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Abstract: High dynamic range (HDR) image data hiding and encryption has attracted much interest in
recent years due the benefits of providing high quality realistic images and versatile applications, such
as copyright protection, data integrity, and covert communication. In this paper, we propose a novel
constructive and camouflaged adaptive data hiding and image encryption scheme for HDR images.
Our algorithm disguises hidden messages when converting an original OpenEXR format to the
RGBE encoding, which contains the Red, Green, and Blue color channels and an exponent E channel.
During the conversion process, we determine an optimal base for each pixel by considering the user’s
demands and the exponent E channel information to achieve adaptive message concealment. To
prevent inappropriate access to the stego image, we perform the bit-level permutation and confusion
using a 2D Sine Logistic modulation map with hyperchaotic behavior and a random permutation
scheme with the time complexity of O(N). To the best of our knowledge, our algorithm is the first in
HDR data hiding literature able to predict the image distortion and satisfy a user’s request for the
embedding capacity. Our algorithm offers 18% to 32% larger embedding rate than that provided by
the current state-of-the-art works without degrading the quality of the stego image. Experimental
results confirm that our scheme provides high security superior to the competitors.

Keywords: high dynamic range image; adaptive data hiding; image encryption; prediction;
security evaluation

1. Introduction

High dynamic range (HDR) images [1,2] have attracted much interest in recent years
because they offer a more dynamic range, allowing displays to show images in a clearer
way, especially in the details of the highlights and shadows. Highlights can be shown
brighter and truly dark, and deep shadows can be displayed. Thus, the original image
can be shown more completely and faithfully, closer to what the human eye can see and
perceive. Dynamic range is the ratio between the brightest and darkest values that a display
can show. Using the floating-point number to store crucial information, HDR images can
faithfully represent a large range of luminance and colors, thereby offering great potential
to become the leading image standard.

There are three main HDR image encoding formats: RGBE [3], LogLuv [4], and
OpenEXR [5]. Any two formats can be converted in either a forward or backward manner.
Tone-mapping [1,2,6], an essential step for HDR images, consists of adjusting the tonal
values of an image with a high dynamic range so that it can be viewed on digital displays.
Tone-mapping operator, TMO, scales down the dynamic range while attempting to preserve
the appearance of the original image. It is thus applied to HDR images to reveal their
full details and give them a dynamic twist and realistic look, providing the best image
presentation for visualizing an HDR image.

Data hiding [7], also known as steganography, is a technique developed to embed
secret messages into digital media. The camouflaged media looks like the original harm-
less one, thus arousing no suspicion among malicious eavesdroppers. The media before
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message embedding is called a cover, and the media after the message concealment is
referred to as a stego. In the era of internet transmission and cloud computing, data hiding
provides a method for communicating secretly. While time-varying media, such as video,
can be used as a carrier [8], static images are the most popular because they are widely
transmitted over the Internet. Data hiding schemes using conventional low dynamic range
(LDR) images, such as binary, grayscale, color, or palette images, have been presented in
the extant literature [7,9,10].

Despite HDR images having the potential to become a leading standard, limited
numbers of HDR data hiding works have been proposed in the literature. Similar to LDR
image data hiding, the number of bits that an HDR image can carry is called the embedding
capacity (EC). Taking the image resolutions into consideration, the embedding rate (ER)
represents the number of bits concealed in a pixel, also denoted as bits per pixel (bpp). One
of the goals pursued by a data hiding algorithm is providing an embedding rate that is large
enough for practical applications. Cheng and Wang [11] proposed an adaptive data hiding
and authentication algorithm for HDR RGBE images. They provided an embedding rate in
the range of 5.13 to 9.69 bpp. The peak signal-to-noise ratios (PSNR) of the tone-mapped
stego images are only slightly greater than the 30 dB. Li et al. [12] adopted HDR images
with a 48-bit TIFF format and improved the embedding rate of Cheng and Wang’s scheme.
Their algorithm offered an average embedding rate of 26 bpp, with the PSNR of the tone-
mapped stego images between 30.47 and 37.00 dB. Chang et al. [13], Wang et al. [14], and
Yu et al. [15] took advantage of modifying a homogeneity index to achieve distortion-free
data hiding in HDR RGBE images. However, the penalty of this approach limited the
embedding rate to only 0.127–0.145 bpp. Lin et al. [16] presented a novel data hiding
algorithm (DHOB) and an aggressive bit encoding and decomposition (ABED) scheme for
OpenEXR images. Depending on the parameters, the embedding rate was between 2.433
and 20.002 bpp. He et al. [17] and Gao et al. [18] employed prediction error expansion to
embed a secret message in every individual Red, Green, and Blue color channel. Their
algorithms provided embedding rates ranging from 1.202 to 2.85 bpp. Tsai et al. [19] applied
the multiple-base notational system and homogeneity index modification and proposed
an authentication algorithm for RGBE images. With the aid of the distortion tolerance, the
embedding rate reached 2.27 bpp. Finally, Tsai et al. [20] extended the multi-MSB prediction
and Huffman coding developed for LDR image and proposed reversible data hiding in
encrypted RGBE images. Their scheme offered an embedding rate of 6.19–7.03 bpp.

Adaptive message embedding is an effective way for hiding data in LDR or HDR
images. Since an HDR image can represent a large range of luminance and human eyes
are not sensitive to the dark luminance, the darker pixels are better candidates than the
brighter ones to carry more messages. Cheng and Wang’s algorithm [11] classified pixels of
RGBE images into flat or boundary areas to embed different quantities of secret messages.
Yu et al. [15] used the homogeneous representations inherent in the RGBE pixels to conceal
different numbers of messages. Gao et al. [18] employed a two-level pixel prediction
mechanism in complex regions of an RGBE image to reduce the distortion caused by
message embedding. Targeting the OpenEXR images, Lin et al. [16] divided pixels into three
categories based on the luminance and embedded more messages in low luminance pixels.

In the above works, secret messages were embedded by modifying pixels in a cover
HDR image in order to generate a stego pixel, where the cover image and the stego image
share the same image format. Data hiding using pixel modification inevitably produces
interference with the natural features of a cover image, even though the modification is
minor and even subtle. Consequently, the more that the information is concealed, the
greater the image reveals distortion, which makes it difficult for these classical data hiding
schemes to resist the attack of steganalysis, which intends to detect any secret messages
hidden in an innocuous image. To resolve the potential steganalytic risk, a new data hiding
scheme has been designed, which conceals secret messages by directly constructing a stego
image rather than modifying the existing covers. This approach is termed “constructive
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data hiding” or “constructive steganography”. Technical algorithms developed to construct
a stego image include texture synthesis [21] and color transfer [22], among others.

Image encryption [23,24] is an effective way for preserving privacy and maintaining
security. While a number of low dynamic range (LDR) image encryption schemes have
been presented [25,26], and unfortunately, research works on HDR encryption are limited.
Yan et al. [27] used the elementary cellular automata (ECA) as an encryption tool to cipher
RGBE images. Lin et al. [28] used a logistic map to generate a pseudo-random number
sequence in order to encrypt an HDR image with the LogLuv format. Chen and Chang [29]
encrypted the bits in the exponent field in OpenEXR images and obtain good encryption
performance. Chen and Yan [30] proposed an encryption and authentication scheme for
OpenEXR images; they made use of the torus automorphism as the permutation function
and Vernam cipher as the stream cipher, where the plaintext is combined with a pseudo-
random stream of data to generate the ciphertext using the Boolean “exclusive or” (XOR)
function. Finally, Tsai et al. [20] reserved room for data hiding in the RGBE image, and
then encrypted the image using a series of random binary digits. Their scheme is one of
few algorithms in the extant literature that can conceal a secret message and encrypt an
HDR image.

Security is perhaps the most important issue for image encryption [31,32]. However,
the current state-of-the-art HDR encryption algorithms fail to analyze the security compre-
hensively. Some algorithms only present visual perception metric without further analysis,
for example, Lin et al. [28] and Tsai et al. [20]. Apart from visual perception metric, some
reported extra metrics including histograms and pixel correlation/key security results; for
example, Yan et al. [27], Chen and Change [29], and Chen and Yan [30], which represent
the most comprehensive work for security analysis. To the best of our knowledge, entropy
analysis and image sensitivity analysis have never been presented by these HDR encryption
algorithms in the extant literature. Without thorough security analysis, it remains unclear
whether the image cipher actually does have a high security level able to resist malicious
attacks, such as entropy attacks and differential attack [23,24].

