
Citation: Ikotun, A.M.; Ezugwu, A.E.

Improved SOSK-Means Automatic

Clustering Algorithm with a

Three-Part Mutualism Phase and

Random Weighted Reflection

Coefficient for High-Dimensional

Datasets. Appl. Sci. 2022, 12, 13019.

https://doi.org/10.3390/

app122413019

Academic Editor: Gaetano Zizzo

Received: 30 October 2022

Accepted: 15 December 2022

Published: 19 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Improved SOSK-Means Automatic Clustering Algorithm with a
Three-Part Mutualism Phase and Random Weighted Reflection
Coefficient for High-Dimensional Datasets
Abiodun M. Ikotun 1 and Absalom E. Ezugwu 1,2,*

1 School of Computer Science, University of KwaZulu-Natal, Pietermaritzburg Campus,
Pietermaritzburg 3201, South Africa

2 Unit for Data Science and Computing, North-West University, 11 Hoffman Street,
Potchefstroom 2520, South Africa

* Correspondence: ezugwua@ukzn.ac.za or ezugwuabsalom79@gmail.com

Abstract: Automatic clustering problems require clustering algorithms to automatically estimate
the number of clusters in a dataset. However, the classical K-means requires the specification of the
required number of clusters a priori. To address this problem, metaheuristic algorithms are hybridized
with K-means to extend the capacity of K-means in handling automatic clustering problems. In
this study, we proposed an improved version of an existing hybridization of the classical symbiotic
organisms search algorithm with the classical K-means algorithm to provide robust and optimum
data clustering performance in automatic clustering problems. Moreover, the classical K-means
algorithm is sensitive to noisy data and outliers; therefore, we proposed the exclusion of outliers from
the centroid update’s procedure, using a global threshold of point-to-centroid distance distribution
for automatic outlier detection, and subsequent exclusion, in the calculation of new centroids in the
K-means phase. Furthermore, a self-adaptive benefit factor with a three-part mutualism phase is
incorporated into the symbiotic organism search phase to enhance the performance of the hybrid
algorithm. A population size of 40 + 2g was used for the symbiotic organism search (SOS) algorithm
for a well distributed initial solution sample, based on the central limit theorem that the selection
of the right sample size produces a sample mean that approximates the true centroid on Gaussian
distribution. The effectiveness and robustness of the improved hybrid algorithm were evaluated on
42 datasets. The results were compared with the existing hybrid algorithm, the standard SOS and K-
means algorithms, and other hybrid and non-hybrid metaheuristic algorithms. Finally, statistical and
convergence analysis tests were conducted to measure the effectiveness of the improved algorithm.
The results of the extensive computational experiments showed that the proposed improved hybrid
algorithm outperformed the existing SOSK-means algorithm and demonstrated superior performance
compared to some of the competing hybrid and non-hybrid metaheuristic algorithms.

Keywords: symbiotic organism search; K-means; clustering algorithms; hybrid metaheuristics;
automatic clustering; outliers

1. Introduction

Data clustering is an aspect of data mining where knowledge discovery from data
requires that the data reveals the existing groups within itself. In cluster analysis, objects
are grouped such that the intra-cluster distances among data objects are minimized while
the inter-cluster distances are maximized. K-means is one of the most popular traditional
clustering algorithms used for cluster analysis, due to its efficiency and simplicity. The
k-means algorithm randomly selects a specified k number of initial cluster centroids as
a representative center of each group. It then assigns data objects to their nearest cluster,
based on the sum of squares point to nearest centroid distance. The mean of each cluster is
calculated to generate an initial cluster with an updated cluster centroid. These data object

Appl. Sci. 2022, 12, 13019. https://doi.org/10.3390/app122413019 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122413019
https://doi.org/10.3390/app122413019
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3721-3400
https://doi.org/10.3390/app122413019
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122413019?type=check_update&version=1

Appl. Sci. 2022, 12, 13019 2 of 34

assignment and centroid update processes are iteratively repeated until an optimum cluster
solution is obtained. The need to specify the number of clusters a priori makes the K-means
algorithm unsuitable for automatic clustering. According to [1], estimating the optimal
number of clusters in a dataset is a fundamental problem in cluster analysis, referred to as
‘automatic clustering’. In most cases, K-means is hybridized with metaheuristic algorithms
for automatic clustering [2].

The standard K-means algorithm is sensitive to noisy data and outliers [3,4]. Intuitively,
the data points that are far away from their nearest neighbors are described as outliers [5].
The sensitivity of K-means to noise and outliers comes from the least square optimization
procedure, normally employed for cluster analysis. K-means’ reliance on the outlier-
sensitive statistics (mean) for cluster updates compromises the clustering results when
outliers are present in datasets. Several proposals have been reported in the literature
that add a separate module for detecting and removing outliers as a data pre-processing
step embedded in the K-means algorithm, before the actual data clustering procedure.
A separate module for outlier detection significantly compromises the efficiency of the
K-means algorithm. Chawla and Gionis [6] proposed an algorithm that simultaneously
detected and removed outliers from the dataset during the clustering process, eliminating
the need for a separate module. Their algorithm incorporated outlier detection into the
K-means algorithm without complicated modification to the standard algorithm. However,
their algorithm required specifying the desired number of outliers within the dataset, like
how the desired number of clusters had to be specified. Olukanmi et al. [7] proposed a
K-means variant for automatic outlier detection with the automatic specification of the
number of clusters via Chebyshev-type inequalities. This paper incorporated this automatic
detection and exclusion of outliers in the centroid update process of the standard K-means
section of SOSK-means for a more robust hybridized algorithm.

The symbiotic organisms search (SOS) algorithm is a nature-inspired metaheuristic
algorithm proposed by [8]. The algorithm has no basic control algorithm-specific parameter
in its initialization stage. It works similarly to other well-known metaheuristic algorithms,
such as the genetic algorithm (GA), the particle swarm optimization (PSO) algorithm,
and the firefly algorithm (FA). The algorithm is inspired by the symbiotic relationships
among organisms in a natural habitat, necessary to their survival in the ecosystem. The
three symbiotic relationships (mutualism, commensalism, and parasitism) are modeled
to find optimal solutions to optimization problems. As a population-based algorithm,
the first two phases (mutualism and commensalism) use the best solution to exploit the
population information in searching for potential solutions. The parasitism phase creates
new solutions by modifying the existing solution, while, at the same time, removing
inferior solutions [9]. The SOS algorithm is rated among the most competitive swarm
intelligence-based metaheuristic algorithms for solving optimization algorithms, based on
its simplicity and parameter-less attributes. SOS has been used to find the solution to many
different real-world problems [10–16]. Tejani et al. [17] introduced a parameter setting of
the beneficial factor, based on the normalized value of organisms, to create an adaptive SOS
algorithm for structural optimization problems. A discrete version of SOS was designed
and implemented by [18] for task scheduling in a cloud computing environment. Cheng,
Prayogo and Tran [11] introduced another discrete SOS for multiple resources leveling
optimization. Panda and Pani [10] introduced multi-objective SOS for handling multi-
objective optimization problems. Kawambwa et al. [12] proposed a cloud-based model SOS
using cloud-based theory to generate random number operators in the mutualism phase
for power system distributed generators. Mohammadzadeh and Gharehchopogh [19]
proposed three variants of SOS to solve the feature selection challenge, and Cheng, Cao,
and Herianto [14] proposed an SOS optimized neural network–long short-term memory
for obtaining hyperparameters of the neural network and long short-term memory for the
establishment of a robust hybridization model for cash flow forecasting.

SOS has also been employed in solving automatic clustering problems [20–25]. Boushaki,
Bendjeghaba, and Kamel [20] proposed a biomedical document clustering solution using

Appl. Sci. 2022, 12, 13019 3 of 34

accelerated symbiotic organisms search, which required no parameter tuning. Yang and
Sustrino [25] proposed a clustering-based solution for high-dimensional optimization prob-
lems using SOS with only one control parameter. Chen, Zhang, and Ning proposed an
adaptive clustering-based algorithm using SOS for automatic path planning of heteroge-
neous UAVs [22]. Zainal and Zamil [23] proposed a novel solution for software module
clustering problems using a modified symbiotic organism search with levy flights. The
effectiveness of the SOS algorithm in solving automatic clustering problems was demon-
strated by [21], where the SOS algorithm was used in clustering different UCI datasets. SOS
has been hybridized with other metaheuristic algorithms for performance enhancement in
cluster analysis. Rajah and Ezugwu [24] combined the SOS algorithm with four different
metaheuristic algorithms to solve the automatic clustering problem and compared the
clustering performances of each hybrid algorithm. Our earlier work combined the SOS
algorithm with K-means to boost the traditional clustering algorithm’s performance for
automatic clustering [26].

However, SOS exhibits some limitations, such as slow convergence rate and high
computational complexity [17,26–28]. Modifications have been made to the standard SOS to
improve its performance. Tejani, Savsani and Patel [17] introduced adaptive benefit factors
to the classical SOS algorithm, proposing three modified variants of SOS for improved
efficiency. Adaptive benefit factors and benefit factors were effectively combined to achieve
a good exploration–exploitation balance in the search space. Nama, Saha, and Ghosh [27]
introduced a random weighted reflective parameter, to enhance searchability within the
additional predation phase, to the classical SOS algorithm to improve the solving of multiple
complex global optimization problems and improve the algorithm’s performance. Secui [29]
sought to improve the algorithm’s capacity for the timely identification of stable and high-
quality solutions by introducing new relations for solution updates at the mutualism
and commensalism phases. A logistic map-generated chaotic component for finding
promising zones was also added for the enhancement of the algorithm’s exploration
capacity. The removal of the parasitism phase reduced the computational load. Nama,
Saha, and Ghosh [30] combined SOS with simple quadratic interpolation (SQI) for handling
large-scale and real-world problems. Although their proposed hybrid SOS algorithm
increased the algorithms’ complexity, it provided an efficient and effective quality solution,
with an improved convergence rate. Ezugwu and Adewumi [31] improved and extended
the classical SOS using three mutation-based local search operators to improve population
reconstruction, exploration, and exploitation capability and to accelerate the convergence
speed. Other improvements reported in the literature include [32–38]. According to
Chakraborty, Nama, and Saha [9], most of the proposed improvements could not guarantee
finding the best optimal solution. As such, they proposed using a non-linear benefit factor
where the mutual vector was calculated, based on the weights of two organisms for a
broader and more thorough search. They also altered the parasitism phase to reduce the
computational burden of the algorithm.

This paper proposes an improved version of the hybrid SOSK-means algorithm [24],
called ISOSK-means, to address the common limitations of the individual classical algo-
rithms and their hybridization variants for a more robust, efficient, and stable hybrid
algorithm. The algorithm adopted a population size of 40 + 2g for a well distributed initial
population sample, based on the assumption that selecting the right sample size produces
a sample mean that approximates the true centroid on Gaussian distribution [39]. This
ensured a substantially large population size at each iteration for early convergence in
the SOS phase of the hybrid algorithm. The modified algorithm also employed a global
threshold of point-to-centroid distance distribution in the K-means algorithm phase to
detect outliers for subsequent exclusion in calculating the new centroids [3]. The detection
and exclusion of outliers in the K-means phase assisted in improving the cluster result.
The performance of the SOS algorithm was enhanced by introducing self-adaptive benefit
factors, with a three-part mutualism phase, as suggested in [28]. These techniques enhanced
the search for the optimum centroids in the solution space and improved the convergence

Appl. Sci. 2022, 12, 13019 4 of 34

rate of the hybrid algorithm. The performance of the proposed algorithm was evaluated on
42 datasets with varying sizes and dimensions. Davies Bouldin (DB) index [40] and cluster
separation (CS) index [41] were used as cluster validity indices for evaluating the perfor-
mance of the algorithm. The choice of the two clustering validity indices was based on the
duo’s cluster validity approach of minimizing the intra-cluster similarity and maximizing
the inter-cluster similarity, which is the same as the primary objective of data clustering.
The CS index was only applied to 12 datasets for comparison with the classical version
of the improved hybrid algorithm. The two indices, based on their validity approach, are
credited with the ability to produce clusters that are well separated, with the minimum
intra-cluster distance and maximum inter-cluster distance [42–44]. The DB index can guide
the clustering algorithm using a partitioning approach without the need to specify the
number of clusters, and the CS index is known for its excellent performance in the iden-
tification of clusters with varying densities and sizes [40,41,43]. The enhanced outcomes
were compared with the existing hybrid SOSK-means algorithm and other comparative
non-hybrid and hybrid metaheuristic algorithms on large dimensional datasets. The per-
formance of the proposed improved hybrid algorithm was further validated using the
nonparametric Friedman mean rank tests and Wilcoxon signed-rank statistical tests. The
results of the extensive computational experiments showed that the proposed improved
hybrid algorithm (ISOSK-means) outperformed the existing SOSK-means algorithm, and
demonstrated superior performance over some of the competing hybrid and non-hybrid
metaheuristic algorithms. The main contributions of this paper are as follows:

• Integration of a robust module in the proposed SOS-based K-means hybrid algorithm
using outlier detection and the exemption technique in the K-means phase for a more
effective cluster analysis with compact clusters.

• Integration of a three-part mutualism phase with a random weighted reflection coeffi-
cient into the SOS phase, for a more productive search in the solution space for early
convergence and reduced computational time.

Adopting a population size of 40 + 2g for a well-distributed initial population in the
SOS phase, allowing for a large enough solution space per iteration, aimed to ensure early
convergence of the proposed clustering algorithm.

The remaining sections of this paper are organized as follows. Section 2 presents
related work on hybrid algorithms involving SOS and K-means. It also includes a brief
introduction to the standard K-means algorithm, standard SOS algorithm and hybrid
SOSK-means. Section 3 describes the improvements integrated into the K-means and SOS
algorithms and presents the description of the proposed ISOSK-means. The simulation
and comparison of results of the proposed ISOSK-means are presented in Section 4, while
Section 5 presents the concluding remarks and suggestions for future directions.

2. Related Work

There are existing works in the literature that reported hybridizations involving either
K-means or symbiotic organism search or both. However, it is worth stating here that
hybridizations for clustering problems are few. In [45], the SOS algorithm was hybridized
with the improved opposition-based learning firefly algorithm (IOFA) to improve the
exploitation and exploration of IOFA. SOS was combined with differential evolution (DE)
in [46] to improve the convergence speed and optimal solution quality of shape and size
truss structure optimization in engineering optimization problems. The conventional
butterfly optimization algorithm (BOA) was combined with the first two phases of the SOS
for enhancement of global and local search behavior of the BOA. In [47], a modified strategy
of SOS was hybridized with the mutation strategy of the DE to ensure the preservation
to the SOS local search capability, while maintaining its ability to conduct global search.
Other reported hybrids involving SOS include the following: Ref. [48] combined GA, PSO
and SOS algorithms for continuous optimization problems; Ref. [24] reported four hybrid
algorithms for automatic clustering, combining SOS with FA, for teaching–learning based

Appl. Sci. 2022, 12, 13019 5 of 34

optimization (TLBO), DE, and PSO algorithms. Other hybridization algorithms involving
SOS can be found in the review work on SOS algorithms conducted by [49].

