence data.
However, problems such as vanishing/exploding gradients may occur when RNN models
are used to model long-time dependencies in time-series data [41]. Derivatives of the
neural network will be multiplied together during layers. If the derivatives are small, then
the gradient will decrease exponentially; if the derivatives are large, then the gradient
will increase exponentially. These two cases will cause the vanishing/exploding gradient
problem. As an extension to the basic RNN, LSTM captures long-range dependencies
and can well solve vanishing/exploding gradient problems [42]. The most important
modification is that LSTM imports one cell state and adds three gates at each recurrent unit.
These structures help the model capture long-term relationships.

Figure 1 shows the updated cell (ct) in the LSTM model. The notations in Figure 1 are
explained by following equations.

ft = σ
(

W f [ht−1, xt] + b f

)
(1)

ut = σ(Wi[ht−1, xt] + bi) (2)

ot = σ(Wo[ht−1, xt] + bo) (3)

c̃t = tanh(Wc[ht−1, xt] + bc) (4)

ct = ft � ct−1 + ut � c̃t (5)

ht = ot � tanh(ct) (6)

where ht−1 represents the previous hidden state and xt represents the current time step
input. ft, ut, ot refer to the forget gate, update gate, and output gate, respectively. c̃t
represents the candidate cell state used to update the cell state. ct is the current cell
state, ct−1 represents the previous cell state, and ht represents the current hidden state.
W f , Wi, Wo, Wc are weighted matrices while b f , bi, bo, bc are bias terms. All these parameters
are trainable. � represents the Hadamard product. σ is the sigmoid function, and tanh
is the TanHyperbolic function. The two non-linear functions are defined in the following
equations (more details related to LSTM can be found in [42]).

σ(x) =
1

1 + e−x (7)

tanh(x) =
ex − e−x

ex + e−x (8)
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3.2. Graph Convolutional Network (GCN)

GCN is introduced to process graph-structured data, for example, a social network
connection, road/public traffic network, etc. [43]. Graph structures consist of vertices and
edges. We can abstract the passenger flows among bike-sharing stations into a graph to
demonstrate the relationship among stations. In our study, stations are defined as vertices,
and dependencies among stations are defined as edges. Therefore, a graph structure is
constructed to demonstrate the passenger flows among stations.

Defining a graph, G = (V , x, ε), where V represents a set of vertices seized N; x ∈ RN

is a vector for every vertex, which contains one or more attributes about the vertex; ε
represents a set of edges; and A ∈ RN×N represents the adjacency matrix, where Aij
records the connection between the vertices.

We can define a computational efficiency formula to calculate the graph convolution:

gθ ∗ x ≈ D−
1
2 AD−

1
2 xθ (9)

where D ∈ RN×N represents a diagonal degree matrix, with Dii = ∑j Aij; θ ∈ R; and the
adjacency matrix A does not contain the connection of the vertex itself. Therefore, the
identity matrix IN will be summed to the adjacency matrix, A = A + IN ; Dii = ∑j Aij.
More details about deriving the graph convolution can be found in Xu et al. [44].

Generalizing the convolution calculation on the whole graph is represented with the
symbol X ∈ RN×C, where vertex vi has a feature vector Xi and length of C.

Z = D−
1
2 AD−

1
2 XΘ (10)

where Θ ∈ RC×F is a parameter kernel that will be trained during the training process, Z ∈
RN×F is the convolved kernel, and F is the number of hidden units in the neural network.

The adjacency matrix needs to be predefined before the training. Different predefini-
tions of adjacency will produce different results. The adjacency matrix can only contain 1
and 0 and is used to define the global adjacency relationship when it is predefined manually.
In this case, it cannot well demonstrate the time-varied relations among the stations. To
extract more precise relations, we use another learnable parameter Â to replace D−

1
2 AD−

1
2 .