This paper proposes a novel constructive data hiding and chaotic sequence-based
bit-level image encryption algorithm. Our scheme offers six significant features. First,
we conceal secret messages when converting an HDR image from the OpenEXR format
into the RGBE one. From the steganalysis point of view, our scheme is able to resist
the steganalytic attack because we construct a stego image rather than generate it from
the existing cover image. Second, we adaptively embed a secret message according to
the distribution of the exponent channel shared by the Red, Green, and Blue channels.
The adaptivity enables our scheme to conceal more secret messages in pixels with low
luminance, where their exponent value is smaller than the median of the whole HDR image.
Third, we exploit adaptive message embedding to satisfy a user’s request. A user can
request a large embedding rate in exchange for endurable image quality. Alternatively, an
end user can exchange a limited embedding rate for a high quality stego image. Fourth,
we introduce a chaotic sequence-based bit-level image encryption algorithm which not
only protects the image contents, but also secures the hidden messages, thereby reducing
the probability of any inappropriate use of the stego HDR RGBE image produced. We
adopt a 2D Sine Logistic modulation map (2D-SLMM) [33] to generate pseudo-random
sequences. The map holds two large positive Lyapunov exponent (LE) values and two
large Kolmogorov entropy values, thereby providing better hyperchaotic behavior, more
complexity, and unpredictability. Fifth, we apply the random permutation technique to our
scheme in a bit-level permutation mechanism. As evidence from the experimental results,
the bit-level permutation significantly increases the security of HDR image encryption. The
final feature of our scheme is that we present six metrics to thoroughly and comprehensively
evaluate the security of the cipher image.

The main contributions of our work can be summarized as follows:

• We present a novel adaptive data hiding algorithm for an HDR image. Secret mes-
sages are concealed during the HDR format conversion, signifying that the cover
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and stego image are in different image formats, avoiding the vulnerability caused by
conventional data hiding utilizing the cover image modification approach.

• Our algorithm adaptively embeds secret messages. More secret messages are conveyed
in those pixels containing low luminance appearing to be dark pixels, while fewer
secret messages are injected into pixels with high luminance which appear to be
brighter; this coincides with the phenomena that human eyes are less sensitive to
the dark pixels and more sensitive to noticing subtle changes encountered in the
brighter area.

• Our data hiding scheme provides the ability to satisfy the request for the embedding
rate proposed by the end user. In addition, image distortion due to the message
concealment can be predicted prior to real message embedding. Thanks to the optimal
base mechanism we introduce, which not only satisfies users’ demand, but also derives
the minimal mean squared error to reduce the image distortion as small as possible. To
the best of our knowledge, no algorithm in the HDR data hiding literature can comply
with the embedding rate requested by the end user. In addition, there is no algorithm
in the HDR imaging literature which can predict the distortion in terms of the mean
squared error caused by the message concealment.

• We present a secure image encryption scheme, which adopts a 2D-SLMM to generate
a pseudo-random sequence with better hyperchaotic behavior. Pixels are ciphered
through the bit-level permutation using the random permutation algorithm with the
time complexity of O(N). As a result, our scheme can completely shuffle the whole
bits aligned by the Red, Green, Blue and Exponent channel in an HDR image.

• We present a thorough and comprehensive security analysis for stego HDR RGBE
images. Our scheme offers 18% to 32% more embedding rate than that provided by
the current state-of-the-art works without impairing the quality of stego image. In
addition, our scheme provides high image encryption security, surpassing those of
our competitors. To the best of our knowledge, our scheme is the first that can report
the security of HDR cipher image from six aspects: visual perception, histogram,
correlation, entropy, image sensitivity, and key security.

The rest of this paper is organized as follows: Section 2 presents our proposed methods
in detail. The experiments and analysis are given in Section 3. Finally, Section 4 describes
conclusions and future work.

2. Our Proposed Methods

This section details our proposed algorithm for adaptive data hiding and image
encryption for HDR images. Figure 1 exhibits the flowchart of our algorithm. In the
sender part, two main processes are concurrent image conversion and adaptive message
embedding (CICAME) and image encryption, while in the recipient part, there are image
decryption and message extraction processes. Here, we briefly highlight these processes
and will detail them in the following subsections.

Figure 1. The flowchart of our proposed method consisting of message embedding and
extraction processes.
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To embed a secret message, the sender inputs the demanded target embedding rate
(ERtar), secret message {S}, and a source HDR OpenEXR image (IEXR). The first part of
message embedding is converting IEXR into a new HDR image encoded by the RGBE
format. During the conversion, we seamlessly embed secret message {S} into each pixel to
generate the stego image (IS). Next, we encrypt IS using the encryption key (ke) to protect
the image contents and secret hidden message. The resultant stego encrypted image (ISE)
is then delivered to the recipient through a public channel, such as the Internet. In this way,
the secret message is camouflaged during the format conversion and image encryption.

Image decryption and message extraction are conducted on the recipient side. The
receiver first inputs the stego encrypted HDR RGBE image (ISE). It is then deciphered by
the aid of the decryption key (kd) provided prior by the sender. The image decryption
produces the stego HDR RGBE image (IS) which contains a hidden message. Finally, a
secret message {S} is extracted from IS using the extraction key (kx), thereby completing
the message extraction process. The following subsections detail each step in the message
embedding and extraction processes.

2.1. Concurrent Image Conversion and Adaptive Message Embedding

In this process, we convert the input HDR image, IEXR, encoded by the OpenEXR
format into the HDR image encoded by the RGBE format. Figure 2 shows the 48-bit/pixel
OpenEXR and 32-bit/pixel RGBE formats. A pixel in an OpenEXR image is represented by
a floating-point vector, X = (XR, XG, XB). The floating-point value in the corresponding
Red, Green, and Blue channels can be converted from 1-bit sign, 5-bit exponent, and 10-bit
mantissa fields. In contrast, a pixel in an RGBE image is denoted by P = (PR, PG, PB, PE),
representing the respective Red, Green, Blue, and the Exponent channels with 8-bit storage.
During the conversion, we concurrently and adaptively embed a secret message, thus
constructing a new stego HDR RGBE image, IS. The process is completed by the following
five steps:

• Step 1: Image conversion. An IEXR is converted into the HDR image encoded by the
RGBE format. The expressions shown on the left expression in Equation (1) convert
chromatic information into the four components in the RGBE format:
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(1)

where X = (XR, XG, XB) represents the i-th pixel in scene-referred color in IEXR and
P = (PR, PG, PB, PE) denotes the i-th pixel in the corresponding RGBE HDR image.
Note that we omit the index i if the expression does not cause any ambiguity. In a
special case when max(XR, XG, XB) is less than 10−38, the conversion is written out
as (0, 0, 0, 0). We can translate the integer representation in P = (PR, PG, PB, PE)
back to the scene-referred color, X = (XR, XG, XB), using the right expressions in
Equation (1), which is also known as reverse conversion. In a special case described
above, we directly translate to (0, 0, 0).

Note that the four components, PR, PG, PB, PE, are integers within the range of [0, 255].
While the first three components, PR, PG, PB, represent the respective pixel values in the
Red, Green, and Blue channels, the fourth component, PE, indicates the pixel value in the
Exponent channel (hereafter E-channel).
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Figure 2. The bit breakdown for the 48-bit/pixel OpenEXR, 1-bit sign, 5-bit exponent, 10-bit mantissa,
and 32-bit/pixel RGBE encodings, 8-bit in the Red, Green, Blue, and Exponent channel.