Several hybridizations involving K-means with other metaheuristic algorithms were
reported in the review work presented by [2]. Recent hybridizations involving K-means
include the following: Ref. [50] combined GA with K-means and support vector machine
(SVM) for automatic selection of optimized cluster centroid and hyperparameters tunning;
Ref. [51] combined multi-objective individually directional evolutionary algorithm (IDEA)
with K-means for multi-dimensional medical data modeling using fuzzy cognitive maps;
Ref. [52] presented an hybrid of K-means with PSO for semantic segmentation of agricul-
tural products; Ref. [53], combined K-means algorithm with particle swarm optimization
for customer segmentation.

For hybridization involving SOS and K-means, as mentioned earlier, the reported
literature works are very minimal showing that research in this aspect is still shallow.
In [25], a clustering-based SOS for high-dimensional optimization problems was proposed,
combining an automatic K-means with symbiotic organism search for efficient computation
and better searching quality. The automatic K-means was used to generate subpopulations
for the SOS algorithm to create a sub-ecosystem that made the combination of global and
local searches possible. The mutualism and commensalism phases formed the local search,
where solutions were allowed to interact within each cluster. For the global search, only best
solutions from each cluster were allowed to interact across the clusters under the parasitism
phase. In this case, the K-means algorithm was used as a pre-processing phase for the SOS
algorithm to enhance its performance in finding solutions to high dimensional optimization
problems. In [26], the standard algorithms SOS and K-means were combined to solve
automatic clustering problems. The SOS phase resolved the initialization challenge for the
K-means algorithm by automatically determining the optimum number of clusters and
generating the corresponding initial cluster centers. This ensured the K-means algorithm
avoided the possibility of local optimum convergence while improving the cluster analysis
capability of the algorithm. However, the problem of low convergence persisted in the
hybrid algorithm.

In this work, we hoped to further improve on the clustering performance of the previous
SOS-based K-means hybrid algorithm in [26] for automatic clustering of high-dimensional
datasets, by incorporating some improvements into each of the standard algorithms, SOS and
K-means, so as to achieve better convergence and more compact clusters.

2.1. K-Means Algorithm

The K-means algorithm is a partitional clustering algorithm that iteratively groups a
given dataset X in Rd into k number of clusters C1, C2, C3, . . . , Ck such that:

Ci 6= ∅; (1)

∪k
1 Ci = X (2)

Ci ∩ Cj 6= ∅ ∀i, j ∈ 1, 2, . . . , k and i 6= j (3)

based on a specified fitness function. The K-means algorithm handles the partitioning
process as an optimization problem to minimize the within-cluster variance σ:

σ = ∑
x∈X

min
cc∈C
||x− cc||2 (4)

with cluster center cci uniquely defining each cluster as:

cci =
1
|Ci| ∑

x∈Ci

x (5)

with the set of k centres
CC = {cc1, . . . , cck} (6)

Appl. Sci. 2022, 12, 13019 6 of 34

representing the solution to the K-means algorithm [54].
The standard K-means algorithm involves three major phases: the initialization phase,

the assignment phase, and the centroid update phase. During the initialization phase, the
initial cluster centers are randomly selected to represent each cluster. This is followed by
the data object assignment phase, where each data point in the dataset is then assigned to
the nearest cluster, based on the shortest centroid-point distance. Each cluster centroid is
then re-evaluated during the centroid update phase. The last two phases are repeated until
the centroid value remains constant in consecutive iterations [44].

The K-means clustering is an NP-hard optimization problem [55], with the algorithm
having a time complexity of O(nkt), where n represents the number of data points in the
dataset, k represents the number of clusters, and t denotes the number of iterations required
for convergence. The computational complexity is a function of the size of the dataset,
hence, clustering large real-world, or dynamic, datasets using the K-means algorithm incurs
a sizeable computational time overhead. Moreover, the number of clusters k is required to
be a user-specified parameter for the K-means algorithm. In most real-world datasets, the
number of clusters is not known a priori; therefore, specifying the correct number of clusters
in such a dataset is arduous. Furthermore, the random selection of initial cluster centroids
incurs the possibility of the algorithm getting stuck in the local optimum [54]. Based on
these challenges, many variants of K-means have been proposed in the literature [2,4] to
improve the performance of the K-means algorithm. One of the areas being exploited for
improving the standard K-means algorithm is hybridizing K-means with metaheuristic
algorithms [2].

2.2. SOS Algorithm

Cheng and Prayogo [8] proposed the concept of SOS simulating the interactive rela-
tionships between organisms in an ecosystem. In an ecosystem, most organisms do not live
in isolation because they need to interact with other organisms for their survival. These re-
lationships between organisms, known as symbiotic relationships, are, thus, defined using
three possible major interactions: mutualism, commensalism, and parasitism. Mutualism
represents a symbiotic relationship where the participating organisms benefit from each
other. For instance, an oxpecker feeds on the parasites living on the body of a zebra or
rhinoceros, while the symbiont, in turn, enjoys the benefit of pest control. Commensalism
describes a relationship where only one of the participating organisms benefits from the
association while the other organism does not benefit from the relationship, although it
is not negatively affected either. An example of this is orchids, which grow on branches
and trunks of trees to access sunlight and obtain nutrients from the branches. As a slim,
tender plant, their existence does not harm the tree on which they grow. The relationship
between humans and mosquitos provides a perfect scenario of the parasitism symbiotic
relationship, in which one of the organisms (mosquito) benefits from the association while
simultaneously causing harm to the symbiont (human). These three relationships are
captured in the SOS algorithm [8]. In most cases, the type of relationship increases the
fitness of benefiting organisms, giving them a long-term survival advantage.

In the SOS algorithm, the three-symbiosis relationship is simulated as the three phases
of the algorithm. At the initial stage, a population of candidate solutions are randomly
generated to the search space for solution representations for optimal global solution
search. This set of solutions forms the initial ecosystem. where each individual candidate
solution represents an organism in the ecosystem. A fitness value is associated with
each organism to determine the measure of its adaptation capability with respect to the
desired objective. Subsequently, each candidate solution is further updated using the three
simulated symbiotic relationship phases to generate a new solution. For each phase, a new
solution is only accepted if its fitness value is better than the previous one. Otherwise,
the initial solution is retained. This iterative optimization process is performed until the
termination criteria are met. The three simulated symbiotic relationship phases of the SOS
algorithm are described below.

Appl. Sci. 2022, 12, 13019 7 of 34

Given two organisms xi and xj co-existing in an ecosystem such that i and j represent
the iterative values of the optimization, ranging from 1 to d, where d is the problem
dimension and i 6= j, an organism, xj, is randomly selected during the mutualism phase to
participate in a mutual relationship with xi such that the two organisms enjoy a common
benefit from their interaction for survival. Their interaction yields new solutions xinew
and xjnew based on Equations (7) and (8), respectively, with Equation (9) representing the
mutual benefit xmutual enjoyed by both organisms.

xinew = xi + rand(0, 1)× (xbest − xmutual × BF1) (7)

xjnew = xj + rand(0, 1)× (xbest − xmutual × BF2) (8)

xmutual =
xi + xj

2
(9)

The expression (xbest − xmutual × BF1) as shown in Equations (7) and (8), represents the
mutual survival efforts exhibited by each organism to remain in the ecosystem. The highest
degree of adaptation achieved in the ecosystem is represented by the xbest which acts as the
target point for increasing the fitness of the two interacting organisms. Each organism’s
benefit level of value 1 or 2 is randomly determined to indicate the organism’s benefit from
the relationship, which can either be full or partial. This benefit level is denoted as BF
(benefit factor) in the equations. The BF value is generated using Equation (10):

BF = 1 + round[rand(0, 1)] (10)

As stated earlier, the newly generated solutions are accepted as a replacement for the
existing solution if, and only if, they are better. In other words, new solutions are rejected if
the existing solutions are better. Equations (11) and (12) incorporate this:

xinew = xi + rand(0, 1)× (xbest − xmutual × BF1) i f f (xinew) < f (xi) (11)

xjnew = xj + rand(0, 1)× (xbest − xmutual × BF2) i f f
(
xjnew

)
< f

(
xj
)

(12)

In simulating the commensalism phase, an organism xj is randomly selected for
interaction with organism xi exhibiting the characteristic of the commensalism symbiosis
relationship where only one of the two organisms xi derives a benefit from the relationship.
This relationship is simulated using Equation (13):

xinew = xi + rand(−1, 1)×
(
xbest − xj

)
i f f (xinew) > f (xi) (13)

Thus, only the benefiting organisms generate a new solution, as reflected by Equation (10).
The new solution is accepted only if it is better, in terms of fitness, than the previous
solution before the interaction.

The parasitism phase is the last phase, which is simulated using Equation (14). In
simulating the parasitism symbiotic relationship in the SOS algorithm, a duplicate copy
of the xi organism is created as a parasite vector with some of its selected dimensions
modified using a random number. An organism xj is then randomly selected from the
ecosystem to play host to the parasite vector xparasite. If the fitness value of xparasite is better
than that of xj, then xparasite replaces xj in the ecosystem. If the opposite happens, and xj
builds immunity against xparasite, then xparasite is removed from the ecosystem:

xparasite = rand(0, 1)× (UB− LB) + LB (14)

2.3. Description of Data Clustering Problem

In data clustering problems, data objects sharing similar characteristics are grouped
together into a cluster, such that data objects in one cluster are different from data objects
in other clusters. In most cases, the number of clusters is specified, while in some cases,

Appl. Sci. 2022, 12, 13019 8 of 34

especially in high dimensional datasets, predetermining the number of clusters is not
feasible. In optimization terms, data objects are clustered, based on the similarity or
dissimilarity between them, such that the inter-cluster similarity is minimized (maximizing
inter-cluster dissimilarity), while maximizing the intra-cluster similarity (or minimizing
intra-cluster dissimilarity). The description of a clustering problem as an optimization
problem is given below.

Given a dataset X = (x1, x2 . . . , xn) of dimension d which represents the number of
attributes or features of the data objects in the datasets such that xi (i = 1, 2, . . . , n) where
n is the number of data objects in the dataset. Each data object xi = (xi1, xi2, . . . , xid),
where xi1, xi2, . . . , xid represents all the features for data object xi. The dataset X can be
represented in a matrix form as shown in Equation (15):

X =



x1
x2
...

xi
...

xn


=



x1,1
x2,1

...

x1,2
x2,2

...
xi,1

...
xn,1

xi,2
...

xn,2

. . .

. . .
...

x1,d
x2,d

...
xi,j
. . .
. . .

xi,d
...

xn,d


(15)

X is required to be grouped into k number of clusters to satisfy Equations (1)–(3), using
Equation (4) as the objective function, with each cluster having a cluster center defined in
Equations (5) and (6). For an automatic clustering, the number of clusters is not defined.
Therefore, finding the optimum number of clusters represented by equation (6) becomes
the optimization problem that seeks to optimize the function f (CC, D) over all possible
clustering of X where function f represents the global validity index for obtaining the
best quality clustering solution and D represents the distance metric measure, stated in
Equation (4).

2.4. Cluster Validity Indices

The cluster validity indices are qualitative methods, like the statistical mathematical
functions, for evaluating the clustering quality of a clustering algorithm. A cluster validity
index has the capacity to accurately determine the cluster number in a dataset, as well
as find the proper structure of each cluster in the dataset [56]. The principal concerns of
most validity indices in clustering are to determine clustering compactness, separation,
and cohesion. The cluster validity indices are presented as the fitness function during the
optimization process of the clustering algorithms. The DB index and CS index are used as
the cluster validity indices to evaluate the quality of the clustering results.

The DB index determines the quality of a clustering result by using the average inter-
cluster similarity between any two clusters and the intra-cluster similarity between data
objects within a cluster. The average intra-cluster similarity value is evaluated against the
average inter-cluster similarity value using Equations (16) and (17). In the DB index, the
fitness function is minimized during the data clustering. This implies that a smaller index
value indicates better compactness or separation, and vice versa:

fdbi =
1
K ∑1

K d
(
cci, ccj

)
(16)

d
(
cci, ccj

)
= max

{
wcdist(i) − wcdist(j)

icdist(ij)
|1 ≤ i, j ≤ K, i 6= j

}
(17)

where wcdist(i) and wcdist(j) represent the within-cluster distance for clusters i and j, icdist(ij)
represents the inter-cluster distance between the two clusters i and j. The d

(
cci, ccj

)
is the

inter-cluster distance between the two cluster centroids cci and ccj of the respective clusters
i and j.

Appl. Sci. 2022, 12, 13019 9 of 34

The CS index estimates the quality of a clustering result by finding the ratio of the
sum of the intra-cluster scatter to the inter-cluster separation using Equation (18):

fcsi =
∑K

i=1

[
1
|Ci | ∑wcscat(i) i∈Ci

maxbcsep(j) j∈Ci

{
d
(

wcscat(i), bcsep(j)

)}]
1
K ∑K

i=1
[
minj∈K, j 6=i

{
V
(
cci, ccj

)}] (18)

where wcscat(i) and bcsep(j) represents within-cluster scatter and between-cluster separation

with the distance measure given as d
(

wcscat(i), bcsep(j)

)
. The CS index is rated as being

more computationally intensive but more efficient, compared with the DB index, and gives
a more quality solution than the DB index. In the CS index, the fitness function is also
minimized, therefore a lower validity index implies better separation or compactness, while
a higher index value implies weak separation or compactness.

2.5. Hybrid SOSK-Means

A hybridization of SOS and K-means proposed by [26] found the solution to the auto-
matic clustering algorithm. The proposed algorithm employed the standard SOS algorithm
to globally search for the optimum initial cluster centroids for the K-means algorithm.
This resolved the problems associated with the random generation of the initial cluster
centroid without initial specification of the value of k. The problem of multiple parameter
controls required in most nature-inspired population-based metaheuristic algorithms (e.g.,
GA, PSO, FA) was also avoided, since the SOS required only the basic control parame-
ters for a metaheuristic algorithm, such as the number of iterations and population size,
with no algorithm-specific parameters. The SOS as a global search algorithm ensured
that K-means returned a global optimum solution to the clustering problem, canceling
the possibility of getting stuck in the local optimum. According to [26], the SOSK-means
algorithm combined the local exploitation capability of the standard K-means with less
parameter tuning and global exploration, as provided by the SOS algorithm with imple-
mentation simplicity common to the two algorithms, to produce a powerful, efficient, and
effective automatic clustering algorithm. The resulting hybrid algorithm was credited with
better cluster solutions than the results from the standard SOS and K-means algorithms
executed separately.

The SOSK-means algorithm commences by initializing the population of n organisms
representing the ecosystem, randomly generated using Equation (19), and the fitness value
of each organism is calculated based on the fitness function for the optimization process.
The initial organisms are generated by the expression rand(1, K×m) in the equation,
representing random and uniformly distributed points within the ecosystem, the solution
search space is bounded between specified lower and upper limits a and b, respectively, for
the clustering problem:

xi = rand(1, K×m)× (b− a) + a 3 i = 1, 2, . . . , n (19)

New candidate solutions are subsequently generated using the three phases of the
SOS algorithm, described under the SOS algorithm. The optimum result from the phases of
the SOS algorithm is passed as the optimum cluster centroids for initializing the K-means
algorithm. These processes are iteratively performed until the stopping criterion is achieved.
The details on the design and performance of hybrid SOSK-means can be found in [26].
Algorithm 1 presents the pseudocode for the hybrid SOSK-means algorithm. The flowchart
for Algorithm 1 can be found in [26].