This makes it easier to build a model than the adjacency matrix and improves the perfor-
mance of the model. This replacement has been proved to be effective by Lin et al. [3]. The
equation after the parameter replacement of Equation (10) is given as follows:

Z = ÂXΘ (11)
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where Â is the learnable adjacency matrix. It is a symmetric matrix that consists of trainable
kernel parameters, Â ∈ RN×N .

3.3. Attention Mechanism

Attention mechanism has been applied in many types of deep learning tasks and has
shown good performance; for example, in image recognition, natural language processing,
and voice recognition [45]. Basically, the attention function is pairing a query and multiple
key-value pairs, and outputs a weighted sum of the values. The shape of the output
varies depending on the level of the information you want to focus on, spatial information,
temporal information, or any other parts. There are two kinds of attention mechanisms
used in this paper. One is a temporal attention mechanism, and the other is a graph
attention mechanism.

The graph attention mechanism is shown in Figure 2. Specifically, Figure 2a shows
the feature transformation of vertices i, j and gets the attention score. The features of the
vertex itself, its neighbor vertices, and exogenous features are all transformed into the score.
Figure 2b shows the multi-head attention method with a vertex on its neighborhood. The
features aggregated from its neighbor vertices and itself are concatenated or averaged to
obtain the attention vector.
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The formulas of our attention mechanism are defined as follows:

αij =
eLeakyReLU(a([Whi ||Whj ]))

∑j∈N〉 eLeakyReLU(a([Whi ||Whj ]))
(12)

h′i = σ

 ∑
j∈N〉

αijhj

 (13)

where N〉 represents all neighborhood vertices of vertex i, W is a weight matrix used for
features transformation, signal || represents the concatenation of vectors, αij is the weight
of vertex i, j calculated with function a, xi, xj represent the features of vertices i, j, and σ
refers to sigmoid function. The LeakyReLU is defined as

LeakyReLU(x) =
{
x i f x ≥ 0
x
b i f x < 0

(14)

where b is a constant in [1,+∞].
After the attention scores are obtained, the attention enhanced hidden state At can be

represented as αS
t ht and be fed into the next GC-LSTM unit. The final output of each unit is

shown as follows:
h′t = αS

t ht (15)

where αS
t is the spatial self-attention score tensor and ht is the current hidden state.

The temporal attention mechanism is a simplified graph attention mechanism; it only
calculates the attention scores of the LSTM output sequence and gives the prediction with
attention scores.

3.4. Spatial-Temporal Graph Attentional Long Short-Term Memory (STGA-LSTM)

The three network components, namely, LSTM, GCN, and graph attention mechanism,
are combined to establish the proposed neural network model structure STGA-LSTM.

The input data structure is a three-dimensional tensor that contains the features of
each node at each time step. The exogenous variables can be concatenated at the dimension
of features to demonstrate the information for each station.

Suppose the STGA-LSTM model contains several layers 0, 1, . . . , m from input to
output. Every vertex in the graph at layer l has a feature vector with a length of Cl , where
l = 0, 1, . . . , m. For each layer l, the STGA-LSTM model propagates as follows:

Hl = σ
(

Zl−1W l
T

)
= σ

(
ÂHl−1Θl−1W l

T

)
(16)

where Hl is the vector of the hidden state after implementing the temporal attention
mechanism; Hl =

[
h′ l1, h′ l2, . . . h′ lt

]
, Zl−1 represents the convolved kernel at the (l − 1)th

layer; W l
T ∈ RFl−1×Cl

represents a weight parameter matrix for the lth layer; and σ is an
activation function. In this paper, Rectified Linear Activation Unit (ReLU) is applied as
the activation function, as shown in the following Formula (17). The ReLU function will
retain a positive value and convert a negative value into zero; it allows faster and effective
training of deep neural network architectures on large datasets [47]. Hl ∈ RT×N×Cl

is the
output of the lth layer and the input of the (l + 1)th layer, and H0 = X, T is the number of
time steps.