• Step 2: Optimal base determination. In this step, we determine an optimal base,
B = (bR, bG, bB), for the i-th pixel P, according to PE, i.e., this pixel’s value in the
E-channel. An optimal base is required so that we can embed a secret message in
the PR, PG, PB. In this paper, we convey a secret message in the Red-, Green-, and
Blue-channels and leave the E-channel intact because the E-channel is the exponent
shared by the other three channels, so any changes in it, for example, plus or minus
n values (±n), will result in the magnitude of exponential changes, (R, G, B)× 2±n

in three other components. Instead, we utilize the value of the E-channel in a pixel P
as a guide to determine its corresponding optimal base, thereby achieving adaptive
message embedding. We detail this step as follows.

Let PE (0 ≤ PE ≤ 255) represent the value of the pixel P in E-channel which is currently
processed. Let Em denote the median of the pixels in the E-channel derived from the HDR
RGBE image which has just been converted from an OpenEXR HDR image. Let F represent
the minimal notational number system where an F-ary secret message can be concealed
in PR, PG, PB. Inspired by the fact that human eyes are less sensitive to the pixel with
low luminance (dark pixels), we derive F in Equation (2) as a function of PE because the
constant, ERtar, is given by the end user and the constant, Em, is derived from the HDR
RGBE image,
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between 𝐸  and 𝑃 ) without causing noticeable difference. In this paper, we set 𝐸𝑅 =7.3 bpp, and apparently, the end user can alter it without any restraint. 

(2)

The derived F strongly relates to the difference between PE and the median Em. If
PE = Em, F = 2ERtar . This means that, if a pixel’s PE is identical to the median, the derived
F equals the two’s power of the target embedding rate

(
2ERtar

)
, as expected. However, if

PE > Em, the derived F will be smaller than 2ERtar , and the larger the PE, the larger the
difference between F and 2ERtar ; this means that fewer secret messages are conveyed in this
pixel. In contrast, if PE < Em, the derived F will be larger than 2ERtar , and the smaller the
PE, the larger the difference between F and 2ERtar , implying that more secret messages will
be conveyed in this pixel. This approach coincides with the concept that since human eyes
are less sensitive to the pixel with low luminance (dark pixels), more secret message can be
concealed in a pixel with smaller PE (larger difference between Em and PE) without causing
noticeable difference. In this paper, we set ERtar = 7.3 bpp, and apparently, the end user
can alter it without any restraint.

Once F is determined, we can derive an optimal base, B = (bR, bG, bB) provided that
two conditions are held. First, bR × bG × bB ≥ F; Second, (bR, bG, bB) has minimal expected
mean squared error (EMSE), which can be determined by Equation (3):

EMSE(B) =
1

3× 12

{[
(bR)

2 − (−2)(bR+1)mod2
]
+
[
(bG)

2 − (−2)(bG+1)mod2
]
+
[
(bB)

2 − (−2)(bB+1)mod2
]}

. (3)
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We adopt the term, expected, implying that we assume the three components, bR, bG,
bB, have an equal probability of appearing. We remark that EMSE represents the distortion
in the R-, G-, B-channels rather than the entire HDR RGBE image. We also remark that,
since B depends on F, B is also a function of PE. Once B = (bR, bG, bB) is discovered, we
can compute MPE = bR × bG × bB, which may be equal to or larger than F. Consequently,
MPE represents the ultimate notational system that a secret message can be concealed in
PR, PG, PB.

We present an example to further illustrate how to determine an optimal base. If
an end user demands a target embedding rate, ERtar = 7.3 bpp, and the median of the
HDR RGBE image is Em = 126. We consider four representative pixels, P1, P2, P3, P4,
as follows: P1 = (165, 85, 16, 126), P2 = (195, 89, 37, 126), P3 = (85, 128, 48, 125) and
P4 = (195, 89, 37, 129). First, since PE = 126 in P1 and this value equals the median, the cor-

responding
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With regard to the 𝑷𝟑 pixel, we derive 𝐹 = ⌈2 . × 2 ⌉ = 316 and the optimal 
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the 𝑷𝟑 pixel can carry a 343-ary secret message, conforming to our design goal for em-
bedding a more secret message when 𝑃  is smaller than 𝐸 . Finally, an optimal base for 
the 𝑷𝟒 pixel is 𝑩 = (3, 3, 3) because 𝐹 = ⌈2 . × 2 ⌉ = 20 and 𝑀 = 27. As ex-
pected, a limited 27-ary secret message will be concealed in this pixel, as its 𝑃 = 129 is 
much larger than the median, 𝐸 = 126. 
• Step 3: Real embedding rate determination. Deriving the real embedding rate, 𝐸𝑅 , 

to comply with the end user’s request, we verify that the real embedding rate is 
greater than or equals the target embedding rate (𝐸𝑅 ≥ 𝐸𝑅 ). In this step, we 
derive 𝐸𝑅  using Equation (4): 

𝐸𝑅 = 1𝐻 × 𝑉 𝑁 × 𝑙𝑜𝑔 (𝑀 ), (4) 
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as shown in Table 1(a), which maps every 𝑃  value to 𝑁 , 𝐹 , 𝑀 , 𝑩 = (𝑏 , 𝑏 , 𝑏 ), 
and 𝐸𝑀𝑆𝐸(𝑩). In addition, we can derive the real embedding rate, 𝐸𝑅 , and the ex-
pected mean squared error for three channels, 𝐸𝑀𝑆𝐸(𝑅𝐺𝐵). 

Table 1(a) presents the E-channel mapping table constructed after Step 2 for the HDR 
image “memorial”. The end user requests the embedding rate of 𝐸𝑅 = 7.3 bpp and the 

. Thus, an optimal base is B = (bR, bG, bB) = (5, 5, 7)
because 5× 5× 7 = 175 > F and EMSE(B) = 1

3×12 [24 + 24 + 48] = 2.667 is minimal. Since
MPE = bR × bG × bB = 175, P1 can conceal a 175-ary secret message. We remark that al-
though other bases, such as (5, 6, 6) or (5, 6, 7), do satisfy the first condition, 5× 6× 6 ≥ F
and 5× 6× 7 ≥ F, unfortunately, they hold larger expected mean squared errors, where
EMSE(B1) = 2.778 and EMSE(B2) = 3.056. Consequently, B = (5, 5, 7) does actually
represent an optimal base for P1. Since P2 and P1 have the same PE, they share the same
optimal base able to conceal a 175-ary secret message.

With regard to the P3 pixel, we derive
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and 𝑷𝟏 have the same 𝑃 , they share the same optimal base able to conceal a 175-ary 
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With regard to the 𝑷𝟑 pixel, we derive 𝐹 = ⌈2 . × 2 ⌉ = 316 and the optimal 
base is 𝑩 = (7, 7, 7) , thereby producing 𝐸𝑀𝑆𝐸(𝑩) =4.0. Since 𝑀 = 7 × 7 × 7 = 343 , 
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greater than or equals the target embedding rate (𝐸𝑅 ≥ 𝐸𝑅 ). In this step, we 
derive 𝐸𝑅  using Equation (4): 

𝐸𝑅 = 1𝐻 × 𝑉 𝑁 × 𝑙𝑜𝑔 (𝑀 ), (4) 
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adhere to the end user’s request. Finally, we will construct an E-channel mapping table, 
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pected mean squared error for three channels, 𝐸𝑀𝑆𝐸(𝑅𝐺𝐵). 

Table 1(a) presents the E-channel mapping table constructed after Step 2 for the HDR 
image “memorial”. The end user requests the embedding rate of 𝐸𝑅 = 7.3 bpp and the 

and the optimal
base is B = (7, 7, 7), thereby producing EMSE(B) =4.0. Since MPE = 7× 7× 7 = 343, the
P3 pixel can carry a 343-ary secret message, conforming to our design goal for embedding
a more secret message when PE is smaller than Em. Finally, an optimal base for the P4 pixel

is B = (3, 3, 3) because
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With regard to the 𝑷𝟑 pixel, we derive 𝐹 = ⌈2 . × 2 ⌉ = 316 and the optimal 
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the image resolution of 𝐻 × 𝑉. In case 𝐸𝑅 < 𝐸𝑅 , we adjust the median 𝐸  until we 
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as shown in Table 1(a), which maps every 𝑃  value to 𝑁 , 𝐹 , 𝑀 , 𝑩 = (𝑏 , 𝑏 , 𝑏 ), 
and 𝐸𝑀𝑆𝐸(𝑩). In addition, we can derive the real embedding rate, 𝐸𝑅 , and the ex-
pected mean squared error for three channels, 𝐸𝑀𝑆𝐸(𝑅𝐺𝐵). 