Appl. Sci. 2022, 12, 13019 10 of 34

Algorithm 1: Hybrid SOSK-means clustering pseudocode [26]

Input: Eco_size: population size ULSS: upper limit for search space
Max_iter: maximum number of iterations LLSS: lower limit for search space
PDim: problem dimension ObjFn(X): fitness (objective) function

Output: Optimal Solution
1: Create an initial population of organisms X = (X1, X2, . . . , Xecosize)
2: Calculate the fitness of each organism
3: Keep the initial population’s best solution BestX
4: while iter ≤ Max_iter
5: for i = 1 to Eco_size do
6: // 1st Phase: Mutualism //
7: Select index j (1 ≤ j ≤ Eco_size; j 6= i) randomly
8: BF1 = (1 + round(rand(0, 1)))
9: BF2 = (1 + round(rand(0, 1)))
10: Xmutual =

(
Xi+Xj

2

)
11: for k = 1 to PDim do
12: Xinew = Xi + rand(0, 1) ∗ (BestX− BF1 ∗ Xmutual)
13: Xjnew = Xj + rand(0, 1) ∗ (BestX− BF2 ∗ Xmutual)

14: end for
15: if (ObjFn(Xinew) < ObjFn(Xi)
16: Xi = Xinew
17: end if
18: if (ObjFn

(
Xjnew

)
< ObjFn

(
Xj

)
19. Xj = Xjnew
20: end if
21: // 2nd Phase: Commensalism //
22: Select index j (1 ≤ j ≤ Eco_size; j 6= i) randomly
23: for k = 1 to PDim do
24: Xinew = Xi + rand(−1, 1) ∗

(
BestX− Xj

)
25: end for
26: if ObjFn(Xinew) < ObjFn(Xi)
27: Xi = Xinew
28: end if
29: //3rd Phase: Parasitism //
30: Select index j (1 ≤ j ≤ Eco_size; j 6= i) randomly
31: for k = 1 to PDim do
32: if rand(0, 1) < rand(0, 1)
33: Xparasite = Xi
34: else
35: Xparasite = rand(0, 1) ∗ (ULSS[K]− LLSS) + LLSS
36: end if
37: end for
38: if ObjFn

(
Xparasite

)
< ObjFn

(
Xj

)
39: Xj = Xparasite
40: end if
41: Update current population’s best solution BestX
42: //K-means Clustering Section//
43: K-means’ initialization using the position of the BestX
44: Execute K-means clustering
45: end for
46: iter = iter + 1
47: end while

Appl. Sci. 2022, 12, 13019 11 of 34

3. Modified SOSK-Means

The adoption of standard SOS and K-means algorithms in the hybrid SOSK-means
combines the benefits of the two classical algorithms to produce an efficient algorithm.
However, some of the individual challenges of the two algorithms remain. The SOSK-
means algorithm still suffers from the low convergence rate peculiar to the classical SOS
algorithm. The computational time is affected by the dataset size as it is with the classical
K-means clustering. The proposed ISOSK-means follows the structure of the original SOSK-
means algorithm, described in Section 2.2, with a few modifications incorporated into the
two classical algorithms to further enhance the performance of the hybrid algorithm. The
summary flowchart for ISOSK-means is shown in Figure 1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 37

Figure 1. Flowchart for ISOSK-means clustering algorithm.

3.1. Modification in the SOS Phase
The modifications in the SOS phase affect three major parts of the standard

algorithm, the initialization phase, the mutualism phase, and the commensalism phase.
During the initialization phase, the population size is required to be specified as an input
parameter. This is common to most metaheuristic algorithms, with no specific rule for
determining the best population size for optimum algorithm performance. In the
improved SOSK-means, the rule for determining the population size suggested by [39]
was adopted. The population size was constructed as 40 + 2𝑔 where 𝑔 > 1,representing
the minimum number of possible groupings of the datasets for an optimum search in the
metaheuristic algorithm to achieve a well-distributed space for initial population of

Start

Ecosystem Initialization

Generation of Initial Population of organisms 𝑋 = (𝑥1, 𝑥2 … . , 𝑥𝑛)

𝐼𝑡𝑒𝑟 = 𝑖𝑡𝑒𝑟 + 1

Evaluate the fitness of initial organisms and identify the
best organism

Optimal solution

2- or 3-way mutualism?

Two-way mutualism
phase

Three-way mutualism
phase

Commensalism Phase

Parasitism Phase

𝑖 ≠ 𝑒𝑐𝑜𝑠𝑖𝑧𝑒?

K-means clustering phase using equation (29) for
centroid update

𝐼𝑡𝑒𝑟 > 𝑀𝑎𝑥𝑖𝑡
Yes

No

Yes

No

Figure 1. Flowchart for ISOSK-means clustering algorithm.

Appl. Sci. 2022, 12, 13019 12 of 34

3.1. Modification in the SOS Phase

The modifications in the SOS phase affect three major parts of the standard algorithm,
the initialization phase, the mutualism phase, and the commensalism phase. During the
initialization phase, the population size is required to be specified as an input parameter.
This is common to most metaheuristic algorithms, with no specific rule for determining the
best population size for optimum algorithm performance. In the improved SOSK-means,
the rule for determining the population size suggested by [39] was adopted. The population
size was constructed as 40+ 2g where g > 1, representing the minimum number of possible
groupings of the datasets for an optimum search in the metaheuristic algorithm to achieve
a well-distributed space for initial population of solutions that scales well with the data
size. In this work, the value for g was given as 2. The idea was coined from generalizing
the central limit theorem (CLT) for a mixture distribution that infers sample population
parameters. The central limit theorem states [57] that the mean (average) of a random
sample follows a normal distribution as the mean, µ and variance, σ of the population
from which it is selected According to [39], the selection of a data sample having a size
that is sufficiently large enough to be well above the total number of clusters has a high
possibility of containing data objects that belong to each of the clusters. At each iteration,
new population samples are randomly selected as initial populations. The use of the
population size of 40 + 2g ensured that the initial selection of candidate solutions was well
spread across the solution search space for the generation of optimum values in the SOS
phase for a faster search for the optimum cluster centroids, which, subsequently, served
as the K-means algorithm’s initial centroids [39]. The different initial population samples
at each iteration in the optimization process represented the varied samples of the initial
solution space. Selecting such a sufficiently large population size has a high probability
of containing the cluster centroids for all the clusters within the dataset. This invariably
increased the convergence rate of the SOS algorithm, and the computational time was,
consequently, reduced.

To upgrade the SOS algorithm’s performance, a three-part mutualism phase, with the
random weighted reflection coefficient introduced by [28], was incorporated. Three-part
mutualism reflects the possibility of three organisms interacting mutually, each deriving
benefits that sustain their existence in the ecosystem. A three-part mutual relationship can
be observed in the interaction between sloths, algae, and moths. A three-part mutualism is
incorporated alongside the use of two interacting organisms in the mutualism phase. In
three-part mutualism, three organisms are chosen randomly in the ecosystem to interact for
the generation of newer organisms. Each organism is simulated using Equations (20)–(22),
respectively. Their mutual benefits are simulated using Equation (23), involving contri-
butions from the three organisms. At the commencement of the mutualism phase for the
organism’s update, a random probability is used to determine whether an organism will be
engaged in three-part mutualism or not. Thus, a choice is required between the normal
dual mutualism interaction and the three-part mutualism. The flowchart depicting the
three-part mutualism phase is shown in Figure 2.

xinew = xi + rand(0, 1)× (xbest − xmutual ×MBF1) (20)

xjnew = xj + rand(0, 1)× (xbest − xmutual ×MBF2) (21)

xknew = xk + rand(0, 1)× (xbest − xmutual ×MBF3) (22)

xmutual =
xi + xj + xk

3
(23)

Appl. Sci. 2022, 12, 13019 13 of 34

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 37

𝑀𝐵𝐹ଷ = 1 + 𝑟𝑎𝑛𝑑(0,1) × 𝑥ଷ௙௜௧௡௘௦௦𝑀𝑎𝑥𝑓𝑖𝑡𝑛𝑒𝑠𝑠 , 𝑖𝑓 𝐵𝑒𝑠𝑡𝑓𝑖𝑡𝑛𝑒𝑠𝑠 ≠ 0 (26)

The modified benefit factor (MBF) incorporated the possibility of variations in the
actual benefits derived from the interactions, instead of the static 1 or 2 implemented in
the standard SOS. As stated earlier, a benefit factor of 1 caused slow convergence by
reducing the search step, while a benefit factor of 2 reduced the search ability by speeding
up the search process. In the case of the MBF, the benefit accrued to an organism was a
factor of its fitness with respect to the best fitness in the ecosystem.

Figure 2. Flowchart for three-part mutualism phase.

Moreover, a random weight (𝑆𝑖𝑚𝑅𝑊), suggested by [28], for the SOS algorithm’s
performance improvement was added to each dimension of the organism. The weight was
simulated using Equation (27): 𝑆𝑖𝑚𝑅𝑊௝ = 1 − 0.5 × ൫1 + 𝑟௝ଵ ൯, 𝑟௜ ∈ [0,1]𝑤ℎ𝑒𝑟𝑒 𝑗 = 1,2,3 … , 𝐷 (27)

Three-part mutualism phase

Random selection of organism 𝑋𝑗 and 𝑋𝑘where 𝑋𝑖 ≠ 𝑋𝑗 , 𝑋𝑖 ≠ 𝑋𝑘
Find the fitness of each organism in the initial population and keep

the best solution

Compute the Xmutual, benefit factors and random weight

𝑋𝑚𝑢𝑡𝑢𝑎𝑙 = ൬𝑋𝑖 + 𝑋𝑗 + 𝑋𝑘3 ൰ 𝑆𝑎𝐵𝐹1 = (1 + 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑(0,1)) .∗ (𝑂𝑏𝑗𝐹𝑛(𝑋𝑖)/(𝑋𝑚𝑎𝑥)) 𝑆𝑎𝐵𝐹2 = (1 + 𝑟𝑜𝑢𝑛𝑑൫𝑟𝑎𝑛𝑑(0,1)) .∗ (𝑂𝑏𝑗𝐹𝑛(𝑋𝑗 ൯/(𝑋𝑚𝑎𝑥)) 𝑆𝑎𝐵𝐹3 = (1 + 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑(0,1)) .∗ (𝑂𝑏𝑗𝐹𝑛(𝑋𝑘)/(𝑋𝑚𝑎𝑥)) 𝑅𝑊𝑅𝐶 = (1 − 0.5 ∗ 𝑟𝑜𝑢𝑛𝑑(𝑟𝑎𝑛𝑑(0,1))
Modify 𝑋𝑖𝑛𝑒𝑤 , 𝑋𝑗𝑛𝑒𝑤 , 𝑎𝑛𝑑 𝑋𝑘𝑛𝑒𝑤 based on mutual relationship 𝑋𝑖𝑛𝑒𝑤 = 𝑋𝑖 + (𝑅𝑊𝑅𝐶 .∗ (𝑋𝑏𝑒𝑠𝑡 − (𝑋𝑚𝑢𝑡𝑢𝑎𝑙 ∗ 𝑆𝑎𝐵𝐹1))) 𝑋𝑗𝑛𝑒𝑤 = 𝑋𝑗 + ቀ𝑅𝑊𝑅𝐶 .∗ ൫𝑋𝑏𝑒𝑠𝑡 – (𝑋𝑚𝑢𝑡𝑢𝑎𝑙 ∗ 𝑆𝑎𝐵𝐹2)൯ቁ 𝑋𝑘𝑛𝑒𝑤 = 𝑋𝑘 + (𝑅𝑊𝑅𝐶 .∗ (𝑋𝑏𝑒𝑠𝑡 − (𝑋𝑚𝑢 𝑡𝑢𝑎𝑙 ∗ 𝑆𝑎𝐵𝐹3)))

Compute the fitness function for the modified organisms

Are modified organism better
than the previous

Keep previous organism and
discard the modified

Discard previous organism
and keep the modified

Yes No

Figure 2. Flowchart for three-part mutualism phase.

The BF is also modified using the modified benefit factor (MBF) in [28] to increase
the quality of the solution. In the MBF, the relativity of the fitness value of each organism
under consideration, with respect to the maximum fitness value, is incorporated to achieve
a benefit factor that is self-adaptable. The MBF for each organism was simulated using
Equations (24)–(26). This ensured the automatic maintenance of the values of the benefit
factors throughout the search process.

MBF1 = 1 + rand(0, 1)×
x1 f itness

Max f itness
, i f Best f itness 6= 0 (24)

MBF2 = 1 + rand(0, 1)×
x2 f itness

Max f itness
, i f Best f itness 6= 0 (25)

MBF3 = 1 + rand(0, 1)×
x3 f itness

Max f itness
, i f Best f itness 6= 0 (26)

The modified benefit factor (MBF) incorporated the possibility of variations in the
actual benefits derived from the interactions, instead of the static 1 or 2 implemented in the
standard SOS. As stated earlier, a benefit factor of 1 caused slow convergence by reducing

Appl. Sci. 2022, 12, 13019 14 of 34

the search step, while a benefit factor of 2 reduced the search ability by speeding up the
search process. In the case of the MBF, the benefit accrued to an organism was a factor of
its fitness with respect to the best fitness in the ecosystem.

Moreover, a random weight (SimRW), suggested by [28], for the SOS algorithm’s
performance improvement was added to each dimension of the organism. The weight was
simulated using Equation (27):

SimRWj = 1− 0.5×
(

1 + r1
j

)
, ri ∈ [0, 1] where j = 1, 2, 3 . . . , D (27)

3.2. Modification in the K-Means Phase

The modification effected in the K-means phase of the improved SOSK-means algo-
rithm addressed the misleading effects of outliers in the dataset, which usually affect the
standard K-means algorithm at the centroids update stage. The use of the ‘average’ as the
statistic for calculating the new cluster centroid was sensitive to outliers [3]. According
to [58,59], K-means assume Gaussian data distribution, being an instance of the Gaussian
mixture model. As such, about 99.73% of the data points within a cluster record point-to-
centroid distances of three standard deviations (σ) from the cluster centroid. Therefore,
any point with a point-to-centroid distance that is outside this range with respect to its
cluster is considered an outlier. Subsequently, it is excluded in the computation of the
centroid update.

According to [59], a standard deviation (σ) was taken to be 1.4826 of the median
absolute deviation (MAD) for population distribution. The median absolute deviation gave
a robust statistical dispersion measure and was more resilient to outliers than the standard
deviation [60]. Given a point-to-centroid distance threshold Tptc:

σ = 1.4826MADci (28)

MADci = median|ci−median(ci)| (29)

Tptc = 3σ

∴ Tptc = 3(1.4826MADci)

∴ Tptc = 4.4478MADci (30)

The centroid update was calculated using Equation (31) in the classical K-means:

µ
(it+1)
i =

1∣∣∣C(it)
i

∣∣∣ ∑
xjεCi

xj (31)

However, in the improved SOSK-means, Tptc was introduced for outlier detection
and exclusion in the new centroid update using Equation (32):

µ
(it+1)
i =

1∣∣∣C(it)
i

∣∣∣− ∣∣∣C(it)
io

∣∣∣ ∑
xjεCi

xj : xj = 0 i f ||x− µi|| > Tptc (32)

where C(it)
io ε C(it)

i represents the sets of points xj assigned to cluster C(it)
i which has a point-

to-centroid distance of ||x− µi|| > Tptc. The main difference between Equations (31) and (32)
is that in the latter equation, the sets of points assigned to a cluster with a point-to-centroid
distance greater than thrice the standard deviation (3σ) were excluded from the centroid
update calculation. This excluded the outliers from contributing to the mean square
error that was being minimized. Algorithm 2 presents the pseudocode for the proposed
improved SOSK-means algorithm.