ReLU(x) = max(0, x) (17)

The product of Θl−1 ∈ RCl−1×Fl−1
and W l

T ∈ RFl−1×Cl
can be replaced by one matrix

W l ∈ RCl−1×Cl
during the training process. Therefore, Equation (16) can be simplified
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where W l ∈ RCl−1×Cl
is the weight parameter matrix to be learned, and Hl ∈ RT×N×Cl

is
the prediction sequence; e.g., the prediction of rental and return demand of the shared bikes
in N stations for the next hour. Figure 3 shows the whole process from input to output of
the STGA-LSTM model. It visualizes the details of the connections between the different
modules in the model. After the calculation by the input and hidden layer, the sequence Hl

is generated. It mines features from the input data. Then the sequence is fed into the output
layer to obtain the final prediction; the last element in the sequence will be regarded as the
final prediction in general. The output is the rental and return demand at each bike-sharing
station. This proposed model auto-learns the spatial and temporal information among
stations due to the combination of the graph convolution and LSTM structure.
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4. Experiment

In this section, we compare several baseline models with our proposed STGA-LSTM
model by using the bike-sharing dataset. First, the dataset and the data preprocessing are
described. Second, the experimental settings, results, and discussion are described, and
the effect of the exogenous variables on the prediction precision is explored. Then, the
temporal and spatial scores at different prediction horizons are discussed.

4.1. Dataset Description

Data from multiple sources were obtained to predict the short-run bike-sharing de-
mand. Nanjing Public Bicycle Company provided the bike-sharing trip dataset. The dataset
involves 43,211 shared bikes and includes 3,230,204 bike-sharing transactions within the
period of 1 September–30 September 2017. Each transaction records the rental station and
time, return station and time, user ID, bike ID and, user personal information (gender, age,
and birth place). The personal information is aggregated into stations at each prediction
horizon.

Land-use data contain the POI number and road density within a radius of 300 m
of each bike-sharing station [48]. POIs are obtained by calling the Amap API and are
categorized into four groups, including working POIs, residential POIs, transport POIs,
and other POIs [49]. The road shapefiles were obtained from OpenStreetMap [16] and the
road density obtained by using ArcGIS.
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Historical hourly weather data were extracted from Weather Underground [17]. Tem-
perature, wind speed, wind direction, precipitation, and overall weather condition were
included as the most common factors for predicting bike-sharing demand [50,51].

4.2. Data Pre-Processing

This study focuses on the weekday period because the weekday demand for shared
bikes is much heavier than weekend demand, and the bike-sharing rebalancing problem on
weekdays is more serious than that on weekends. The bike-sharing transactions generated
during weekdays were used to train the proposed model and test the performance. The
dataset involved 21 weekdays. Data in the first 12 days were taken as the training dataset,
the next 4 days were taken as the validation dataset, and the last 5 days were used as the
testing dataset.

The origin dataset was processed into a matrix format, which contains the rental
and return demand at each station. Then, the time-series data were generated based on
the demand matrix in different prediction horizons, which can be fed into LSTM-based
neuronal network models. xi ∈ RN represents bike-sharing demands of all stations at
prediction horizon i. Then, the time-series data were constructed with the demand from
the previous (t− 1) time steps, Xi ∈ RN×t, Xi = [xi−t+1, . . . , xi]. The target vector is the
bike-sharing demand at the next prediction horizon, yi+1 ∈ RN . Therefore, the input data
structure could be [Xi, yi+1] = [xi−t+1, . . . , xi, yi+1], i = 1, . . . , t, where t is the max time
step at different prediction horizons. Ke et al. [51] showed that the demand information
in recent time steps can help us build good models and yield satisfactory performance.
Almannaa et al. [9] used 120-min data before the target prediction time to help prediction
task. Therefore, the demand information in the previous two hours was used for predicting
the demand at the next time step. The length of Xi depends on the prediction horizon. For
example, if the prediction horizon is 15 min, the length of Xi is 2 ∗ 60/15 = 8. We used the
min and max normalization to scale the historical bike-sharing demand data between 0
and 1. The equation is shown as follows:

X =
X−min(X)

max(X)−min(X)
(19)

The land-use data, hourly weather data and personal information data were also
normalized to (0, 1) based on Equation (19).