Table 1(a) presents the E-channel mapping table constructed after Step 2 for the HDR 
image “memorial”. The end user requests the embedding rate of 𝐸𝑅 = 7.3 bpp and the 

and MPE = 27. As expected, a limited
27-ary secret message will be concealed in this pixel, as its PE = 129 is much larger than the
median, Em = 126.

• Step 3: Real embedding rate determination. Deriving the real embedding rate, ERrea,
to comply with the end user’s request, we verify that the real embedding rate is greater
than or equals the target embedding rate (ERrea ≥ ERtar). In this step, we derive ERrea
using Equation (4):

ERrea =
1

H ×V

255

∑
PE=0

NPE × log2
(

MPE

)
, (4)

where NPE represents the number of pixels in the entire HDR RGBE image holding PE
value in E-channel; for example, N132 denotes the number of pixels holding PE = 132.
Since PE is within the range of [0, 255], it is certain that NPE = N0 + N1 . . . + N255
equals the image resolution of H × V. In case ERrea < ERtar, we adjust the median
Em until we adhere to the end user’s request. Finally, we will construct an E-channel
mapping table, as shown in Table 1a, which maps every PE value to NPE , F, MPE ,
B = (bR, bG, bB), and EMSE(B). In addition, we can derive the real embedding rate,
ERrea, and the expected mean squared error for three channels, EMSE(RGB).

Table 1a presents the E-channel mapping table constructed after Step 2 for the HDR
image “memorial”. The end user requests the embedding rate of ERtar = 7.3 bpp and the
median of E-channel in this image is Em = 126. We list NPE according to PE in ascending
order, and the associate optimal bases. Referring to Equation (4), the real embedding rate,
ERRea = 7.578 bpp, is larger than the user’s request. Also shown in the right part of table is
the E-channel mapping table built when the requested embedding rate is ERtar = 9.0 bpp.
As can be seen from the table, when a user requests different ERtar, the same PE corresponds
to different NPE , F, MPE , B = (bR, bG, bB), and EMSE(B). Nevertheless, both cases show
that our scheme offers a more embedding rate than that request by the end user.
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Table 1. (a) An example of the optimal base determination derived in the E-channel mapping table for
the “memorial” mage with the median, PE = 126. (b) An example of the optimal base determination
derived in the E-channel mapping table for the “display1000” image with the median, PE = 125.

(a)

PE NPE F MPE bR bG bB EMSE(B) F MPE bR bG bB EMSE(B)

≤119 0 - - - - - - - - - - - -
120 1 10,086 10,143 21 21 23 39.111 32,768 32,768 32 32 32 85.500
121 1380 5043 5202 17 17 18 25.056 16,384 16,875 25 25 27 54.889
122 15,766 2523 2535 13 13 15 15.556 8192 8400 20 20 21 34.556
123 24,177 1261 1331 11 11 11 10.000 4096 4096 16 16 16 21.500
124 38,229 631 576 8 9 9 6.278 2048 2197 13 13 13 14.000
125 77,910 316 343 7 7 7 4.000 1024 1100 10 10 11 9.000
126 108,287 158 175 5 5 7 2.667 512 512 8 8 8 5.500
127 79,791 79 80 4 4 5 1.667 256 294 6 7 7 3.722
128 26,106 40 45 3 3 5 1.111 128 150 5 5 6 2.389
129 9609 20 27 3 3 3 0.667 64 64 4 4 4 1.500
130 3231 10 12 2 2 3 0.556 32 36 3 3 4 0.944
131 1819 5 6 1 2 3 0.389 16 18 2 3 3 0.611
132 1325 3 3 1 1 3 0.222 8 12 2 2 3 0.556
133 1711 2 2 1 1 2 0.167 4 4 1 2 2 0.333
134 2862 1 1 1 1 1 0 2 2 1 1 2 0.167
135 517 1 1 1 1 1 0 1 2 1 1 2 0.167
136 296 1 1 1 1 1 0 1 1 1 1 1 0
137 165 1 1 1 1 1 0 1 1 1 1 1 0
138 34 1 1 1 1 1 0 1 1 1 1 1 0
≥139 0 - - - - - - - - - -

ERtar= 7.3, ERrea = 7.578, EMSE(RGB) = 3.900 ERtar = 9.0, ERrea = 9.251, EMSE(RGB) = 8.525

(b)

PE NPE F MPE bR bG bB EMSE(B) F MPE bR bG bB EMSE(B)

≤106 0 - - - - - - - - - - -
107 3 41,310,352 16,777,216 256 256 256 5461.500 134,217,728 16,777,216 256 256 256 5461.500

108~116 0 - - - - - - - - - - - -
117 4 40,343 40,460 34 34 35 98.333 131,072 132,651 51 51 51 216.667
118 87 20,172 20,412 27 27 28 62.278 65,536 65,600 40 40 41 135.667
119 1755 10,086 10,143 21 21 23 39.111 32,768 32,768 32 32 32 85.500
120 6679 5043 5202 17 17 18 25.056 16,384 16,875 25 25 27 54.889
121 45,803 2522 2535 13 13 15 15.556 8192 8400 20 20 21 34.556
122 274,663 1261 1331 11 11 11 10.000 4096 4096 16 16 16 21.500
123 600,771 631 648 8 9 9 6.278 2048 2197 13 13 13 14.000
124 584,862 316 343 7 7 7 4.000 1024 1100 10 10 11 9.000
125 649,392 158 175 5 5 7 2.667 512 512 8 8 8 5.500
126 461,460 79 80 4 4 5 1.667 256 294 6 7 7 3.722
127 199,209 40 45 3 3 5 1.111 128 150 5 5 6 2.389
128 123,106 20 27 3 3 3 0.667 64 64 4 4 4 1.500
129 83,390 10 12 2 2 3 0.556 32 36 3 3 4 0.944
130 51,408 5 6 1 2 3 0.389 16 18 2 3 3 0.611
131 41,206 3 3 1 1 3 0.222 8 12 2 2 3 0.556
132 17,509 2 2 1 1 2 0.167 4 4 1 2 2 0.333
133 4421 1 1 1 1 1 0 2 2 1 1 2 0.167
≥134 0 - - - - - - - - - -

ERtar= 7.3, ERrea = 7.618, EMSE(RGB) = 4.041 ERtar = 9.0, ERrea = 9.293, EMSE(RGB) = 8.837

Table 1b shows another E-channel mapping table constructed for the HDR image
“display1000”. This image has the median of E-channel, Em = 125. We can observe from
the table that, when a pixel has a smaller PE, a larger optimal base is determined, thereby
enabling it to conceal a larger MPE -ary secret message. Again, the real embedding rate,
ERrea = 7.618 bpp, is larger than the request, ERtar = 7.3 bpp.

These two tables demonstrate that our scheme can adaptively conceal a secret message
according to the features of pixels in an HDR RGBE image. In addition, the overall real
embedding rate is always larger than the one requested by the end user, yet our scheme
ensures determining an optimal base, thereby producing a stego image with the minimal
expected mean squared error.
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• Step 4: Message decomposition. Given a general n-tuple optimal base B = (b1, b2, . . . , bn)
and an M-ary secret message, SM, where M = ∏n

i=1 bi, we can decompose SM into n
secret digits (d1, d2, . . . , dn) using Equation (5):
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In this paper, we produce a 3-tuple optimal base B = (bR, bG, bB), so we set n = 3 in
Equation (5) to decompose an MPE -ary secret message, SMPE

, into three digits, (d1, d2, d3).
As an example, given B = (5, 5, 7) and a 175-ary secret message, S175 = 89, we can
decompose 89 into 3 digits as follows. First, we let i = 1 and derive d1 = 89 mod 5 = 4.
Next, we derive d2 =

∣∣ 89
5

∣∣ mod 5 = 2. Finally, i = 3, we obtain d3 =
∣∣ 89

5×5

∣∣ mod 7 = 3.
Consequently, the three digits decomposed by B = (5, 5, 7) are (d1, d2, d3) = (4, 2, 3).