Appl. Sci. 2022, 12, 13019 15 of 34

Algorithm 2: The proposed improved SOSK-means Pseudocode

Eco_size: population size ULSS: Upper limit for search space
Max_iter: maximum number of iterations LLSS: Lower limit for search space
PDim: problem dimension ObjFn(X): fitness (objective) function
Optimal Solution
1: Create an initial population of organisms X = (X1, X2, . . . , Xecosize)
2: Calculate the fitness of each organism
3: Keep the initial population’s best solution BestX
4: Keep the initial population’s maximum solution Xmax
5: while iter ≤ Max_iter
6: for i = 1 to Eco_size do
7: // 1st Phase: Mutualism //
8: Select index j (1 ≤ j ≤ Eco_size; j 6= i) randomly
9: Select index k (1 ≤ k ≤ Eco_size; k 6= i; k 6= j) randomly
10: rand1 = (1 + round(rand(0, 1)))
11: rand2 = (1 + round(rand(0, 1)))
12: if rand1 < rand2

13: Xmutual =
(

Xi+Xj
2

)
14: SaBF1 = (1 + round(rand(0, 1)) . ∗ (ObjFn(Xi)/(Xmax))

15: SaBF2 =
(

1 + round
(

rand(0, 1)) . ∗ (ObjFn(Xj

)
/(Xmax)

)
16: RWRC = (1− 0.5 ∗ round(rand(0, 1))
17: for n = 1 to PDim do
18: Xinew = Xi + (RWRC . ∗ (Xbest − (Xmutual ∗ SaBF1)))
19: Xjnew = Xj + (RWRC . ∗ (Xbest − (Xmutual ∗ SaBF2)))

20: end for
21: if (ObjFn(Xinew) < ObjFn(Xi)
22: Xi = Xinew
23: end if
24: if (ObjFn

(
Xjnew

)
< ObjFn

(
Xj

)
25: Xj = Xjnew
26: end if
27: else
28: Xmutual =

(
Xi+Xj+Xk

3

)
29: SaBF1 = (1 + round(rand(0, 1)) . ∗ (ObjFn(Xi)/(Xmax))

30: SaBF2 =
(

1 + round
(

rand(0, 1)) . ∗ (ObjFn(Xj

)
/(Xmax)

)
31: SaBF3 = (1 + round(rand(0, 1)) . ∗ (ObjFn(Xk)/(Xmax))
32: RWRC = (1− 0.5 ∗ round(rand(0, 1))
33: for n = 1 to PDim do
34: Xinew = Xi + (RWRC . ∗ (Xbest − (Xmutual ∗ SaBF1)))
35: Xknew = Xk + (RWRC . ∗ (Xbest − (Xmutual ∗ SaBF2)))
36: end for
37: if (ObjFn(Xinew) < ObjFn(Xi)
38: Xi = Xinew
39: end if
40: if (ObjFn

(
Xjnew

)
< ObjFn

(
Xj

)
41: Xj = Xjnew
42: end if
43: if (ObjFn(Xknew) < ObjFn(Xk)
44: Xk = Xknew
45: end if
46: // 2nd Phase: Commensalism //
47: Select index j (1 ≤ j ≤ Eco_size; j 6= i) randomly
48: RWRC = (1− 0.5 ∗ round(rand(0, 1))
49: for k = 1 to PDim do
50: Xinew = Xi + RWRC ∗

(
BestX − Xj

)

Appl. Sci. 2022, 12, 13019 16 of 34

51: end for
52: if ObjFn(Xinew) < ObjFn(Xi)
53: Xi = Xinew
54: end if
55: //3rd Phase: Parasitism //
56: Select index j (1 ≤ j ≤ Eco_size; j 6= i) randomly
57: for k = 1 to PDim do
58: if rand(0, 1) < rand(0, 1)
59: Xparasite = Xi
60: else
61: Xparasite = rand(0, 1) ∗ (ULSS[K]− LLSS) + LLSS
62: end if
63: end for
64: if ObjFn

(
Xparasite

)
< ObjFn

(
Xj

)
65: Xj = Xparasite
66: end if
67: Update the current population’s best solution of the BestX
68: //K-means Clustering Phase//
69: K-means initialization using the position of the BestX
70: Execute K-means clustering using equation (32) for cluster update
71: end for
72: iter = iter + 1
73: end while

4. Performance Evaluation of Improved SOSK-Means

Forty-two datasets were considered for validating the proposed ISOSK-means algo-
rithm for automatic clustering, of which 24 were real-life datasets and 18 were artificial
datasets. All the algorithms were programmed using MATLAB R2018b, running on Win-
dows 10 operating system, installed on a 3.60 GHz Intel® Core i7-7700 processor computer
system with 16 GB memory size. For the study, the eco_size was set at 40 + 2g. The algo-
rithms were executed 40 times with 200 iterations in each run. The performance results are
presented using the minimum, maximum, average, and standard deviation of the fitness
values, as well as the average computational time. The improved SOSK-means algorithm’s
effectiveness was measured and compared using the following criteria:

• The average best fitness value measured the algorithm’s quality of the clustering
solutions.

• The performance speed used the algorithm’s computational cost and convergence curve.
• The statistical significance difference was over 40 replications.

The results were compared with the standard K-means, the standard SOS algorithm,
the existing SOSK-means and other state-of-the-art hybrid and non-hybrid metaheuristic
algorithms. The best results among the compared algorithms are presented in bold format.
The values of the common control parameters were the same for the K-means, standard
SOS algorithm and the SOSK-means algorithms. The control parameters for the competing
metaheuristic algorithms obtained from literature in [61] are shown in Table 1.

Appl. Sci. 2022, 12, 13019 17 of 34

Table 1. The control parameters for competing metaheuristic algorithms.

DE FA IWO PSO

Parameter Value Parameter Value Parameter Value Parameter Value

Pop_size 25, 50, 100, 150 Pop_size 25, 50, 100, 150 Pop_size 25, 50, 100, 150 Pop_size 25, 50, 100, 150

Kmin 2 Kmin 2 Kmax 256 Kmin 2

Kmax 256 Kmax 256 MaxGen 200 Kmax 256

MaxIt 200 MaxGen 200 s 5 MaxIt 200

F 0.8 β0 2 e 2 W1 1.00

CRmax 1 γ 1 ∑
1

0.5 W2 0.99

CRmin 0.2 ∑
2

0.001 τ1 1.50

τ2 2.00

Pop_size: Population Size; Kmin: minimum number of clusters; Kmax: maximum number of clusters; MaxIt:
number of iterations; MaxGen: Maximum number of Generations; CR: Crossover rate; e: variance reduc-
tion exponent; s: maximum number of seeds; W1: Inertial weight; W2: Inertial weight damping ratio;
β0: attractiveness; γ : light absorption; τ1 : personal learning coefficient. τ2 : global learning coefficient.
∑
1

: initial value of standard deviation ; ∑
2

: final value of standard deviation.

4.1. Datasets

During the experiment, 42 datasets were considered. The datasets were grouped into
two groups: 18 synthetically generated datasets and 24 real-life datasets. The characteristics
of the two categories of datasets are presented in Tables 2 and 3, respectively.

Table 2. The characteristics of the 18 synthetically generated datasets.

Datasets Number of Data Objects Dimension of
Data

Number of
Clusters Dataset Types References

A1 3000 2 20 Synthetically generated [62–64]

A2 5250 2 35 Synthetically generated [62–64]

A3 7500 2 50 Synthetically generated [62–64]

Birch1 100,000 2 100 Synthetically generated [62,64,65]

Birch2 100,000 2 100 Synthetically generated [62,64,65]

Birch3 100,000 2 100 Synthetically generated [62,64,65]

Dim002 1351–10,126 2–15 9 Synthetically generated [62,64,66]

Dim016 1024 16 16 High-dimensional [62,64,67]

Dim032 1024 32 16 High-dimensional [62,64,67]

Dim064 1024 64 16 High-dimensional [62,64,67]

Dim128 1024 128 16 High-dimensional [62,64,67]

Dim256 1024 256 16 High-dimensional [62,64,67]

Dim512 1024 512 16 High-dimensional [62,64,67]

Dim1024 1024 1024 16 High-dimensional [62,64,67]

S1 5000 2 15 Synthetically generated [62,64,68]

S2 5000 2 15 Synthetically generated [62,64,68]

S3 5000 2 15 Synthetically generated [62,64,68]

S4 5000 2 15 Synthetically generated [62,64,68]

Appl. Sci. 2022, 12, 13019 18 of 34

Table 3. The characteristics of the 24 real-life datasets.

Datasets Number of Data
Objects Dimension of Data Number of Clusters Dataset Types References

Aggregation 788 2 7 Shape sets [64,69]

Breast 699 9 2 UCI dataset [64,70]

Bridge 4096 16 256 Grey-scale image blocks [64,71]

Compound 399 2 6 Shape sets [64,72]

D31 3100 2 31 Shape sets [64,73]

Flame 240 2 2 Shape sets [64,74]

Glass 214 9 7 UCI dataset [64,70]

Housec5 34,112 3 256 RGB Image [64,71]

Housec8 34,112 3 256 RGB Image [64,71]

Iris 150 4 3 UCI dataset [64,70]

Jain 373 2 2 Shape sets [64,75]

Leaves 1600 64 100 UCI dataset [64,70]

Letter 20,000 16 26 UCI dataset [64,70]

Joensuu 6014 2 4 Mopsi locations [64,76]

Finland 13,467 2 4 Mopsi locations [64,76]

Path-based 300 2 3 Shape sets [1,64]

R15 600 2 15 Shape sets [64,77]

Spiral 312 2 3 Shape sets [64,78]

Thyroid 215 5 2 UCI dataset [64,70]

T4.8k 8000 2 3 Miscellaneous [64,79]

Two moons 10,000 2 2 Miscellaneous [80,81]

Wdbc 569 32 2 UCI dataset [64,70]

Wine 178 13 3 UCI dataset [64,70]

Yeast 1484 8 10 UCI dataset [64,70]

4.1.1. The Synthetic Datasets

The synthetically generated datasets consisted of the A-datasets (three sets), Birch
datasets (three sets), DIM (one set of a low dimensional dataset and seven sets of high
dimensional datasets), and the S-generated datasets (four sets). The A datasets had an
increasing number of clusters, while the Birch datasets had the number of clusters fixed at
100. The DIM datasets were characterized by well-separated clusters, with DIM002 having
9 predetermined clusters (with varying dimensions ranging from 2 to 15), while others had
16 clusters with dimensions ranging from 16 to 1024. The S1–S4 were two-dimensional
datasets, characterized by varying spatial data distribution complexity with a uniform
cluster of 15.

4.1.2. The Real-Life Datasets

The real-life datasets consisted of the following: eight shape sets (Aggregation, Com-
pound, D31, Flame, Jain, Path-based, R15 and Spiral datasets); ten datasets from the
UCI repository (Breast, Glass, Iris, Jain, Leaves, Letter, Thyroid, Wdbc, Wine and Yeast);
two Mopsi locations datasets (Joensuu and Finland); two RGB images datasets (Housec5
and Housec8); one Gray-scale image blocks; and two miscellaneous datasets (T4.8k and
Two moons). The real-life datasets had varying clusters, ranging from 2 to 256, their di-

Appl. Sci. 2022, 12, 13019 19 of 34

mensions ranged between 2 and 64, and the number of data objects in the datasets ranged
between 150 and 34,112.

4.2. Experiment 1

In the first set of experiments conducted, the improved SOSK-means was run on
12 datasets, initially used for the SOSK-means. These were Breast, Compound, Flame,
Glass, Iris, Jain, Path-based, Spiral, Thyroid, Two moons, Wine, and Yeast datasets. The
experimental results are summarized in Table 4, showing the values obtained by the
ISOSK-means for each of the 12 datasets. The four decimal place values represented the
minimum, the maximum, the mean value over 40 simulations and the standard deviations,
which measured the range of values the algorithm converged. From the results obtained,
the ISOSK-means returned the best mean values for four of the datasets (Compound,
Jain, Thyroid, and two-moons) under the DB index, and eight of the datasets (Breast,
Flame, Glass, Iris, Path-based, Spiral, Wine and Yeast) had the best mean values under
the CS index. The average computational time for achieving convergence for each dataset
by the improved algorithm is shown in Figure 3. Even though the CS index returned
the best overall average results for the 12 datasets, this was at the expense of higher
computational time.

Table 4. Computational results for improved SOSK-means on 12 real-life datasets.

DB Index CS Index
Datasets Min Max Mean Std Dev Min Max Mean Std Dev

Breast 0.8121 0.8121 0.8121 0.0000 0.5996 0.7209 0.6639 0.0391
Compound 0.4947 0.5033 0.4985 0.0021 0.4995 0.5032 0.5031 0.0006
Flame 0.7748 0.7770 0.7760 0.0006 0.3846 0.3846 0.3846 0.0000
Glass 0.3612 0.7821 0.6547 0.1727 0.0608 0.0608 0.0608 0.0000
Iris 0.5913 0.6475 0.6165 0.0132 0.5311 0.5821 0.5510 0.0118
Jain 0.6495 0.6522 0.6507 0.0008 0.6546 0.6546 0.6546 0.0000
Path-based 0.6533 0.6718 0.6669 0.0050 0.5588 0.6494 0.6289 0.0299
Spiral 0.7320 0.7458 0.7386 0.0033 0.5861 0.6862 0.6618 0.0329
Thyroid 0.5692 0.6439 0.6039 0.0182 0.6409 0.6409 0.6409 0.0000
Two moons 0.6008 0.6033 0.6021 0.0006 0.7176 0.7482 0.7243 0.0113
Wine 0.9414 1.0437 1.0053 0.0228 0.6570 0.8625 0.7614 0.0571
Yeast 0.3560 0.9902 0.8019 0.1407 0.3897 0.5110 0.4777 0.0252
Average 0.6280 0.7394 0.7023 0.0317 0.5234 0.5837 0.5594 0.0173

Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 37

Jain 0.6495 0.6522 0.6507 0.0008 0.6546 0.6546 0.6546 0.0000
Path-based 0.6533 0.6718 0.6669 0.0050 0.5588 0.6494 0.6289 0.0299
Spiral 0.7320 0.7458 0.7386 0.0033 0.5861 0.6862 0.6618 0.0329
Thyroid 0.5692 0.6439 0.6039 0.0182 0.6409 0.6409 0.6409 0.0000
Two moons 0.6008 0.6033 0.6021 0.0006 0.7176 0.7482 0.7243 0.0113
Wine 0.9414 1.0437 1.0053 0.0228 0.6570 0.8625 0.7614 0.0571
Yeast 0.3560 0.9902 0.8019 0.1407 0.3897 0.5110 0.4777 0.0252
Average 0.6280 0.7394 0.7023 0.0317 0.5234 0.5837 0.5594 0.0173

Figure 3. Computational time for the ISOSK-means.

Table 5 summarizes the simulated results for each of the four competing algorithms
for the automatic clustering of the 12 real-life datasets. The results present the mean and
the standard deviation for each algorithm. The values were obtained for the two cluster
validity indices, the DB index, and the CS index.

Table 5. Computation results for the four competing algorithms on 12 real-life datasets.