This study also considers the periodicity as an important attribute in historical bike-
sharing demand. There were two differences made to the demand series data, namely, the
first order difference and the seasonal difference. The step of the first order difference is
1 and the step of the seasonal difference was calculated based on the prediction horizon.
The first order difference was used to eliminate the trend in the time-series data and
seasonal difference was used to eliminate the time-series periodicity. The periodicity
of bike-sharing demand was 1 day; therefore, the step of the seasonal difference was
24 ∗ 60/prediction horizon.

4.3. Experimental Setting

The following section lists the baseline models that we compared with the pro-
posed model:

(1) HA: Historical average prediction method. Using the average demand at the given
location of the same related prediction horizon (i.e., the same time of the day) as the
prediction value;

(2) SVR: The radial basis function kernel-based Support Vector Regression (SVR). Fitting
the curves by mapping the feature vectors into a high-dimension space. The cross
validation is used to learn the kernel function and hyper parameters;

(3) XGBoost: An implementation of Gradient Boosting Decision Trees (XGBoost), which
is a scalable end-to-end tree boosting system. Compared with other tree boosting
system, it uses fewer resources to scale beyond billions of datasets;
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(4) ANN: An artificial neural network that has two hidden layers. The hidden layers
have the same number of dimensions as that of bike-sharing stations.

(5) GCN: The number of dimensions of hidden layers and output layer is same as the
ANN setting. The number of vertices in the graph equals that of bike-sharing stations.

(6) LSTM: The number of dimensions of the hidden layers and output layer is same as the
ANN setting. The number of LSTM units equals the number of time steps in different
prediction horizon.

(7) GC-LSTM: A Long Short-Term Memory neural network combined with a graph
convolution operator. The number of dimensions of the hidden layers and output
layer is same as the ANN setting. The number of vertices in the graph is equal to the
number of bike-sharing stations. The number of LSTM units equals that of time steps
in different prediction horizon.

All these baseline models were implemented or imported from existing packages by
using Python 3.7. The neural network models including the baseline models and proposed
model were all implemented based on TensorFlow 2.1.0. All the neural network models
have an input layer, hidden layer, and output layer. The configurations of the computer
on which these baseline models were trained and tested are as follows: OS: Windows 10;
CPU: (Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz); RAM: 16 GB; plus one NVIDIA RTX
2060 GPU with 6 GB memory.

Hyper-parameters: In machine learning, hyper-parameters are predefined before the
training process. Grid search, which is a traditional hyper-parameter optimization method,
was used to find the optimized hyper-parameters. Three hyper-parameters were found
out by using grid search, which are the learning rate, batch size, and the number of hidden
units. Based on empirical tuning, the learning rate increases from 0.001 and stops at 0.01,
and the step is 0.001. The batch size and the number of hidden units increase from 32 and
stop at 128, and the step is 32. Time step selection is defined in Section 4.2, whose length
depends on the prediction horizon.

We also set the criterion for the early stop process to prevent overfitting: When the
mean absolute error (MAE) on validation does not decline by more than 0.00001 for over
10 training epochs, the training process stops.

Evaluation metrics: Root Mean Square Error (RMSE) and Mean Absolute Error (MAE)
were used to assess the performance of the baseline models and proposed model, as
Du et al. [12] and Li et al. [19] used:

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (20)

MAE =
1
n

n

∑
i=1
|xi − x̂i| (21)

where xi represents the observed value, x̂i represents the predicted value, and n represents
the amounts of testing samples.

4.4. Experimental Results and Discussion

As shown in Table 1, the evaluation criteria among the different models were compared
to predict the bike-sharing rental and return demand. The RMSE and MAE of each model
at various prediction horizons are the average of 10 times the training results. The smaller
the value of the MAE and RMSE, the better the performance of the model. ANN, XGBoost,
and SVR have worse performance than the GCN- and LSTM-based neural networks in
each prediction horizon, because these three models cannot capture the hidden temporal
information and hidden spatial relationships among stations.
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Table 1. Predictive performance of different models on the test dataset.