• Step 5: Message embedding. Once we have obtained (d1, d2, d3), we can embed
them into (PR, PG, PB) by the aid of the optimal base (bR, bG, bB), thus producing a
3-tuple stego pixel components,(P′R, P′G, P′B). The concept of embedding (d1, d2, d3) is
producing (P′R, P′G, P′B) so that three digits can later be extracted using the modulus op-
erator. In addition, we need to minimize the distortion,

∣∣(P′R, P′G, P′B)− (PR, PG, PB)
∣∣,

caused by the message embedding. We take the component PR and the digit d1 as an
example to illustrate the digit embedding, which utilizes Equations (6)–(8) to produce
the stego component P′R:

rR = PR mod bR (6)

vR = [(d1 − rR) + bR] mod bR (7)
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In Equation (6), we first obtain the remainder rR using the divisor bR, and then calculate
the difference, vR, between d1 and rR in Equation (7). Finally, referring to Equation (8), we
produce P′R according to the magnitude of vR with respect to bR. Note that the component
PE in the E-channel remains intact during the digit embedding. We can follow the same
approach to embed other two digits, d2 and d3, accordingly.

We now analyze the time complexity of the embedding process. Let H ×V represent
the size of an HDR RGBE image. We remark that the message concealment consists of five
steps, as described above, and it is performed in the Red, Green, and Blue channels in a
pixel-by-pixel approach. Consequently, the time complexity of message concealment is
O(H ×V × 3). We now present an example for message embedding.

We present an example to illustrate the message embedding process. Let
X = (0.161621, 0.083496, 0.016113) represent a pixel in the OpenEXR image. In step
1, we convert X to be a pixel P in the RGBE format, where P = (165, 85, 16, 126). In
step 2, without loss of generality, we assume the optimal base has been determined,
where B = (bR, bG, bB) = (5, 5, 7). In step 3, we determine the real embedding rate
as shown in Table 1a. In step 4, the message, S175 = 89, has been decomposed into
(d1, d2, d3) = (4, 2, 3). To embed these three digits in step 5, we first refer to Equation (6)
and obtain the remainders at each component, where (rR, rG, rB) = (0, 0, 2). We then cal-
culate the difference, (vR, vG, vB) = (4, 2, 1), in Equation (7). Finally, using Equation (8), we
derive the stego components in the Red, Green, and Blue channels, (P′R, P′G, P′B) = (164, 87, 17).
Thus, the stego pixel produced becomes P′ =

(
P′R, P′G, P′B, P′E

)
= (164, 87, 17, 126), as

the E-channel is intact. All the other pixels can work in the same manner to convey the
corresponding digits.
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2.2. Image Encryption

This stego image encryption process ciphers the stego image to protect secret messages
and avoid the image from unauthorized user access. The image encryption contains the
following four steps:

• Step 1: Obtaining an image feature h. We calculate the feature of a stego HDR RGBE
image (h) in Equation (9):

h =
∑4×H×V

i=1 bi

255× 4× H ×V
(9)

where bi represents the i-th byte data of the image. The parameter h is considered as a
part of the secret encryption key, where its range is within [0, 1].

• Step 2: Generating a pseudo-random sequence. In this step, we produce a pseudo-
random sequence from the 2D-SLMM [33]. As shown in Equation (10):{

xi+1 = α(sin(πyi) + β)xi(1− xi)
yi+1 = α(sin(πxi+1) + β)yi(1− yi)

(10)

The range of the control parameters, α and β, is 0 ≤ α ≤ 1 and 0 ≤ β ≤ 3, re-
spectively. When the parameter β is close to 3, 2D-SLMM shows good hyperchaotic
performance. In this study, we select (α, β) = (1, 3). The trajectories of the 2D-SLMM
map are shown in Figure 3, which provides a wider chaotic range, better ergodicity, and
hyperchaotic properties than existing chaotic maps. In addition, we set the initial value
(x0, y0) = (xK × h, yK × h), where (xK, yK) represents a part of the secret encryption key.
Note that the initial value is related to the feature of an image derived from Step 1, indi-
cating that the initial values dynamically depend on the stego HDR RGBE image to be
processed, thereby increasing the security of image encryption.

Given α, β, and (x0, y0), we generate q + 4 × H × V number of pseudo-random
sequence, R =

{
R0, R1, . . . , Rq, Rq+1, . . . , Rq+4×H×V−1

}
, where q is the number of elements

in the sequences to be discarded in order to eliminate the transient effects. Note that each
element Ri is produced by first computing xi × yi and then representing the values as the
IEEE double-precision floating-point format (IEEE Standard for Floating-Point Arithmetic,
IEEE 754) [34], followed by extracting the least significant 8 bits to form an integer between
0 and 255.

• Step 3: Pixel bit-level permutation and diffusion. We adopt a secret encryption key,
ke, to perform bit-level permutation, which shuffles both the pixel contents (32 bits)
and the pixel positions in the stego HDR RGBE image. We adopt a random permu-
tation scheme [35] with an encryption key to generate pseudo-random numbers to
accomplish the bit-level permutation.

We take an 8-bit pixel as an example. Let {π} = {1, 2, 3, 4, 5, 6, 7, 8} represent the
index of position in a pixel, and {D} = {0, 1, 0, 1, 1, 0, 1, 1} denote the corresponding
bits, which represent the decimal value 91. Thus, the first three bits, for example, can
be referred to by π[1] = 0, π[2] = 1, and π[3] = 0, etc. When utilizing the random
permutation scheme, we execute 7 iterations. At the i-th iteration, we generate a (9 − i)-ary
random number k. Then, we exchange the current last index with the index k. The process
continues 7 times until we shuffle the indices in {π} completely.
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Figure 3. Trajectories of 2D-SLMM with an initial value (x0, y0) = (0.15874, 0.38797) and the control
values (α, β) = (1, 3).

Table 2 shows an example of the index permutation, where the shaded color indicates
indices that have been shuffled. In the first round (i = 1), we generate an 8-ary random
number k = 38, and then exchange the 3rd index, 3, and the last index, which is 8, thus
producing {π} = {1, 2, 8, 4, 5, 6, 7, 3}. In the second iteration (i = 2), we generate a 7-ary
random number, say k = 47; we exchange the 4th index, 4, and the last index, which is
7, thus leading to {π} = {1, 2, 8, 7, 5, 6, 4, 3}. In the third iteration (i = 3), we generate
a 6-ary random number from 1 to 5, say k = 16; we exchange the first index 1 and the
last index, which is 5, thus leading to {π} = {6, 2, 8, 7, 5, 1, 4, 3}. The final permuted
index {π} = {5, 8, 2, 6, 7, 1, 4, 3}, implying that the bit-level permutation produces
{D} = {1, 1, 1, 0, 1, 0, 1, 0} representing a decimal value 234.

Table 2. An example of random index permutation, where {π} = {1, 2, 3, 4, 5, 6, 7, 8} represents
the original index order corresponding to an 8-bit pixel.

i k Exchange 1st 2nd 3rd 4th 5th 6th 7th 8th

Original index {π} 1 2 3 4 5 6 7 8
1 38 (3, 8) 1 2 8 4 5 6 7 3
2 47 (4, 7) 1 2 8 7 5 6 4 3
3 16 (1, 6) 6 2 8 7 5 1 4 3
4 45 (5, 7) 6 2 8 5 7 1 4 3
5 14 (5, 6) 5 2 8 6 7 1 4 3
6 23 (2, 8) 5 8 2 6 7 1 4 3

7 02
No

change 5 8 2 6 7 1 4 3

Permuted index {π′} 5 8 2 6 7 1 4 3

In our implementation, we align a total of 4× H ×V components (each pixel contains
the R-, G-, B- and E-channel components). We then apply the bit-level random permutation,
described above, to all of the bits. We remark that the random permutation shuffles the
indices in place rather than producing a shuffled copy. Along with the increase of iterations,
the number of indices in the shuffled set increases. Consequently, the random permutation
algorithm has the time complexity of O(N) and the space complexity of O(1).