 Statistical
Measure

DB Index CS Index

Datasets SOS K-Means SOSK-means ISOSK-
Means SOS K-Means SOSK-

Means
ISOSK-
Means

Breast Mean 1.3520 0.8121 0.8121 0.8121 0.9946 1.1019 0.7606 0.6639
 Std Dev 0.2858 0.0000 0.0000 0.0000 0.2667 0.0000 0.1217 0.0391
Compound Mean 0.6924 0.9716 0.5046 0.4985 0.5670 1.2887 0.5072 0.5031
 Std Dev 0.1481 0.0748 0.0044 0.0021 0.1225 0.1486 0.0155 0.0006
Flame Mean 0.8234 1.2306 0.7770 0.7760 1.2707 1.5806 0.3846 0.3846
 Std Dev 0.0180 0.0059 0.0008 0.0006 0.1006 0.0263 0.0000 0.0000
Glass Mean 0.8164 1.2208 0.7113 0.6547 0.2200 1.4894 0.0608 0.0608
 Std Dev 0.1174 0.1570 0.1217 0.1727 0.2563 0.1904 0.0000 0.0000
Iris Mean 0.8602 0.9167 0.6346 0.6165 0.8585 1.2404 0.5743 0.5510
 Std Dev 0.1809 0.0033 0.0188 0.0132 0.1922 0.0092 0.0237 0.0118
Jain Mean 0.7007 0.8587 0.6518 0.6507 0.8196 1.0668 0.6546 0.6546
 Std Dev 0.0274 0.0001 0.0009 0.0008 0.0212 0.0003 0.0000 0.0000
Path-based Mean 0.7578 0.7696 0.6708 0.6669 1.0021 0.9893 0.6511 0.6289
 Std Dev 0.0686 0.0066 0.0031 0.0050 0.1708 0.0086 0.0120 0.0299
Spiral Mean 0.8013 0.9589 0.7437 0.7386 1.0818 1.1896 0.6812 0.6618
 Std Dev 0.0447 0.0109 0.0045 0.0033 0.2107 0.0053 0.0115 0.0329

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

DB Index CS Index

Figure 3. Computational time for the ISOSK-means.

Appl. Sci. 2022, 12, 13019 20 of 34

Table 5 summarizes the simulated results for each of the four competing algorithms
for the automatic clustering of the 12 real-life datasets. The results present the mean and
the standard deviation for each algorithm. The values were obtained for the two cluster
validity indices, the DB index, and the CS index.

Table 5. Computation results for the four competing algorithms on 12 real-life datasets.

Statistical
Measure

DB Index CS Index

Datasets SOS K-Means SOSK-
means

ISOSK-
Means SOS K-Means SOSK-

Means
ISOSK-
Means

Breast Mean 1.3520 0.8121 0.8121 0.8121 0.9946 1.1019 0.7606 0.6639
Std Dev 0.2858 0.0000 0.0000 0.0000 0.2667 0.0000 0.1217 0.0391

Compound Mean 0.6924 0.9716 0.5046 0.4985 0.5670 1.2887 0.5072 0.5031
Std Dev 0.1481 0.0748 0.0044 0.0021 0.1225 0.1486 0.0155 0.0006

Flame Mean 0.8234 1.2306 0.7770 0.7760 1.2707 1.5806 0.3846 0.3846
Std Dev 0.0180 0.0059 0.0008 0.0006 0.1006 0.0263 0.0000 0.0000

Glass Mean 0.8164 1.2208 0.7113 0.6547 0.2200 1.4894 0.0608 0.0608
Std Dev 0.1174 0.1570 0.1217 0.1727 0.2563 0.1904 0.0000 0.0000

Iris Mean 0.8602 0.9167 0.6346 0.6165 0.8585 1.2404 0.5743 0.5510
Std Dev 0.1809 0.0033 0.0188 0.0132 0.1922 0.0092 0.0237 0.0118

Jain Mean 0.7007 0.8587 0.6518 0.6507 0.8196 1.0668 0.6546 0.6546
Std Dev 0.0274 0.0001 0.0009 0.0008 0.0212 0.0003 0.0000 0.0000

Path-based Mean 0.7578 0.7696 0.6708 0.6669 1.0021 0.9893 0.6511 0.6289
Std Dev 0.0686 0.0066 0.0031 0.0050 0.1708 0.0086 0.0120 0.0299

Spiral Mean 0.8013 0.9589 0.7437 0.7386 1.0818 1.1896 0.6812 0.6618
Std Dev 0.0447 0.0109 0.0045 0.0033 0.2107 0.0053 0.0115 0.0329

Thyroid Mean 1.0232 1.0298 0.6321 0.6039 0.6446 1.7863 0.6409 0.6409
Std Dev 0.1479 0.2042 0.0316 0.0182 0.0238 0.3602 0.0000 0.0000

Two-moons Mean 0.6128 0.7948 0.6032 0.6021 0.7701 0.9385 0.7498 0.7243
Std Dev 0.0179 0.0000 0.0010 0.0006 0.0281 0.0000 0.0162 0.0113

Wine Mean 1.1488 1.3053 1.0460 1.0053 1.1938 1.4425 0.8422 0.7614
Std Dev 0.1394 0.0022 0.0207 0.0228 0.3318 0.0128 0.0527 0.0571

Yeast Mean 1.2144 1.7176 0.8496 0.8019 0.5594 2.6417 0.5242 0.4777
Std Dev 0.2911 0.1875 0.1588 0.1407 0.2847 0.5950 0.0437 0.0252

As shown in Table 5, the ISOSK-means had the best mean score under the DB validity
index in 11 of the 12 datasets, with a tie on the Breast dataset for three of the algorithms:
ISOSK-means, SOSK-means and K-means. In the same vein, the ISOSK-means recorded the
best mean scores under the CS validity index for the ISOSK-means in eight datasets with ties
for two of the algorithms: SOSK-means and ISOSK-means, in four of the datasets (Flame,
Glass, Jain, and Thyroid). The performance analysis of the four competing algorithms is
shown in Figures 4 and 5 for each cluster validity index. These results indicated that the
ISOSK-means algorithm performed better than the other three competing algorithms.

The average execution times of the SOS, SOSK-means and ISOSK-means algorithms for
200 generations were presented separately for each validity index, as shown in Figures 6 and 7.
As expected, being a non-hybrid algorithm, the SOS recorded the lowest computational time
under the two validity indices. Under the DB validity index, the ISOSK-means recorded
a shorter average execution time than the SOSK-means in nine datasets. This indicated
that the ISOSK-means required less execution time to achieve convergence. Under the CS
validity index, the ISOSK-means recorded lower execution time in six datasets. Out of the
remaining six, only three datasets showed a considerable difference in execution time for
the two algorithms in favor of the SOSK-means. Since the CS index usually requires higher
computational time, this result showed that the ISOSK-means substantially outperformed
SOSK-means in terms of computational cost.

Appl. Sci. 2022, 12, 13019 21 of 34

Appl. Sci. 2022, 12, x FOR PEER REVIEW 22 of 37

Thyroid Mean 1.0232 1.0298 0.6321 0.6039 0.6446 1.7863 0.6409 0.6409
 Std Dev 0.1479 0.2042 0.0316 0.0182 0.0238 0.3602 0.0000 0.0000
Two-moons Mean 0.6128 0.7948 0.6032 0.6021 0.7701 0.9385 0.7498 0.7243
 Std Dev 0.0179 0.0000 0.0010 0.0006 0.0281 0.0000 0.0162 0.0113
Wine Mean 1.1488 1.3053 1.0460 1.0053 1.1938 1.4425 0.8422 0.7614
 Std Dev 0.1394 0.0022 0.0207 0.0228 0.3318 0.0128 0.0527 0.0571
Yeast Mean 1.2144 1.7176 0.8496 0.8019 0.5594 2.6417 0.5242 0.4777
 Std Dev 0.2911 0.1875 0.1588 0.1407 0.2847 0.5950 0.0437 0.0252

As shown in Table 5, the ISOSK-means had the best mean score under the DB validity
index in 11 of the 12 datasets, with a tie on the Breast dataset for three of the algorithms:
ISOSK-means, SOSK-means and K-means. In the same vein, the ISOSK-means recorded
the best mean scores under the CS validity index for the ISOSK-means in eight datasets
with ties for two of the algorithms: SOSK-means and ISOSK-means, in four of the datasets
(Flame, Glass, Jain, and Thyroid). The performance analysis of the four competing
algorithms is shown in Figures 4 and 5 for each cluster validity index. These results
indicated that the ISOSK-means algorithm performed better than the other three
competing algorithms.

Figure 4. Performance analysis of four competing algorithms, ISOSK-means, SOSK-means, SOS and
K-means, under the DB index.

0.0000
0.2000
0.4000
0.6000
0.8000
1.0000
1.2000
1.4000
1.6000
1.8000
2.0000

SOS Kmeans SOSKmeans ISOSKMeans

Figure 4. Performance analysis of four competing algorithms, ISOSK-means, SOSK-means, SOS and
K-means, under the DB index.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 37

Figure 5. Performance analysis of four competing algorithms, ISOSK-means, SOSK-means, SOS and
K-means, under the CS index.

The average execution times of the SOS, SOSK-means and ISOSK-means algorithms
for 200 generations were presented separately for each validity index, as shown in Figures
6 and 7. As expected, being a non-hybrid algorithm, the SOS recorded the lowest
computational time under the two validity indices. Under the DB validity index, the
ISOSK-means recorded a shorter average execution time than the SOSK-means in nine
datasets. This indicated that the ISOSK-means required less execution time to achieve
convergence. Under the CS validity index, the ISOSK-means recorded lower execution
time in six datasets. Out of the remaining six, only three datasets showed a considerable
difference in execution time for the two algorithms in favor of the SOSK-means. Since the
CS index usually requires higher computational time, this result showed that the ISOSK-
means substantially outperformed SOSK-means in terms of computational cost.

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

SOS Kmeans SOSKmeans Improved

0

500

1000

1500

2000

2500

3000

SOS SOSKmeans ISOSKmeans

Figure 5. Performance analysis of four competing algorithms, ISOSK-means, SOSK-means, SOS and
K-means, under the CS index.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 23 of 37

Figure 5. Performance analysis of four competing algorithms, ISOSK-means, SOSK-means, SOS and
K-means, under the CS index.

The average execution times of the SOS, SOSK-means and ISOSK-means algorithms
for 200 generations were presented separately for each validity index, as shown in Figures
6 and 7. As expected, being a non-hybrid algorithm, the SOS recorded the lowest
computational time under the two validity indices. Under the DB validity index, the
ISOSK-means recorded a shorter average execution time than the SOSK-means in nine
datasets. This indicated that the ISOSK-means required less execution time to achieve
convergence. Under the CS validity index, the ISOSK-means recorded lower execution
time in six datasets. Out of the remaining six, only three datasets showed a considerable
difference in execution time for the two algorithms in favor of the SOSK-means. Since the
CS index usually requires higher computational time, this result showed that the ISOSK-
means substantially outperformed SOSK-means in terms of computational cost.

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

SOS Kmeans SOSKmeans Improved

0

500

1000

1500

2000

2500

3000

SOS SOSKmeans ISOSKmeans

Figure 6. Analysis of computational times of SOS, SOSK-means and ISOSK-means under the
DB index.

Appl. Sci. 2022, 12, 13019 22 of 34

Appl. Sci. 2022, 12, x FOR PEER REVIEW 24 of 37

Figure 6. Analysis of computational times of SOS, SOSK-means and ISOSK-means under the DB
index.

Figure 7. Analysis of computational times of SOS, SOSK-means and ISOSK-means under the CS
index.

The convergence curve for the three algorithms, ISOSK-means, SOSK-means and
SOS, are illustrated in Figures 8 and 9 for the DB index and CS index, respectively. A rapid
and smooth declining curve reflected a superior performance. In all 12 datasets, the
ISOSK-means recorded the best performance with rapidly declining smooth curves under
the two validity indices.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

SOS SOSKmeans ISOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.85

0.9

0.95

1

1.05

1.1

1.15

Be
st

 C
os

t

Convergence Curve for Breast Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

Be
st

 C
os

t

Convergence Curve for Compound Dataset

SOS
SOSKmeans
Improved SOSKmeans

Figure 7. Analysis of computational times of SOS, SOSK-means and ISOSK-means under the
CS index.

The convergence curve for the three algorithms, ISOSK-means, SOSK-means and
SOS, are illustrated in Figures 8 and 9 for the DB index and CS index, respectively. A
rapid and smooth declining curve reflected a superior performance. In all 12 datasets, the
ISOSK-means recorded the best performance with rapidly declining smooth curves under
the two validity indices.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 24 of 37

Figure 6. Analysis of computational times of SOS, SOSK-means and ISOSK-means under the DB
index.

Figure 7. Analysis of computational times of SOS, SOSK-means and ISOSK-means under the CS
index.

The convergence curve for the three algorithms, ISOSK-means, SOSK-means and
SOS, are illustrated in Figures 8 and 9 for the DB index and CS index, respectively. A rapid
and smooth declining curve reflected a superior performance. In all 12 datasets, the
ISOSK-means recorded the best performance with rapidly declining smooth curves under
the two validity indices.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

SOS SOSKmeans ISOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.85

0.9

0.95

1

1.05

1.1

1.15

Be
st

 C
os

t

Convergence Curve for Breast Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.5

0.51

0.52

0.53

0.54

0.55

0.56

0.57

0.58

Be
st

 C
os

t

Convergence Curve for Compound Dataset

SOS
SOSKmeans
Improved SOSKmeans

Figure 8. Cont.

Appl. Sci. 2022, 12, 13019 23 of 34
Appl. Sci. 2022, 12, x FOR PEER REVIEW 25 of 37

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.777

0.778

0.779

0.78

0.781

0.782

0.783

0.784

0.785

Be
st

 C
os

t

Convergence Curve for Flame Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

Be
st

 C
os

t

Convergence Curve for Glass Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

Be
st

 C
os

t

Convergence Curve for Iris Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.652

0.653

0.654

0.655

0.656

0.657

0.658

0.659

0.66

Be
st

 C
os

t

Convergence Curve for Jain Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.67

0.675

0.68

0.685

0.69

0.695

0.7

0.705

0.71

0.715

0.72

Be
st

 C
os

t

Convergence Curve for Pathbased Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.74

0.745

0.75

0.755

0.76

0.765

0.77

Be
st

 C
os

t

Convergence Curve for Spiral Dataset

SOS
SOSKmeans
Improved SOSKmeans

Figure 8. Cont.

Appl. Sci. 2022, 12, 13019 24 of 34
Appl. Sci. 2022, 12, x FOR PEER REVIEW 26 of 37

Figure 8. Convergence curves for the 12 datasets under DB index.

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.65

0.7

0.75

0.8

0.85

Be
st

 C
os

t

Convergence Curve for Thyroid Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.602

0.604

0.606

0.608

0.61

0.612

0.614

0.616

Be
st

 C
os

t

Convergence Curve for Twomoons Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

1.05

1.1

1.15

1.2

Be
st

 C
os

t

Convergence Curve for Wine Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.8

0.9

1

1.1

1.2

1.3

1.4

Be
st

 C
os

t

Convergence Curve for Yeast Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.6

0.7

0.8

0.9

1

1.1

Be
st

 C
os

t

Convergence Curve for Breast Dataset(CSI)

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.55

0.6

0.65

0.7

0.75

Be
st

 C
os

t

Convergence Curve for Compound Dataset(CSI)

SOS
SOSKmeans
Improved SOSKmeans

Figure 8. Convergence curves for the 12 datasets under DB index.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 26 of 37

Figure 8. Convergence curves for the 12 datasets under DB index.