Model
Rental Volume Return Volume Rental Volume Rental Volume

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

15 min 45 min

HA 1.2370 0.7269 1.2204 0.7194 2.5817 1.4848 2.5270 1.4594
ANN 0.8637 0.4951 0.8660 0.4976 0.9865 0.6190 1.1461 0.7451

XGBoost 0.8737 0.4953 0.8754 0.4986 1.0827 0.6738 1.0857 0.6803
SVR 0.9649 0.5635 0.9706 0.5663 1.1277 0.7307 0.9800 0.6106

LSTM 0.7139 0.3843 0.7397 0.4034 0.8513 0.5140 0.8509 0.5084
GCN 0.7600 0.4196 0.6815 0.3585 0.8477 0.5066 0.8475 0.5109

GC-LSTM 0.6415 0.3314 0.6735 0.3551 0.8410 0.5040 0.8452 0.5071
STGA-LSTM 0.6127 0.3101 0.6107 0.3088 0.7912 0.4663 0.7930 0.4690

30 min 60 min

HA 1.9530 1.1399 1.9087 1.1155 3.2052 1.8228 3.1310 1.7844
ANN 0.9450 0.5740 1.0903 0.6852 1.0845 0.6910 1.2304 0.8218

XGBoost 0.9848 0.5999 0.9917 0.6035 1.1825 0.7602 1.1700 0.7547
SVR 1.1041 0.6949 0.9454 0.5747 1.2613 0.8383 1.0775 0.6886

LSTM 0.7912 0.4573 0.8001 0.4651 0.9484 0.5839 0.9972 0.6218
GCN 0.8014 0.4651 0.7784 0.4480 1.0230 0.6414 0.9406 0.5834

GC-LSTM 0.7266 0.4078 0.7332 0.4134 0.9126 0.5527 0.9137 0.5586
STGA-LSTM 0.7098 0.3952 0.7118 0.3978 0.8979 0.5418 0.8998 0.5440

LSTM and GCN have better performance than those three models, because LSTM can
capture the hidden temporal information from the data and GCN has good ability to capture
spatial attributes among data, especially for graph structure data. Besides, the comparison
between GCN and LSTM can tell that the influence of spatial information contributes
more to prediction accuracy than temporal information at a large time granularity. At a
small time granularity, LSTM have more temporal information to capture, which makes
the LSTM performance better than GCN at this situation. Combining GCN and LSTM,
GC-LSTM performs better than GCN and LSTM because it integrates the attribute of
those two models. STGA-LSTM has the best performance in each prediction horizon
and under all criteria, followed by GC-LSTM in all the prediction models. After adding
the attention mechanism with GC-LSTM, STGA-LSTM enhances the ability of capturing
temporal and spatial information. When comparing STGA-LSTM with GC-LSTM, among
the four different prediction horizons, the largest improvement occurs in the 15-min interval,
with an increase of 4.49% in RMSE and 6.43% in MAE for rental demand prediction and an
increase of 4.49% in RMSE and 6.43% in MAE for return demand prediction, respectively.
This is because, given the total amount of data, the shorter the prediction horizon is, the
longer the length of time sequence demand data will be. It will contain more detail when
having a longer sequence demand data, which can help to improve the performance. The
results explain why the RMSE and MAE grow larger as the prediction horizon turns larger.

Figure 4 shows the comparison between the real demand curve and predicted demand
curve in the 60-min prediction horizon at station No. 125. The datasets were drawn based
on the training in the 60-min prediction horizon. This prediction horizon is a reasonable
value for bike rebalancing [52]. We chose this station because it recorded the largest
passenger flows among all stations, as the work in Pandya [33] did. The prediction is
implemented by using the STGA-LSTM model with the test dataset. The test dataset has a
time span of five days, consisting of 120 intervals. The predictions of rental demand and
return demand are shown in Figure 4a and Figure 4b, respectively. We can see that both the
rental and return demand prediction fit the real demand well, with very small offsets at the
peak point. When predicting the peak demand, especially for those time that the demand
suddenly raises up, the model loses some accuracy compared with the prediction accuracy
in other periods. As for demand valleys, the proposed model performs well on both types
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of demand. In summary, the proposed STGA-LSTM model, as demonstrated in Figure 4, is
able to produce reliable predictions on rental and return demand.
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Figure 4. Performance of the rental and return demand prediction. (a) Real rental demand and
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station No. 125.