• Step 4: Pixel diffusion. The final step is to encrypt the shuffled pixels using exclusive-OR op-
erator,⊕, with respect to the pseudo-random sequence, R′ =

{
Rq, Rq+1, . . . , Rq+4×H×V−1

}
.

Without loss of generality, we list the shuffled pixel as I′S = {P1,R′ , P1,G′ , P1, B′ , P1,E′ , . . . ,
PH×V,R′ , PH×V,G′ , PH×V,B′ , PH×V,E′}. The pixel encryption contains two sub-steps. First,
we generate five initial values,

{
P0,R′ , P0,G′ , P0, B′ , P0,E′ , C0,E′

}
, from the encryption
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key. Next, we utilize Equation (11) to cipher four components. Note that since we
have provided five initial values, the index ranges from 0 to H ×V.


Ci+1, R′ = R′4i ⊕ Pi+1,R′ ⊕ Pi,R′ ⊕ Ci,E′

Ci+1,G′ = R′4i+1 ⊕ Pi+1,G′ ⊕ Pi,G′ ⊕ Ci+1,R′

Ci+1,B′ = R′4i+2 ⊕ Pi+1,B′ ⊕ Pi,B′ ⊕ Ci+1,G′

Ci+1,E′ = R′4i+3 ⊕ Pi+1,E′ ⊕ Pi,E′ ⊕ Ci+1,B′

(11)

As an example, let P′1 =
(

P1,R′ , P1,G′ , P1, B′ , P1,E′
)
= (164, 87, 17, 126) represent

the first stego pixel and pseudo-random sequence R′ = {38, 39, 246, 133, 151, . . .}. Let(
P0,R′ , P0,G′ , P0, B′ , P0,E′ , C0,E′

)
= (196, 118, 25, 57, 49) be the initial five values. Refer-

ring to Equation (11) with the index i = 0, we can derive C1, R′ = 38⊕ 164⊕ 196⊕ 49 = 119.
We can further adopt the resultant C1, R′ to encrypt C1,G′ , thus producing C1,G′ = 39⊕ 87⊕
118⊕ 119 = 113. Similarly, we can encrypt C1,B′ = 143 using the previous result, C1,G′ ; we
can encrypt C1,E′ = 77 using the previous result, C1,B′ , accordingly. Consequently, the stego
pixel, P′1 = (164, 87, 17, 126), has been ciphered to become C′1 = (119, 113, 143, 77).

Our scheme provides the benefit of the avalanche effect [23,24], which means that an
error encountered in a previous component will produce an error in the current component
being processed. This chain-reaction feature will be propagated across the entire compo-
nents to be encrypted, causing a drastic change in the ciphertext stego HDR RGBE image.

We now analyze the time complexity of the image encryption process. In the im-
age encryption, we first obtain an image feature h, which requires the time complexity
of O(H ×V × 4). Next, referring to a 2D-SLMM map, we generate a pseudo-random se-
quence, which needs the time complexity of O(q + H ×V × 4), where q is used to avoid
the transient effects. The third step performs the bit-level permutation in all four channels,
thus requiring the time complexity of O(4× H ×V). In the final step, the pixel diffusion
needs the time complexity of O(H ×V × 4).

In summary, the time complexity of four steps determines the computational complex-
ity of our image encryption algorithm Consequently, our stego HDR encryption scheme has
the computational complexity of O(q + H ×V × 16). We consider this complexity has sat-
isfactory performance because there is an extra exponent channel in an HDR RGBE image.

2.3. Image Decryption

The decryption process is the inverse operation of the encryption process. The input is
the stego encrypted HDR RGBE image, ISE, and the output is the deciphered stego HDR
RGBE image, IS, which contains a hidden message.

The image decryption contains the following three steps:

• Step 1: We determine parameters, h, q, xK, yK from the secret decryption key. Then,
we input them as initial values in the 2D-SLMM to generate the pseudo-random
sequence R =

{
R0, R1, . . . , Rq, Rq+1, . . . , Rq+4×H×V−1

}
. We discard the first q items

so the resultant R′ is exactly the same as that produced in the encryption process.
• Step 2: We determine five setting values,

(
P0,R′ , P0,G′ , P0, B′ , P0,E′ , C0,E′

)
from the

decryption key. Then, we utilize Equation (12) to decipher stego encrypted pixels in
four components: 

Pi+1,R′ = R′4i ⊕ Ci+1, R′ ⊕ Pi,R′ ⊕ Ci,E′

Pi+1,G′ = R′4i+1 ⊕ Ci+1,G′ ⊕ Pi,G′ ⊕ Ci+1,R′

Pi+1,B′ = R′4i+2 ⊕ Ci+1,B′ ⊕ Pi,B′ ⊕ Ci+1,G′

Pi+1,E′ = R′4i+3 ⊕ Ci+1,E′ ⊕ Pi,E′ ⊕ Ci+1,B′

(12)

Following up on our previous example, we present R′ = {38, 39, 246, 133, 151, . . .}
and the setting values

(
P0,R′ , P0,G′ , P0, B′ , P0,E′ , C0,E′

)
= (196, 118, 25, 57, 49). Let

C′1 = (119, 113, 143, 77) be the first stego encrypted pixel. Referring to Equation (12), we
produce P1,R′ = 38⊕ 119⊕ 196⊕ 49 = 164. We can apply the same manner to decipher the
other three components. Thus, the decrypted stego pixel becomes P′1 = (164, 87, 17, 126).
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• Step 3: Pixel bit-level inverse permutation and diffusion. The recipient can adopt
the secret encryption key, ke, to generate pseudo-random numbers to accomplish
the inverse bit-level permutation. We follow up on the previous example. Let
{π′} = {5, 8, 2, 6, 7, 1, 4, 3} represent the index of position in an input pixel. When
utilizing the inverse version of the permutation scheme, we also generate a (9 − i)-ary
random number k for the i-th iteration. However, we apply these random numbers
in a reverse order, i.e., let j = 8 − i and j be the actual index we used in the inverse
version. Then, we exchange index j+1 with index k. The process continues 7 times
until the indices in {π′} are fully permuted.

Table 3 continues the example for the inverse index permutation, where the shaded
color indicates an index to be exchanged between itself and the index k, which is deter-
mined by the generated random number. In the first round (j = 1), the random number
produced is k = 02, and no exchange is needed because it is in the 1st index. In the second
iteration (j = 2), the random number produced is k = 23; we exchange the 2nd index, 8, and
the j + 1 = 3rd index, which is 2, thus leading to the current {π′} = {5, 2, 8, 6, 7, 1, 4, 3}.
In the third iteration (j = 3), the random number produced is k = 14; we exchange the
1st index, which is 5, and the 4th index, which is 6, thus updating {π′} to become
{π′} = {6, 2, 8, 5, 7, 1, 4, 3}. The final inverse permuted index {π} = {1, 2, 3, 4, 5, 6, 7, 8},
indicating that {D} = {0, 1, 0, 1, 1, 0, 1, 1} represents the inverse bit-level permutation,
which is the same as the original decimal pixel value 91.

Table 3. An example of inverse random index permutation, where {π′} = {5, 8, 2, 6, 7, 1, 4, 3}
represents the input index order corresponding to an 8-bit pixel.

j k Exchange 1st 2nd 3rd 4th 5th 6th 7th 8th

Input index {π′} 5 8 2 6 7 1 4 3
1 02 No change 5 8 2 6 7 1 4 3
2 23 (8, 2) 5 2 8 6 7 1 4 3
3 14 (5, 6) 6 2 8 5 7 1 4 3
4 45 (5, 7) 6 2 8 7 5 1 4 3
5 16 (6, 1) 1 2 8 7 5 6 4 3
6 47 (4, 7) 1 2 8 4 5 6 7 3
7 38 (3, 8) 1 2 3 4 5 6 7 8

Inverse index permutation results: {π} 1 2 3 4 5 6 7 8

2.4. Message Extraction

Since E-channel is intact and the target embedding rate ERtar is considered as a secret
key, the receiver can reconstruct the E-channel mapping table similar to Table 1. Then,
every pixel, P′ =

(
P′R, P′G, P′B, P′E

)
, in the stego image can be processed pixel-by-pixel.