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.65

0.7

0.75

0.8

0.85

Be
st

 C
os

t

Convergence Curve for Thyroid Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.602

0.604

0.606

0.608

0.61

0.612

0.614

0.616

Be
st

 C
os

t

Convergence Curve for Twomoons Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

1.05

1.1

1.15

1.2

Be
st

 C
os

t

Convergence Curve for Wine Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.8

0.9

1

1.1

1.2

1.3

1.4

Be
st

 C
os

t

Convergence Curve for Yeast Dataset

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.6

0.7

0.8

0.9

1

1.1

Be
st

 C
os

t

Convergence Curve for Breast Dataset(CSI)

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.55

0.6

0.65

0.7

0.75

Be
st

 C
os

t

Convergence Curve for Compound Dataset(CSI)

SOS
SOSKmeans
Improved SOSKmeans

Figure 9. Cont.

Appl. Sci. 2022, 12, 13019 25 of 34
Appl. Sci. 2022, 12, x FOR PEER REVIEW 27 of 37

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Be
st

 C
os

t

Convergence Curve for Flame Dataset (CSI)

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22
0.24

Be
st

 C
os

t

Convergence Curve for Glass Dataset (CSI)

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Be
st

 C
os

t

Convergence Curve for Iris Dataset (CSI)

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

Be
st

 C
os

t

Convergence Curve for Jain Dataset (CSI)

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Be
st

 C
os

t

Convergence Curve for Pathbased Dataset (CSI)

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Be
st

 C
os

t

Convergence Curve for Spiral Dataset (CSI)

SOS
SOSKmeans
Improved SOSKmeans

Figure 9. Cont.

Appl. Sci. 2022, 12, 13019 26 of 34
Appl. Sci. 2022, 12, x FOR PEER REVIEW 28 of 37

Figure 9. Convergence curves for the 12 datasets under the CS index.

4.3. Experiment 2
In Experiment 2, an extensive performance evaluation of the ISOSK-means algorithm

on 18 synthetic datasets was demonstrated. Table 6 shows the computational results from
the experiment under the DB validity index, showing the best, the worst, the mean, and
the standard deviation scores. The results of the ISOSK-means were compared with other
existing hybrid algorithms from the literature [61] for the same problem in Table 7. The
ISOSK-means recorded a better overall mean value for the 18 synthetic datasets, compared
with the other hybrid metaheuristic algorithms. This showed that the mean performance
of the improved hybrid algorithm was superior, compared with the competing hybrid
metaheuristic algorithms, in solving the automatic clustering problem.

Table 6. Computational results of ISOSK-means on 18 synthetic datasets.

 ISOSK-Means (DB Index)
Datasets Min Max Mean Std Dev
A1 0.5905 0.5918 0.5911 0.0003
A2 0.6777 0.6786 0.6781 0.0002
A3 0.7921 0.7965 0.7945 0.0011
Birch1 0.8020 0.8042 0.8030 0.0006
Birch2 0.5070 0.5073 0.5071 0.0001
Birch3 0.7161 0.7179 0.7168 0.0004
Dim002 0.5873 0.6676 0.6384 0.0222

0 20 40 60 80 100 120 140 160 180 200
Iteration

10-1

100

101

Be
st

 C
os

t

Convergence Curve for Thyroid Dataset(CSI)

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.72

0.73

0.74

0.75

0.76

0.77

0.78

Be
st

 C
os

t

Convergence Curve for Twomoons Dataset (CSI)

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Be
st

 C
os

t

Convergence Curve for Wine Dataset (CSI)

SOS
SOSKmeans
Improved SOSKmeans

0 20 40 60 80 100 120 140 160 180 200
Iteration

0.5

0.6

0.7

0.8

0.9

1

1.1

Be
st

 C
os

t

Convergence Curve for Yeast Dataset (CSI)

SOS
SOSKmeans
Improved SOSKmeans

Figure 9. Convergence curves for the 12 datasets under the CS index.

4.3. Experiment 2

In Experiment 2, an extensive performance evaluation of the ISOSK-means algorithm
on 18 synthetic datasets was demonstrated. Table 6 shows the computational results from
the experiment under the DB validity index, showing the best, the worst, the mean, and
the standard deviation scores. The results of the ISOSK-means were compared with other
existing hybrid algorithms from the literature [61] for the same problem in Table 7. The
ISOSK-means recorded a better overall mean value for the 18 synthetic datasets, compared
with the other hybrid metaheuristic algorithms. This showed that the mean performance
of the improved hybrid algorithm was superior, compared with the competing hybrid
metaheuristic algorithms, in solving the automatic clustering problem.

Appl. Sci. 2022, 12, 13019 27 of 34

Table 6. Computational results of ISOSK-means on 18 synthetic datasets.

ISOSK-Means (DB Index)
Datasets Min Max Mean Std Dev

A1 0.5905 0.5918 0.5911 0.0003
A2 0.6777 0.6786 0.6781 0.0002
A3 0.7921 0.7965 0.7945 0.0011
Birch1 0.8020 0.8042 0.8030 0.0006
Birch2 0.5070 0.5073 0.5071 0.0001
Birch3 0.7161 0.7179 0.7168 0.0004
Dim002 0.5873 0.6676 0.6384 0.0222
Dim016 0.7201 1.2869 1.1069 0.1870
Dim032 0.8293 1.4705 1.2402 0.2463
Dim064 0.8474 1.5901 1.0390 0.2524
Dim128 0.8507 1.7100 1.0045 0.2008
Dim256 0.9056 1.8192 1.0785 0.3065
Dim512 0.2054 1.0135 0.9247 1.0135
Dim1024 0.9060 1.9655 1.1332 0.3795
S1 0.7752 0.7785 0.7770 0.0009
S2 0.7394 0.7430 0.7412 0.0008
S3 0.7119 0.7139 0.7126 0.0005
S4 0.7705 0.7741 0.7723 0.0009
Average 0.7186 1.0350 0.8477 0.1452

Table 7. Performance comparison of ISOSK-means with other hybrid metaheuristic algorithms from
literature on 18 synthetic datasets.

ISOSK-Means PSODE FADE IWODE
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

A1 0.5911 0.0003 0.5949 0.0086 0.6171 0.0347 0.6525 0.0621
A2 0.6781 0.0002 0.6912 0.0161 0.6976 0.0215 0.7296 0.0391
A3 0.7945 0.0011 0.7106 0.0176 0.7085 0.0332 0.7527 0.0319
Birch1 0.8030 0.0006 0.7256 0.0276 0.7232 0.0257 0.76923 0.0279
Birch2 0.5071 0.0001 0.507 0.0002 0.5155 0.0235 0.5176 0.0084
Birch3 0.7168 0.0004 0.7074 0.0151 0.7012 0.0191 0.757 0.0247
Dim002 0.6384 0.0222 0.5975 0.0445 0.628 0.0607 0.6705 0.0432
Dim016 1.1069 0.1870 1.0183 0.1285 1.0413 0.0512 1.4336 0.0456
Dim032 1.2402 0.2463 1.1142 0.0915 1.0727 0.0894 1.5731 0.0574
Dim064 1.0390 0.2524 1.1918 0.1769 1.1003 0.0925 1.7015 0.0415
Dim128 1.0045 0.2008 1.3363 0.1425 1.198 0.1173 1.7773 0.0477
Dim256 1.0785 0.3065 1.5051 0.174 1.2938 0.1308 1.8603 0.0309
Dim512 0.9247 1.0135 1.6827 0.0633 1.3529 0.1463 1.9311 0.0424
Dim1024 1.1332 0.3795 1.7644 0.0112 1.4759 0.12 1.9654 0.0261
S1 0.7770 0.0009 0.6739 0.0351 0.6756 0.027 0.7501 0.028
S2 0.7412 0.0008 0.6844 0.028 0.6939 0.0345 0.7556 0.019
S3 0.7126 0.0005 0.7106 0.0199 0.7072 0.0181 0.7559 0.0317
S4 0.7723 0.0009 0.7299 0.0162 0.7356 0.0226 0.7896 0.0303
Average 0.8477 0.1452 0.9414 0.0565 0.8855 0.0593 1.1190 0.0354

4.4. Experiment 3

In Experiment 3, the performance of the ISOSK-means algorithm on 23 real life datasets
were evaluated. The computational results from the experiment under the DB validity index
are shown in Table 8, showing the minimum, the maximum, the average, and the standard
deviation scores for the ISOSK-means algorithm. The results were compared with other
existing hybrid algorithms from the literature [61] for the same problem, as presented in
Table 9. The ISOSK-means recorded a better mean value for the 23 real-life datasets than the
other hybrid metaheuristic algorithms. This indicated that the improved hybrid algorithm
performed better, on average, in solving the automatic clustering problem, compared with

Appl. Sci. 2022, 12, 13019 28 of 34

the competing hybrid metaheuristic algorithms. However, it is worth noting that FADE
had the best clustering result in nine of the datasets. Nevertheless, the ISOSK-means
recorded the least standard deviation in 18 datasets, with the least mean standard deviation
score in all, showing that it produced more compact clusters than the competing hybrid
metaheuristic algorithms.

Table 8. Computational results of ISOSK-means on 23 real-life datasets.

ISOSK-Means (DB Index)
Datasets Min Max Mean Std Dev

Aggregation 0.7229 0.7297 0.7262 0.0014
Breast 0.8121 0.8121 0.8121 0.0000
Bridge 0.6455 0.6474 0.6464 0.0009
Compound 0.4947 0.5033 0.4985 0.0021
D31 0.8016 0.8263 0.8125 0.0070
Flame 0.7748 0.7770 0.7760 0.0006
Glass 0.3612 0.7821 0.6547 0.1727
Housec5 0.5158 0.5650 0.5377 0.0123
Housec8 0.4919 0.5305 0.5158 0.0107
Iris 0.5913 0.6475 0.6165 0.0132
Jain 0.6495 0.6522 0.6507 0.0008
Leaves 0.7207 0.9591 0.7618 0.0745
Letter 0.9683 1.0545 1.0242 0.0188
Joensuu 0.5011 0.5147 0.5073 0.0038
Finland 0.4409 0.4453 0.4427 0.0011
Path-based 0.6533 0.6718 0.6669 0.0050
R15 0.7106 0.7771 0.7400 0.0171
Spiral 0.7320 0.7458 0.7386 0.0033
T4.8k 0.0227 0.0227 0.0227 0.0000
Thyroid 0.5692 0.6439 0.6039 0.0182
Wdbc 0.0508 0.0508 0.0508 0.0000
Wine 0.9414 1.0437 1.0053 0.0228
Yeast 0.7084 0.8976 0.7489 0.0682
Average 0.6035 0.6652 0.6331 0.0198

Table 9. Performance comparison of ISOSK-means with other hybrid metaheuristic algorithms on
23 real-life datasets.

ISOSK-Means PSODE FADE IWODE
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

Aggregation 0.7262 0.0014 0.5958 0.0391 0.5948 0.0424 0.6015 0.051
Breast 0.8121 0.0000 0.7256 0.1115 0.9378 0.2051 0.7965 0.1177
Bridge 0.6464 0.0009 0.7141 0.1007 0.6405 0.0709 1.1397 0.0666
Compound 0.4985 0.0021 0.4983 0.0092 0.5273 0.0576 0.50004 0.0312
D31 0.8125 0.0070 0.8021 0.0407 0.7788 0.0376 0.7972 0.0514
Flame 0.7760 0.0006 4.4069 4.6725 0.6795 0.0477 0.6749 0.0391
Glass 0.6547 0.1727 0.5966 0.0672 0.5971 0.0996 0.5562 0.1384
Housec5 0.5377 0.0123 2.2408 4.0861 0.5467 0.0287 0.6865 0.0229
Housec8 0.4919 0.5305 0.5022 0.0315 0.4707 0.0383 0.6344 0.0408
Iris 0.6165 0.0132 0.5811 0.021 0.585 0.035 0.8384 0.0916
Jain 0.6507 0.0008 0.6399 0.015 0.6451 0.0062 0.65 0.0058
Leaves 0.7618 0.0745 0.758 0.1514 0.7483 0.1539 1.5116 0.0396
Letter 0.9683 1.0545 0.9121 0.0628 0.8665 0.0663 1.2057 0.0571
Joensuu 0.5073 0.0038 0.5094 0.0098 0.51 0.0327 0.4972 0.0041
Finland 0.4427 0.0011 0.4465 0.006 0.4686 0.0547 0.4864 0.0371
Path-based 0.6669 0.0050 0.6526 0.0166 0.6561 0.0178 0.6567 0.0156
R15 0.7400 0.0171 0.6423 0.0722 0.6399 0.0984 0.5996 0.0894
Spiral 0.7386 0.0033 0.7441 0.0136 0.7373 0.0156 0.7758 0.0143
T4.8k 0.0227 0.0000 0.0227 0 0.04234 0.0882 0.0928 0.0515
Thyroid 0.6039 0.0182 0.5024 0.0196 0.4955 0.0241 0.9893 0.1077
Wdbc 0.0508 0.0000 0.0508 0 0.0508 0 0.0814 0.0263
Wine 1.0053 0.0228 0.8891 0.0601 0.8648 0.0973 1.2312 0.0525
Yeast 0.7489 0.0682 0.7193 0.0677 0.6375 0.1344 0.5949 0.1144
Average 0.6331 0.0198 0.8805 0.2608 0.7234 0.0615 0.8961 0.0464

Appl. Sci. 2022, 12, 13019 29 of 34

4.5. Experiment 4

In this experiment, the ISOSK-means results were compared with other existing non-
hybrid algorithms (DE, PSO, FA, IWO) from the literature [60] for the same problem, and
the results are presented in Table 10. The ISOSK-means recorded the best mean scores in
four datasets: A1, A2, Birch2 and Housec5. The FA recorded the best mean performance,
followed by the proposed ISOSK-means algorithm. FA and ISOSK-means recorded better
average performance scores than DE, PSO and IWO. This showed that the improved hybrid
algorithm demonstrated a high competing capability with other metaheuristic algorithms
in automatic clustering of high dimensional datasets.

Table 10. Performance comparison of ISOSK-means with other non-hybrid metaheuristic algorithms
on high-dimensional datasets.