4.5. Efficiency Comparison

This section describes the training efficiency of the deep learning models, including
GCN, and all the LSTM-based neural networks from the perspective of training epoch and
training time. Figure 5a shows the validation loss along with training epoch and Figure 5b
illustrates the total training time of each model. Figure 5 reflects the general pattern of
how the validation loss changes during the training process and the time consumed for
each model. LSTM performs the poorest among these four models. The convergence of the
model is slow though it seems that it can be trained without overfitting with many training
epochs. This may be because the maximum training epoch of 200 in this study makes
the model unable to deliver its best possible performance. However, when the number
of epochs increases, the time consumption will also be increased. The total training time
consumed by GCN, GC-LSTM, and STGA-LSTM is similar, all around 10 s. These three
models converge quickly at around 25 epochs. This shows that the three models learn pretty
well on this dataset. However, GCN cannot extract the temporal information from the data,
which makes it perform worse than GC-LSTM and STGA-LSTM on both the validation
and test dataset. The total training time of GC-LSTM is shorter than the STGA-LSTM
models because it does not use the attention mechanism to consider the hidden temporal
information and spatial relationships among stations. STGA-LSTM converges faster than
GC-LSTM, which proves the attention mechanism improves the model learning ability on
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the spatial information. The testing loss of STGA-LSTM is lower than GC-LSTM, which
indicates that the attention mechanism helps the model find the hidden information from
data and improve the accuracy.
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4.6. Models with Exogenous Variables

The data of POIs, hourly weather, and personal information were included as the
exogenous variables. The results are shown in Table 2. STGA-LSTM is used for testing the
impact of the variables on the prediction accuracy in the 60-min interval. The inclusion
of POIs, hourly weather, and personal information for the 60-min interval can slightly
promote the prediction accuracy of the STGA-LSTMs in the 60-min interval. This is in
line with the research of El-Assi et al. [53], which suggested that POIs and hourly weather
contribute to the demand of docked shared bikes. We can see that the RMSE for the model
with the full data is 0.8919, which has the best performance among all the models. Among
all the exogenous factors, personal data contributes most to improve the prediction accuracy
independently. This is reasonable because user groups are varying over time. For example,
commuters are the main group who use shared bikes at the morning and afternoon peak
for commuting purposes.
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Table 2. Predictive performance of the different exogenous variables.

Variables RMSE MAE

STGA-LSTM (historical data only) 0.8979 0.5418
STGA-LSTM (POIs and road density data) 0.8966 0.5407

STGA-LSTM (hourly weather data) 0.8969 0.5413
STGA-LSTM (personal data) 0.8956 0.5395

STGA-LSTM (full data) 0.8919 0.5415

4.7. Temporal and Spatial Attention Mechanism

This section discusses the temporal and spatial attention scores at different predic-
tion horizons.