For each pixel, the receiver refers to P′E to obtain the optimal base (bR, bG, bB) from the
E-channel mapping table. Afterwards, one can extract the secret messages, (d1, d2, d3),
using the modulus operator with the divisor (bR, bG, bB) for every component, where
(d1, d2, d3) =

(
P′R mod bR, P′G mod bG, P′B mod bB

)
. Finally, the receiver can apply Equation

(13) with the parameter, n = 3, using the available (d1, d2, d3) to composite the M-ary secret
message SM, where M = ∏n

i=1 bi, and B = (b1, b2, . . . , bn) represents a general n-tuple
optimal base:

SM = d1 +
n

∑
i=2

[
di ×

(
i−1

∏
j=1

bj

)]
(13)

Following up on our previous example, we first read in the stego pixel P′1 =
(

P′R, P′G, P′B, P′E
)
=

(164, 87, 17, 126). Then, referring to the E-channel mapping table with PE = 126, as shown
in Table 1, we derive the optimal base, (bR, bG, bB) = (5, 5, 7). Next, we extract the mes-
sage digits (d1, d2, d3) = (164 mod 5, 87 mod 5, 17 mod 7) = (4, 2, 3). Finally, applying
Equation (13), we composite the final 175-ary secret message,
SM = 4 + [2× (5) + 3× (5× 5)] = 89175.
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3. Experimental Results and Analysis

We implemented our algorithm using C++ and Python programming languages and
collected our experimental results on a Personal Computer equipped with an i7-10610U
CPU, 16 GB RAM, and Windows 10 operating system. Unlike LDR data hiding, no standard
image database is available for HDR image, and we instead collect our 20 test images form
the Internet [36] and indexed them from test image 1 to test image 20. We remark that some
of these HDR images have been adopted as test images in the literature [18–20,29,30]. In
the following, we first report the secret message embedding results and then present the
security analysis of the encrypted stego HDR images.

3.1. Secret Message Embedding Results

Figure 4 lists 20 stego HDR RGBE images produced by our scheme, each conveying
a different number of secret bits. Note that these images are tone-mapped low dynamic
range images, and we adopted the tone-mapping algorithms introduced in [2,37].

We present a larger size of the stego image “dani_catheral” for the purpose of visu-
alization, as shown in Figure 5. This stego image has conveyed around 5.92 million of
secret bits prior to the encryption process. As shown in Figure 5a, direct display of a stego
HDR image is not satisfying because over- and under-exposed areas hide image features.
In contrast, the tone-mapped (TM) stego images reveal their full details and give them a
dynamic twist as well as a realistic look, as shown in Figure 5b,c, respectively, Nevertheless,
even though our scheme offers a significant high embedding rate, reaching 7.550 bpp, the
distortions in these stego images are difficult to be perceived by human eyes.

Table 4 shows the features of test images and the embedding capacity as well as
the results of the image quality assessments. Depending on the image resolutions, the
embedding capacity ranges from 51.25 million bits (No. 15, 3025 × 2129) to 2.59 million bits
(No. 13, 720× 480). Depending on the distribution of E-channel, the embedding rate ranges
from 7.386 bpp (No. 11) to 8.258 bpp (No. 16). Nevertheless, all the test images comply with
the demand of 7.3 bpp requested by the end user. As observed in Table 4, the mean squared
error of three channels, MSE(RGB), in the stego HDR RGBE image varies from 3.183 to
45.546, depending on the image resolution, the distribution of the E-channel, and that of
the secret message. In this table, we show the PSNR values of the tone-mapped images as
they are now in the low dynamic range, thereby using 8 bits per sample to represent a pixel.
Apart from the “Still Life” image, the PSNR values are all larger than 40 dB, while some
of them are even higher than 50 dB. In addition, the structural similarity index measure
(SSIM) and the universal image quality index (Q-index) are all very close to 1.0. Image
assessment results indicate that the stego tone-mapped image has good image quality.

3.2. Security Analysis

This section evaluates the performance of image encryption when we encrypt the
stego HDR RGBE image by our scheme to produce a stego encrypted HDR RGBE image,
ISE. To the best of our knowledge, no existing security metrics are available to evaluate an
encrypted HDR image. Since the interest of our study focuses on the RGBE format with
four channels, we instead modify the LDR security evaluation metrics extending them to
four channels in an HDR RGBE image. In this study, we use six categories to analyze the
security of the encrypted images: the visual perception, histogram, correlation, entropy,
image sensitivity, and key security.
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Figure 4. An exhibition of 20 stego tone-mapped images before the encryption process.

Figure 5. Stego HDR images “dani_cathedral”: (a) direct display of an HDR image; (b) and (c)
using different tone-mapped algorithms [37] and [2], respectively, and then displaying the stego low
dynamic range TM images.
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Table 4. Embedding capacity and quality assessment of the stego images before encryption.

ID Name Resolution Capacity ERrea (bpp) MSE (RGB) TM PSNR TM SSIM TM
Q-Index

1 Apartment 2048 × 1536 24,225,583 7.701 17.609 51.895 0.999918 0.996560
2 AtriumNight 760 × 1016 5,831,456 7.552 3.445 51.714 0.999786 0.999928
3 bigFogMap 751 × 1130 6,630,761 7.813 4.118 50.342 0.999629 0.997726
4 dani_belgium 1025 × 769 6,054,383 7.681 4.499 51.053 0.999689 0.998506
5 dani_cathedral 767 × 1023 5,924,398 7.550 4.723 49.988 0.999584 0.998657
6 dani_synagogue 1025 × 769 6,388,178 8.105 5.418 47.352 0.999364 0.999867
7 Desk 644 × 874 4,247,692 7.547 6.515 45.386 0.999687 0.990792
8 Display1000 2048 × 1536 23,962,622 7.618 4.041 50.545 0.999950 0.998025
9 memorial 512 × 768 2,979,918 7.578 3.900 42.611 0.999242 0.997763

10 Montreal 2048 × 1536 23,637,108 7.514 3.183 49.552 0.999869 0.999894
11 MtTamWest 1214 × 732 6,563,231 7.386 6.274 50.149 0.999601 1.000000
12 nave 720 × 480 2,639,315 7.637 42.353 46.835 0.998883 0.996546
13 rosette 720 × 480 2,597,575 7.516 45.546 47.052 0.998770 0.994346
14 Spheron3 2149 × 1074 18,556,270 8.040 16.753 40.906 0.998803 0.998281
15 SpheronNapaValley 3025 × 2129 51,250,510 7.958 5.321 43.923 0.999597 1.000000
16 SpheronNice 2981 × 1165 28,677,186 8.258 5.341 43.411 0.999470 0.999264
17 SpheronPriceWestern 3272 × 1280 32,678,515 7.803 4.570 51.209 0.999936 0.998134
18 SpheronSiggraph2001 1329 × 1289 12,676,596 7.400 3.634 49.223 0.999822 0.998210
19 StillLife 1240 × 846 8,002,655 7.629 25.401 32.602 0.989207 0.997025
20 Tree 928 × 906 6,922,330 8.233 35.164 50.494 0.999914 0.998838

3.2.1. Visual Perception

Figure 6 exhibits the tone-mapped images generated from our scheme in different
stages. We adopted the tone-mapping algorithm introduced in [2]. From Figure 6a,b,
image distortion is not perceived after the format conversion and the message embedding.
Figure 6c shows the encryption images which successfully shelter the outlines and detail
features. The encrypted images are completely submerged by noise without revealing any
meaningful information. Consequently, our encryption scheme is visually secure.

3.2.2. NIST SP 800-22 Randomness Test

The National Institute of Standards and Technology (NIST) statistical test [38] was
adopted to test the randomness of sequences generated by the 2D-SLMM to ensure that
they are suitable for cryptosystems. NIST SP 800-22 consists of 16 statistical tests, and each
test provides a p-value between 0 and 1 under the significance level α. If p-value ≥ α, the
sequence passes the randomness test successfully with the confidence of 1− α. Otherwise,
the sequence fails the test. In our experiment, we set the default value, α = 0.01 for testing.