High-
Dimensional
Dataset

ISOSK-Means DE PSO FA IWO
Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

A1 0.5911 0.0003 0.6016 0.0116 0.6662 0.0042 0.6089 0.0341 0.6308 0.0265
A2 0.6781 0.0002 0.7081 0.0348 0.7134 0.0284 0.6842 0.0143 0.7483 0.0468
A3 0.7945 0.0011 0.7349 0.0184 0.7279 0.0287 0.6844 0.0241 0.7545 0.0339
Birch 1 0.8030 0.0006 0.748 0.0171 0.7528 0.0169 0.7091 0.0203 0.7644 0.0211
Birch 2 0.5071 0.0001 0.5086 0.0016 0.5876 0.0358 0.5087 0.0078 0.5168 0.0052
Birch 3 0.7168 0.0004 0.7488 0.0297 0.7213 0.0306 0.6974 0.0127 0.7568 0.0248
D31 0.8125 0.0070 0.8757 0.0302 0.763 0.0514 0.7808 0.0436 0.7896 0.0312
Housec5 0.5377 0.0123 0.619 0.0412 0.7456 0.0679 0.5642 0.029 0.7034 0.043
Housec8 0.4919 0.5305 0.5245 0.0139 0.6418 0.0858 0.4584 0.0111 0.6206 0.0546
Leaves 0.7618 0.0745 1.1345 0.0798 1.0335 0.2854 0.6036 0.0587 1.5132 0.049
Letter 0.9683 1.0545 0.9852 0.0303 1.0354 0.1084 0.8071 0.0246 1.2245 0.0416
Average 0.6966 0.1529 0.7444 0.0281 0.7626 0.0676 0.6461 0.0255 0.8203 0.0343

4.6. Statistical Analysis

The statistical analysis experiment involved using a nonparametric statistical analy-
sis technique to further validate the algorithms’ computational results. The Friedman’s
nonparametric test was conducted to draw a statistically verified meaningful conclusion
from the reported performances. The reports for the computed Friedman’s mean rank on
the four competing algorithms (the ISOSK-means, SOSK-means, SOS, and K-means) are
presented in Table 11. The results showed that the ISOSK-means had the best performance,
recording 1.13 as its minimum rank value and 2.00 as its maximum rank value, under
the DB index, with a 1.15 minimum rank value and 1.99 maximum rank value under the
CS index.

Table 11. Friedman mean rank for ISOSK-means, SOSK-means, SOS, and K-means.

DB Index CS Index
Datasets SOS K-Means SOSK-Means ISOSK-Means SOS K-Means SOSK-Means ISOSK-Means

Breast 4 2 2 2 3.13 3.45 2.03 1.4
Compound 2.9 3.95 1.98 1.18 2.34 4 1.91 1.75
Flame 3 4 1.83 1.18 3 4 1.5 1.5
Glass 2.42 4 1.94 1.64 2.68 4 1.6 1.6
Iris 3.3 3.48 1.98 1.25 2.85 4 1.98 1.18
Jain 3 4 1.88 1.13 3 4 1.5 1.5
Path-based 3.18 3.45 2.08 1.3 3.63 3.23 1.94 1.21
Spiral 2.8 4 1.9 1.3 3.18 3.58 1.79 1.46
Thyroid 3.4 3.53 1.9 1.18 2.03 4 1.99 1.99
Two-moons 2.61 4 2.14 1.25 2.63 4 2.16 1.21
Wine 3 3.7 2.17 1.13 3.09 3.63 2.14 1.15
Yeast 3 3.88 1.73 1.4 1.63 4 2.69 1.69

Appl. Sci. 2022, 12, 13019 30 of 34

For further verification of the specific significant differences among the competing
algorithms, a post hoc test on the Friedman mean-rank test results, using the Wilcoxon
signed-rank test, was conducted. The Wilcoxon signed-rank test presents a set of p values
which statistically measures whether there is a significant difference between the competing
algorithms at a significance level of 0.05.

Table 12 shows the significant differences between ISOSK-means and the other com-
peting algorithms under the DB and CS cluster validity indices. Out of 12 datasets, ISOSK-
means recorded about 92%, 100%, and 83% significant differences in its performance from
K-means, SOS, and SOSK-means under the DB index, and with a significant difference of
100%, 83% and 58%, respectively, under the CS index. This implied that the modification
made to the existing SOSK-means algorithm contributed to the performance enhancement
of the existing hybrid algorithm in solving cluster analysis problems.

Table 12. Wilcoxon signed-rank test for ISOSK-means, SOSK-means, SOS, and K-means.

Cluster Validity
Index DB Index CS Index

Datasets ISOSK-Means
vs. SOS

ISOSK-Means
vs. K-Means

ISOSK-Means
vs. SOSK-Means

ISOSK-Means
vs. SOS

ISOSK-Means
vs. K-Means

ISOSK-Means
vs. SOSK-Means

Breast 0.0000 1.0000 1.0000 0.0000 0.0000 0.0010
Compound 0.0000 0.0000 0.0000 0.0010 0.0000 0.0430

Flame 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000
Glass 0.0000 0.0000 0.0740 0.0000 0.0000 1.0000
Iris 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Jain 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Pathbased 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Spiral 0.0000 0.0000 0.0000 0.0000 0.0000 0.0040

Thyroid 0.0000 0.0000 0.0000 0.3170 0.0000 1.0000
Two moons 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Wine 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Yeast 0.0000 0.0000 0.0000 0.2760 0.0000 0.0000

5. Conclusions and Future Directions

In this study, an improved hybrid ISOSK-means metaheuristic algorithm is presented.
Several improvements were incorporated into each of the two classical algorithms combined
in the hybridization. In the initialization phase of the SOS algorithm, the population size
was constructed using 40 + 2g for a well-distributed initial population of solutions that
scaled well with the data size. This resulted in a convergence rate increase and lower
computational time. For performance upgrade, a three-part mutualism phase, with a
random weighted reflection coefficient, was also integrated into the SOS algorithm with
a random probability for determining whether an organism would be engaged in the
three-part mutualism. To improve the quality of the clustering solution, the benefit factor
was modified, by incorporating consideration for fitness value relativity with respect to the
maximum fitness value.

The misleading effects of outliers in the dataset were addressed by the improvement
incorporated into the K-means phase of the improved hybrid algorithm. A method for
detecting and excluding putative outliers during the centroid update phase of the classical
algorithm was added. The algorithm uses a point-to-centroid distance threshold for the
centroid update, instead of using the means of data points. The point-to-centroid distance
threshold uses the median absolute deviation, which is considered to be a robust measure of
statistical dispersion and is known to be more resilient to outliers. This ensured that outliers
were excluded from contributing to minimizing the mean square error in the K-means. This
resulted in a more compact cluster output.

The improved hybrid algorithm was evaluated on 42 datasets (18 synthetic and
24 real-life) with varying characteristics, such as being high dimensional datasets, low
dimensional datasets, synthetically generated datasets, image datasets, shape datasets, and
location datasets, with varied dataset sizes and clusters. The performance of the improved

Appl. Sci. 2022, 12, 13019 31 of 34

hybrid algorithm was compared with the standard hybrid and non-hybrid algorithms. The
performance was also compared with the two standard algorithms SOS and K-means on
12 real life datasets. A Friedman means rank test was applied to analyze the significant
difference between the ISOSK-means and the competing algorithms. A pairwise post hoc
Wilcoxon signed-rank sum test was also performed to highlight the performance of the
ISOSK-means in comparison with the competing algorithms. The ISOSK-means algorithm
outperformed the three algorithms with lower computational time and higher convergence
rate, as reflected in the convergence curve for the competing algorithms.

The ISOSK-means clustering results were compared with four non-hybrid metaheuris-
tic algorithms and three hybrid metaheuristic algorithms from the literature. The ISOSK-
means had fair competitiveness, in terms of clustering performance measured using the DB
validity index, on 42 datasets. The ISOSK-means recorded the lowest standard deviation
score for most datasets, compared with the competing algorithms.

For future research, the K-means phase of the hybridized algorithm could be improved
to efficiently manage large datasets and, thereby, reduce the algorithm’s computational
complexity. Other suggested improvements to the SOS algorithm from literature could also
be incorporated into the algorithm, or be used as a replacement to the current SOS phase of
the ISOSK-means, for further performance enhancement, while reducing the algorithm run
time. The real-life application of the proposed improved hybrid algorithm is another area
of research that could be exploited. Using other cluster validity indices in implementing
this algorithm would also be an interesting area for future research.

Author Contributions: All authors contributed to the conception and design of the research work.
Material preparation, experiments, and analysis were performed by A.M.I. and A.E.E. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interest or
personal relationship that could have appeared to influence the work reported in this article.

References
1. José-García, A.; Gómez-Flores, W. Automatic clustering using nature-inspired metaheuristics: A survey. Appl. Soft Comput. 2016,

41, 192–213. [CrossRef]
2. Ikotun, A.M.; Almutari, M.S.; Ezugwu, A.E. K-Means-Based Nature-Inspired Metaheuristic Algorithms for Automatic Data

Clustering Problems: Recent Advances and Future Directions. Appl. Sci. 2021, 11, 11246. [CrossRef]
3. Olukanmi, P.O.; Twala, B. K-means-sharp: Modified centroid update for outlier-robust k-means clustering. In Proceedings of the

2017 Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-RobMech),
Bloemfontein, South Africa, 29 November–1 December 2017; pp. 14–19. [CrossRef]

4. Ikotun, A.M.; Ezugwu, A.E.; Abualigah, L.; Abuhaija, B.; Heming, J. K-means Clustering Algorithms: A Comprehensive Review,
Variants Analysis, and Advances in the Era of Big Data. Inf. Sci. 2022, 622, 178–210. [CrossRef]

5. Knorr, E.M.; Ng, R.T.; Tucakov, V. Distance-based outliers: Algorithms and applications. VLDB J. 2000, 8, 237–253. [CrossRef]
6. Chawla, S.; Gionis, A. k-means–: A unified approach to clustering and outlier detection. In Proceedings of the 2013 SIAM

International Conference on Data Mining, Austin, TX, USA, 2–4 May 2013; pp. 189–197. [CrossRef]
7. Olukanmi, P.; Nelwamondo, F.; Marwala, T.; Twala, B. Automatic detection of outliers and the number of clusters in k-means

clustering via Chebyshev-type inequalities. Neural Comput. Appl. 2022, 34, 5939–5958. [CrossRef]
8. Cheng, M.-Y.; Prayogo, D. Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Comput. Struct. 2014,

139, 98–112. [CrossRef]
9. Chakraborty, S.; Nama, S.; Saha, A.K. An improved symbiotic organisms search algorithm for higher dimensional optimization

problems. Knowl.-Based Syst. 2021, 236, 107779. [CrossRef]
10. Panda, A.; Pani, S. A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained

optimization problems. Appl. Soft Comput. 2016, 46, 344–360. [CrossRef]

http://doi.org/10.1016/j.asoc.2015.12.001
http://doi.org/10.3390/app112311246
http://doi.org/10.1109/RoboMech.2017.8261116
http://doi.org/10.1016/j.ins.2022.11.139
http://doi.org/10.1007/s007780050006
http://doi.org/10.1137/1.9781611972832.21
http://doi.org/10.1007/s00521-021-06689-x
http://doi.org/10.1016/j.compstruc.2014.03.007
http://doi.org/10.1016/j.knosys.2021.107779
http://doi.org/10.1016/j.asoc.2016.04.030

Appl. Sci. 2022, 12, 13019 32 of 34

11. Cheng, M.-Y.; Prayogo, D.; Tran, D.-H. Optimizing Multiple-Resources Leveling in Multiple Projects Using Discrete Symbiotic
Organisms Search. J. Comput. Civ. Eng. 2016, 30, 04015036. [CrossRef]

12. Kawambwa, S.; Hamisi, N.; Mafole, P.; Kundaeli, H. A cloud model based symbiotic organism search algorithm for DG allocation
in radial distribution network. Evol. Intell. 2021, 15, 545–562. [CrossRef]

13. Liu, D.; Li, H.; Wang, H.; Qi, C.; Rose, T. Discrete symbiotic organisms search method for solving large-scale time-cost trade-off
problem in construction scheduling. Expert Syst. Appl. 2020, 148, 113230. [CrossRef]

14. Cheng, M.-Y.; Cao, M.-T.; Herianto, J.G. Symbiotic organisms search-optimized deep learning technique for mapping construction
cash flow considering complexity of project. Chaos Solitons Fractals 2020, 138, 109869. [CrossRef]

15. Abdullahi, M.; Ngadi, A.; Abdulhamid, S.M. Symbiotic organism search optimization based task scheduling in cloud computing
environment. Future Gener. Comput. Syst. 2016, 56, 640–650. [CrossRef]

16. Ezugwu, A.E.-S.; Adewumi, A.O.; Frîncu, M.E. Simulated annealing based symbiotic organisms search optimization algorithm
for traveling salesman problem. Expert Syst. Appl. 2017, 77, 189–210. [CrossRef]

17. Tejani, G.; Savsani, V.J.; Patel, V. Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization.
J. Comput. Des. Eng. 2016, 3, 226–249. [CrossRef]

18. Abdullahi, M.; Ngadi, A. Hybrid symbiotic organisms search optimization algorithm for scheduling of tasks on cloud computing
environment. PLoS ONE 2016, 11, e0158229. [CrossRef]

19. Mohammadzadeh, H.; Gharehchopogh, F.S. Feature selection with binary symbiotic organisms search algorithm for email spam
detection. Int. J. Inf. Technol. Decis. Mak. 2021, 20, 469–515. [CrossRef]

20. Boushaki, S.I.; Bendjeghaba, O.; Kamel, N. Biomedical document clustering based on accelerated symbiotic organisms search
algorithm. Int. J. Swarm Intell. Res. 2021, 12, 169–185. [CrossRef]

21. Zhou, Y.; Wu, H.; Luo, Q.; Abdel-Baset, M. Automatic data clustering using nature-inspired symbiotic organism search algorithm.
Knowl.-Based Syst. 2019, 163, 546–557. [CrossRef]

22. Chen, J.; Zhang, Y.; Wu, L.; You, T.; Ning, X. An adaptive clustering-based algorithm for automatic path planning of heterogeneous
UAVs. IEEE Trans. Intell. Transp. Syst. 2021, 23, 16842–16853. [CrossRef]

23. Zainal, N.A.; Zamli, K.Z.; Din, F. A modified symbiotic organism search algorithm with lévy flight for software module clustering
problem. In Proceedings of the ECCE2019—5th International Conference on Electrical, Control & Computer Engineering, Kuantan,
Malaysia, 29 July 2019; pp. 219–229. [CrossRef]

24. Rajah, V.; Ezugwu, A.E. Hybrid Symbiotic Organism Search algorithms for Automatic Data Clustering. In Proceedings of the
2020 Conference on Information Communications Technology and Society (ICTAS), Durban, South Africa, 11–12 March 2020;
pp. 1–9. [CrossRef]

25. Yang, C.-L.; Sutrisno, H. A clustering-based symbiotic organisms search algorithm for high-dimensional optimization problems.
Appl. Soft Comput. 2020, 97, 106722. [CrossRef]

26. Ikotun, A.M.; Ezugwu, A.E. Boosting k-means clustering with symbiotic organisms search for automatic clustering problems.
PLoS ONE 2022, 17, e0272861. [CrossRef] [PubMed]

27. Nama, S.; Saha, A.K.; Ghosh, S. Improved symbiotic organisms search algorithm for solving unconstrained function optimization.
Decis. Sci. Lett. 2016, 5, 361–380. [CrossRef]

28. Nama, S.; Saha, A.K.; Sharma, S. A novel improved symbiotic organisms search algorithm. Comput. Intell. 2020, 38, 947–977.
[CrossRef]

29. Secui, D.C. A modified Symbiotic Organisms Search algorithm for large scale economic dispatch problem with valve-point effects.
Energy 2016, 113, 366–384. [CrossRef]

30. Nama, S.; Saha, A.K.; Ghosh, S. A hybrid symbiosis organisms search algorithm and its application to real world problems.
Memetic Comput. 2016, 9, 261–280. [CrossRef]

31. Ezugwu, A.E.-S.; Adewumi, A.O. Discrete symbiotic organisms search algorithm for travelling salesman problem. Expert Syst.
Appl. 2017, 87, 70–78. [CrossRef]