The temporal attention score for the prediction of shared-bike rental demand in the
test dataset is visualized in Figure 6. Specially, Figure 6a–d represent the 15-min, 30-min,
45-min, and 60-min prediction horizon, respectively, and they all use two-hour history
demand ahead of the target prediction time. The temporal attention mechanism can capture
the important time-dimensional bike-sharing usage information. For example, the bike-
sharing usage demand in the previous hour may have a certain influence on that in the
next hour. The smaller time granularity can identify the time-dimensional bike-sharing
usage information better and give a clearer overall picture. The historical time step index
represents the time steps that the model looks back on from the historical time period.
A smaller index means a closer time step to the prediction time. The temporal attention
score represents the importance of bike-sharing usage demand in the corresponding time
steps. The attention score will sum to 1 at different prediction horizons, respectively.
For each prediction horizon, the temporal attention scores visualized in the figure is the
average value of each time step from all the bike-sharing stations. From Figure 6a–d, all
prediction horizons demonstrate that the closest historical data will always give the largest
contribution to the prediction results. It is reasonable because the travel of bike-sharing
will not last for a very long time; 90% bike-sharing travel takes less than 30 min [54]. It
makes the usage of bike-sharing from the closest time period have the highest temporal
correlation with the prediction period.
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A visualization map of the spatial attention score can be found in Figure 7. Specially,
Figure 7a–d represent the 15-min, 30-min, 45-min, and 60-min prediction horizon, respec-
tively, and the line between the two stations represents the interaction between these two
stations. The width of the blue line shows the value of the attention score among stations.
The wider the line is, the stronger the interaction they have between two stations. The
spatial attention mechanism could find the important space-dimensional bike-sharing
usage information that can influence the usage demand of the bike-sharing stations. The
bike-sharing usage demand is not only related to usage pattern of the rent/return bike-
sharing stations, but also may be related to the stations around them. In Figure 7a–d, all
the prediction horizons demonstrate that the density of the bike-sharing stations is an
important factor that influences the correlation among stations. Stations always have a
wider line connecting to those stations close to them, which means they have a stronger
spatial connection to these stations. We can also see more connections among stations at
a higher density area, and the usage of bike-sharing is higher in this area because of the
convenience. When an area has a high density of bike-sharing stations, users can have
multiple station choices when renting or returning the shared bikes. The walking distance
among those stations is acceptable for users to switch from one station to another, which
makes these stations more closely correlated [55]. When the high density of bike-sharing
stations is low, the distance between the adjacent stations is large. It makes users more
willing to travel by bus or metro instead of traveling by bike sharing [56]. The spatial
weight among stations is not significantly influenced by time granularity, and a similar
pattern can be found for different time granularities. Using a different time horizon from
15 to 60 min will not differentiate the spatial correlations.
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5. Conclusions

This paper proposes an STGA-LSTM framework to predict the station-level short-
term demand of a bike-sharing system by adopting multi-source data, including historical
bike-sharing trip data, land-use data, weather data, and users’ personal information.

We used GCN to dig for spatial information and used LSTM to mine the temporal
information from the data. The attention mechanism was applied to the spatio-temporal
dimension simultaneously to deliver a more accurate prediction. We formulate the rental
demand and return demand of shared bikes with a graph structure with our proposed
STGA-LSTM model. The graph of the bike-sharing stations was constructed based on the
demand connection among stations. In order to describe the relationship between stations
and simplify the construction process, a learnable adjacency matrix was used in the model.

Experimental results of the real datasets obtained from the Nanjing bike-sharing
systems validated that the proposed model is effective. The proposed model is more
accurate and efficient than the baseline models, and exogenous variables can only slightly
promote the prediction accuracy. Furthermore, we discuss the impact of the temporal and
spatial attention mechanism. Temporal attention scores illustrate that, compared to other
time steps, the closest historical time step influences the prediction result the most. Spatial
attention scores indicate that a higher density of bike-sharing stations causes a stronger
interaction among stations.

Further studies can be implemented from the following directions. First, the findings
in this research are limited because the data used in this study only cover one-month docked
bike-sharing data. Larger spatio-temporal datasets, such as metro passenger and dockless
bike-sharing, can be used to conduct further investigations. Second, other types of external
effects, such as metro passenger data and socioeconomic factors, should be considered to
improve the prediction accuracy. In addition, the data for users’ personal characteristics
can be limited, as indicated by previous research [57,58]. How to obtain the various and
accurate personal data for research is worth investigating in future work. Finally, building
a deeper network with our proposed model may promote accuracy, and maintaining a
better balance between the cost of building a deeper network and the performance of the
model should be considered during its implementation in the real world.
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