32. Ezugwu, A.E.; Adeleke, O.J.; Viriri, S. Symbiotic organisms search algorithm for the unrelated parallel machines scheduling with
sequence-dependent setup times. PLoS ONE 2018, 13, e0200030. [CrossRef]

33. Tsai, H.-C. A corrected and improved symbiotic organisms search algorithm for continuous optimization. Expert Syst. Appl. 2021,
177, 114981. [CrossRef]

34. Kumar, S.; Tejani, G.G.; Mirjalili, S. Modified symbiotic organisms search for structural optimization. Eng. Comput. 2018, 35,
1269–1296. [CrossRef]

35. Miao, F.; Zhou, Y.; Luo, Q. A modified symbiotic organisms search algorithm for unmanned combat aerial vehicle route planning
problem. J. Oper. Res. Soc. 2018, 70, 21–52. [CrossRef]

36. Çelik, E. A powerful variant of symbiotic organisms search algorithm for global optimization. Eng. Appl. Artif. Intell. 2019, 87,
103294. [CrossRef]

37. Do, D.T.; Lee, J. A modified symbiotic organisms search (mSOS) algorithm for optimization of pin-jointed structures. Appl. Soft
Comput. 2017, 61, 683–699. [CrossRef]

38. Nama, S.; Saha, A.K.; Sharma, S. Performance up-gradation of Symbiotic Organisms Search by Backtracking Search Algorithm.
J. Ambient Intell. Humaniz. Comput. 2021, 13, 5505–5546. [CrossRef] [PubMed]

http://doi.org/10.1061/(ASCE)CP.1943-5487.0000512
http://doi.org/10.1007/s12065-020-00529-y
http://doi.org/10.1016/j.eswa.2020.113230
http://doi.org/10.1016/j.chaos.2020.109869
http://doi.org/10.1016/j.future.2015.08.006
http://doi.org/10.1016/j.eswa.2017.01.053
http://doi.org/10.1016/j.jcde.2016.02.003
http://doi.org/10.1371/JOURNAL.PONE.0158229
http://doi.org/10.1142/S0219622020500546
http://doi.org/10.4018/IJSIR.2021100109
http://doi.org/10.1016/j.knosys.2018.09.013
http://doi.org/10.1109/TITS.2021.3131473
http://doi.org/10.1007/978-981-15-2317-5_19
http://doi.org/10.1109/ICTAS47918.2020.234001
http://doi.org/10.1016/j.asoc.2020.106722
http://doi.org/10.1371/journal.pone.0272861
http://www.ncbi.nlm.nih.gov/pubmed/35951672
http://doi.org/10.5267/j.dsl.2016.2.004
http://doi.org/10.1111/coin.12290
http://doi.org/10.1016/j.energy.2016.07.056
http://doi.org/10.1007/s12293-016-0194-1
http://doi.org/10.1016/j.eswa.2017.06.007
http://doi.org/10.1371/journal.pone.0200030
http://doi.org/10.1016/j.eswa.2021.114981
http://doi.org/10.1007/s00366-018-0662-y
http://doi.org/10.1080/01605682.2017.1418151
http://doi.org/10.1016/j.engappai.2019.103294
http://doi.org/10.1016/j.asoc.2017.08.002
http://doi.org/10.1007/s12652-021-03183-z
http://www.ncbi.nlm.nih.gov/pubmed/33868507

Appl. Sci. 2022, 12, 13019 33 of 34

39. Olukanmi, P.O.; Nelwamondo, F.; Marwala, T. k-Means-Lite: Real time clustering for large datasets. In Proceedings of the 2018 5th
International Conference on Soft Computing & Machine Intelligence (ISCMI), Nairobi, Kenya, 21–22 November 2018; pp. 54–59.
[CrossRef]

40. Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, 2, 224–227. [CrossRef]
41. Chou, C.-H.; Su, M.-C.; Lai, E. A new cluster validity measure and its application to image compression. Pattern Anal. Appl. 2004,

7, 205–220. [CrossRef]
42. Arbelaitz, O.; Gurrutxaga, I.; Muguerza, J.; Pérez, J.M.; Perona, I. An extensive comparative study of cluster validity indices.

Pattern Recognit. 2013, 46, 243–256. [CrossRef]
43. Chouikhi, H.; Charrad, M.; Ghazzali, N. A comparison study of clustering validity indices; A comparison study of clustering

validity indices. In Proceedings of the 2015 Global Summit on Computer & Information Technology (GSCIT), Sousse, Tunisia,
11–13 June 2015. [CrossRef]

44. Xia, S.; Peng, D.; Meng, D.; Zhang, C.; Wang, G.; Giem, E.; Wei, W.; Chen, Z. Fast adaptive clustering with no bounds. IEEE Trans.
Pattern Anal. Mach. Intell. 2020, 44, 87–99. [CrossRef]

45. Goldanloo, M.J.; Gharehchopogh, F.S. A hybrid OBL-based firefly algorithm with symbiotic organisms search algorithm for
solving continuous optimization problems. J. Supercomput. 2021, 78, 3998–4031. [CrossRef]

46. Nguyen-Van, S.; Nguyen, K.T.; Luong, V.H.; Lee, S.; Lieu, Q.X. A novel hybrid differential evolution and symbiotic organisms
search algorithm for size and shape optimization of truss structures under multiple frequency constraints. Expert Syst. Appl. 2021,
184, 115534. [CrossRef]

47. Huo, L.; Zhu, J.; Li, Z.; Ma, M. A Hybrid Differential Symbiotic Organisms Search Algorithm for UAV Path Planning. Sensors
2021, 21, 3037. [CrossRef] [PubMed]

48. Farnad, B.; Jafarian, A.; Baleanu, D. A new hybrid algorithm for continuous optimization problem. Appl. Math. Model. 2018, 55,
652–673. [CrossRef]

49. Gharehchopogh, F.S.; Shayanfar, H.; Gholizadeh, H. A comprehensive survey on symbiotic organisms search algorithms. Artif.
Intell. Rev. 2019, 53, 2265–2312. [CrossRef]

50. Ghezelbash, R.; Maghsoudi, A.; Shamekhi, M.; Pradhan, B.; Daviran, M. Genetic algorithm to optimize the SVM and K-means
algorithms for mapping of mineral prospectivity. Neural Comput. Appl. 2022, 1–15. [CrossRef]

51. Yastrebov, A.; Kubuś, Ł.; Poczeta, K. Multiobjective evolutionary algorithm IDEA and k-means clustering for modeling multidi-
menional medical data based on fuzzy cognitive maps. Nat. Comput. 2022, 1–11. [CrossRef]

52. Zhang, H.; Peng, Q. PSO and K-means-based semantic segmentation toward agricultural products. Futur. Gener. Comput. Syst.
2021, 126, 82–87. [CrossRef]

53. Li, Y.; Chu, X.; Tian, D.; Feng, J.; Mu, W. Customer segmentation using K-means clustering and the adaptive particle swarm
optimization algorithm. Appl. Soft Comput. 2021, 113, 107924. [CrossRef]

54. Olukanmi, P.O.; Nelwamondo, F.; Marwala, T. k-Means-MIND: An Efficient Alternative to Repetitive k-Means Runs. In
Proceedings of the 2020 7th International Conference on Soft Computing & Machine Intelligence (ISCMI), Stockholm, Sweden,
14–15 November 2020; pp. 172–176. [CrossRef]

55. Jain, A.K. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2009, 31, 651–666. [CrossRef]
56. Das, S.; Suganthan, P.N. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 2011, 15, 4–31.

[CrossRef]
57. Kwak, S.G.; Kim, J.H. Central limit theorem: The cornerstone of modern statistics. Korean J. Anesthesiol. 2017, 70, 2, 144. [CrossRef]
58. Murugavel, P.; Punithavalli, M. Performance Evaluation of Density-Based Outlier Detection on High Dimensional Data. Int. J.

Comput. Sci. Eng. 2013, 5, 62–67.
59. Rousseeuw, P.J.; Croux, C. Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 1993, 88, 1273–1283. [CrossRef]
60. Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute

deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [CrossRef]
61. Ezugwu, A.E. Nature-inspired metaheuristic techniques for automatic clustering: A survey and performance study. SN Appl. Sci.

2020, 2, 273. [CrossRef]
62. Das, S.; Konar, A. Automatic image pixel clustering with an improved differential evolution. Appl. Soft Comput. 2009, 9, 226–236.

[CrossRef]
63. Bandyopadhyay, S.; Maulik, U. Nonparametric genetic clustering: Comparison of validity indices. IEEE Trans. Syst. Man Cybern.

Part C Appl. Rev. 2001, 31, 120–125. [CrossRef]
64. Zhou, X.; Gu, J.; Shen, S.; Ma, H.; Miao, F.; Zhang, H.; Gong, H. An automatic K-Means clustering algorithm of GPS data

combining a novel niche genetic algorithm with noise and density. ISPRS Int. J. Geo-Inf. 2017, 6, 392. [CrossRef]
65. Bandyopadhyay, S.; Maulik, U. Genetic clustering for automatic evolution of clusters and application to image classification.

Pattern Recognit. 2002, 35, 1197–1208. [CrossRef]
66. Lai, C.-C. A novel clustering approach using hierarchical genetic algorithms. Intell. Autom. Soft Comput. 2005, 11, 143–153.

[CrossRef]
67. Lin, H.-J.; Yang, F.-W.; Kao, Y.-T. An Efficient GA-based Clustering Technique. J. Appl. Sci. Eng. 2005, 8, 113–122.
68. Liu, R.; Zhu, B.; Bian, R.; Ma, Y.; Jiao, L. Dynamic local search based immune automatic clustering algorithm and its applications.

Appl. Soft Comput. 2014, 27, 250–268. [CrossRef]

http://doi.org/10.1109/ISCMI.2018.8703210
http://doi.org/10.1109/TPAMI.1979.4766909
http://doi.org/10.1007/s10044-004-0218-1
http://doi.org/10.1016/j.patcog.2012.07.021
http://doi.org/10.1109/GSCIT.2015.7353330
http://doi.org/10.1109/TPAMI.2020.3008694
http://doi.org/10.1007/s11227-021-04015-9
http://doi.org/10.1016/j.eswa.2021.115534
http://doi.org/10.3390/s21093037
http://www.ncbi.nlm.nih.gov/pubmed/33926027
http://doi.org/10.1016/j.apm.2017.10.001
http://doi.org/10.1007/s10462-019-09733-4
http://doi.org/10.1007/s00521-022-07766-5
http://doi.org/10.1007/s11047-022-09895-1
http://doi.org/10.1016/j.future.2021.06.059
http://doi.org/10.1016/j.asoc.2021.107924
http://doi.org/10.1109/ISCMI51676.2020.9311598
http://doi.org/10.1016/j.patrec.2009.09.011
http://doi.org/10.1109/TEVC.2010.2059031
http://doi.org/10.4097/kjae.2017.70.2.144
http://doi.org/10.1080/01621459.1993.10476408
http://doi.org/10.1016/j.jesp.2013.03.013
http://doi.org/10.1007/s42452-020-2073-0
http://doi.org/10.1016/j.asoc.2007.12.008
http://doi.org/10.1109/5326.923275
http://doi.org/10.3390/ijgi6120392
http://doi.org/10.1016/S0031-3203(01)00108-X
http://doi.org/10.1080/10798587.2005.10642900
http://doi.org/10.1016/j.asoc.2014.11.026

Appl. Sci. 2022, 12, 13019 34 of 34

69. Kundu, D.; Suresh, K.; Ghosh, S.; Das, S.; Abraham, A.; Badr, Y. Automatic Clustering Using a Synergy of Genetic Algo-
rithm and Multi-objective Differential Evolution. In International Conference on Hybrid Artificial Intelligence Systems; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 177–186. [CrossRef]

70. Kumar, V.; Chhabra, J.K.; Kumar, D. Automatic Data Clustering Using Parameter Adaptive Harmony Search Algorithm and Its
Application to Image Segmentation. J. Intell. Syst. 2016, 25, 595–610. [CrossRef]

71. Anari, B.; Torkestani, J.A.; Rahmani, A. Automatic data clustering using continuous action-set learning automata and its
application in segmentation of images. Appl. Soft Comput. 2017, 51, 253–265. [CrossRef]

72. Kuo, R.; Huang, Y.; Lin, C.-C.; Wu, Y.-H.; Zulvia, F.E. Automatic kernel clustering with bee colony optimization algorithm. Inf.
Sci. 2014, 283, 107–122. [CrossRef]

73. Liu, Y.; Wu, X.; Shen, Y. Automatic clustering using genetic algorithms. Appl. Math. Comput. 2011, 218, 1267–1279. [CrossRef]
74. Chowdhury, A.; Das, S. Automatic shape independent clustering inspired by ant dynamics. Swarm Evol. Comput. 2011, 3, 33–45.

[CrossRef]
75. Kumar, V.; Chhabra, J.K.; Kumar, D. Automatic cluster evolution using gravitational search algorithm and its application on

image segmentation. Eng. Appl. Artif. Intell. 2014, 29, 93–103. [CrossRef]
76. Sheng, W.; Chen, S.; Sheng, M.; Xiao, G.; Mao, J.; Zheng, Y. Adaptive multisubpopulation competition and multiniche crowding-

based memetic algorithm for automatic data clustering. IEEE Trans. Evol. Comput. 2016, 20, 838–858. [CrossRef]
77. Das, S.; Chowdhury, A.; Abraham, A. A Bacterial Evolutionary Algorithm for Automatic Data Clustering. In Proceedings of the

2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 8–21 May 2009.
78. Talbi, E.-G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009.
79. Chowdhury, A.; Bose, S.; Das, S. Automatic Clustering Based on Invasive Weed Optimization Algorithm. In Proceedings of the

International Conference on Swarm, Evolutionary, and Memetic Computing 2011, Visakhapatnam, India, 19–21 December 2011;
pp. 105–112. [CrossRef]

80. Zhang, X.; Li, J.; Yu, H. Local density adaptive similarity measurement for spectral clustering. Pattern Recognit. Lett. 2011, 32,
352–358. [CrossRef]

81. Agbaje, M.B.; Ezugwu, A.E.; Els, R. Automatic data clustering using hybrid firefly particle swarm optimization algorithm. IEEE
Access 2019, 7, 184963–184984. [CrossRef]

http://doi.org/10.1007/978-3-642-02319-4_21
http://doi.org/10.1515/jisys-2015-0004
http://doi.org/10.1016/j.asoc.2016.12.007
http://doi.org/10.1016/j.ins.2014.06.019
http://doi.org/10.1016/j.amc.2011.06.007
http://doi.org/10.1016/j.swevo.2011.11.001
http://doi.org/10.1016/j.engappai.2013.11.008
http://doi.org/10.1109/TEVC.2016.2524555
http://doi.org/10.1007/978-3-642-27242-4_13
http://doi.org/10.1016/j.patrec.2010.09.014
http://doi.org/10.1109/ACCESS.2019.2960925

	Introduction
	Related Work
	K-Means Algorithm
	SOS Algorithm
	Description of Data Clustering Problem
	Cluster Validity Indices
	Hybrid SOSK-Means

	Modified SOSK-Means
	Modification in the SOS Phase
	Modification in the K-Means Phase

	Performance Evaluation of Improved SOSK-Means
	Datasets
	The Synthetic Datasets
	The Real-Life Datasets

	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Statistical Analysis

	Conclusions and Future Directions
	References