Table 5 shows the NIST test results. From the table, we can see that all p-values are
larger than 0.01, indicating that the 2D-SLMM sequence passes the randomness tests with
99% confidence.

Figure 6. The visual perception of the tone-mapped test image, “memorial,” first row, and the test
image 8 (“Display1000”), second row. (a) the original HDR image in the OpenEXR format; (b) the
stego images concealing a hidden message in the RGBE format; (c) the stego encrypted image; (d) the
deciphered plaintext image.
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Table 5. NIST test results for 2D-SLMM with the initial values (x0, y0) = (0.15874, 0.38797).

No Test Type p-Value Result No Test Type p-Value Result

1 Frequency 0.931466 Pass 9 Maurer’s universal statistical 0.307327 Pass
2 Block frequency 0.926042 Pass 10 Linear complexity 0.917021 Pass
3 Runs 0.652705 Pass 11 Serial 0.880/0.508 Pass
4 Longest run of ones in a block 0.966102 Pass 12 Approximate entropy 0.422853 Pass
5 Binary matrix rank 0.483810 Pass 13 Cummulative sums (forward) 0.969889 Pass
6 Spectral 0.308390 Pass 14 Cummulative sums (reverse) 0.925027 Pass
7 Non-overlapping template matching 0.055807 Pass 15 Random excursions 0.650265 Pass
8 Overlapping template matching 0.477088 Pass 16 Random excursions variant 0.288640 Pass

3.2.3. Histogram Analysis

The histogram contains much statistical information about an image, and the his-
togram of a plain image contains obvious distribution features. An eligible encryption
algorithm should completely eliminate these features. Figure 7 shows histograms of the
plaintext image and the ciphered one. Our encryption algorithm makes the distribution
more uniform and completely different from the histograms of the plaintext in four chan-
nels. No meaningful information can be obtained from the histogram of the stego encrypted
HDR image. Therefore, our scheme can effectively prevent statistical attacks.

Figure 7. Histograms of the stego HDR RGBE image, “memorial”; (a) the histogram of the plain
stego image; (b) the histogram of the stego encrypted image.

Variance of histogram (VOH) quantitatively reflects the randomness of the image.
VOH is calculated by Equation (14), where Z = {z0, z1, . . . , z255} denotes the number of
counts at each bin in the histogram and µ represents the average value over all bins. The
smaller the VOH, the more randomness the test image holds:

Var(Z) =
255

∑
i=0

E
[
(zi − µ)2

]
(14)

Apart from VOH, we utilize the Chi-square (χ2) test. When the significance level, α, is
set as 0.05 and the degree of freedom is 255; the threshold of the χ2 test is 293.25. If the χ2

value of a histogram is under this threshold, the histogram can be considered to perform
with uniform distribution statistically.

Table 6 lists VOH and χ2 values of the “memorial” test image before and after en-
cryption. The results show that encryption reduces the VOH values dramatically, from
over several millions to as small as several thousands. In addition, the χ2 values also
show a significant decrease in the encrypted image, from one hundred thousand to several
hundreds. Finally, χ2 values in four channels are below the threshold, thereby all 20 stego
encrypted test images pass the χ2 test.
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Table 6. Variance of Histogram (VOH) and χ2 values for the test image, “memorial”.

Channel
VOH χ2 Value

Plain Encrypted Plain Encrypted

R 2,707,096.750 1653.078 451,182.792 275.513
G 3,589,377.078 1633.258 598,229.513 272.210
B 15,759,698.078 1692.586 2,626,616.346 282.098
E 104,124,933.656 1552.016 17,354,155.610 258.669

To provide more insights, we conducted the χ2 test for all 20 test images. Figure 8
shows the test results. As can be seen from the figure, all of the χ2 values in the entire
20 test cases in four channels are below the threshold, shown as a dashed line. Based on the
results presented in Table 6 and Figure 8, we conclude that, firstly, VOH and the χ2 values
are greatly reduced in the stego encrypted image in comparison with those appearing in
the stego plaintext image. In addition, the χ2 results confirm the success of passing the χ2

test. Our proposed algorithm determines a uniform distribution of the encrypted pixels in
four channels, offering high security for image encryption.

Figure 8. All 20 stego encrypted images in four channels pass the χ2 test.

3.2.4. Correlation Analysis

In plain images, adjacent pixels are often highly correlated in three directions: hori-
zontal, vertical, and diagonal, which makes it possible to predict current pixels by adjacent
pixels. An eligible encryption algorithm should eliminate such correlations. The correlation
among pixels can be evaluated by the correlation coefficient in Equation (15):

rx,y =
E(x− E(x))E(y− E(y))√

D(x)
√

D(y)
(15)

where x and y are values of adjacent pixels. E(x) and D(y) are the expectation and variance
of x and y over some pairs of samples, respectively. Finally, the correlation coefficient
values

(
rx,y
)

are between −1 and +1: the closer to zero, the less correlations among chosen
pixels. In addition, if the correlation coefficient is a positive number, the variables are
directly related. If, on the other hand, the coefficient is a negative number, the variables are
inversely related.

We compute the scene-referred color values using Equation (1), which are all floating-
point values in the R-, G-, B-channels. Therefore, the analysis is represented in three R-,
G-, B-channels. Table 7 shows the correlation coefficients calculated from 5000 pairs of
adjacent pixels in three directions: horizontal (H), vertical (V), and diagonal (D) for three
channels in the plaintext and encrypted images. The statistics show that the correlation
coefficients have been dramatically reduced in the ciphered image, and the values are very
close to zero.
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Table 7. Adjacent correlation coefficients for the test image “memorial”.

Channel
Plaintext Image Encrypted Image

H V D H V D

R 0.869519 0.886546 0.806847 −0.001245 0.000738 −0.001069
G 0.849231 0.871814 0.780838 0.001059 0.000908 −0.001039
B 0.857073 0.877966 0.788200 0.001848 0.003866 −0.002014

The correlation coefficients for all 20 stego test images are shown in Figure 9, where
the coefficient coefficients are close to zero from both the positive and negative directions,
indicating that our image encryption algorithm is effective in reducing the correlation in
three directions.

Figure 9. Adjacent correlation coefficients are close to zero for all 20 stego test images in the (a)
horizontal, (b) vertical, and (c) diagonal directions.

3.2.5. Entropy Analysis

Entropy is a physical quantity to express the degree of uncertainty in a system. Since
Shannon [39] introduced the concept to information theory, it is referred to as the Shannon
entropy or information entropy.

For an 8-bit grayscale image, Z, the definition of Shannon entropy is shown in Equation
(16), where P(zi) represents the probability of the i-th gray level zi occurring in the image:

H(Z) = −
255

∑
i=0

P(zi)log2[P(zi)] (16)

If Z is an ideal random image, P(zi) = 1/256 and H(Z) = 8. Therefore, the Shannon
entropy for an encrypted 8-bit image is targeted to 8, representing the success of image
encryption. Table 8 lists the Shannon entropy for the plaintext image and the encrypted
one. The statistics demonstrate that our scheme is so effective that it can produce Shannon
entropy for the encrypted RGBE image close to 8 in all channels.

Table 8. Shannon entropy values of the image “memorial” in the plain and encrypted images.

Channel Plaintext Image Encrypted Image

Red 6.96112745 7.99949461
Green 6.91334510 7.99950031
Blue 5.46477440 7.99948285

Exponent 2.85423907 7.99949461

Furthermore, Wu et al. [40] proposed the local Shannon Entropy (LSE) to overcome
the weakness of the (global) Shannon entropy and introduced a process to conduct the
statistical test. For an 8-bit grayscale image, Z, the LSE can be computed in Equation (17),
which averages the information entropy on k randomly chosen non-overlapping blocks Bi
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each of which contains n pixels. If (k, n) = (30, 1936), the ideal value of LSE is 7.9025. If
the significance level, α, is set as 0.05, the LSE of a ciphered image should be within the
range of [7.9019, 7.9030] in order to pass the statistical test:

Hk, n(Z) =
k

∑
i=1

H(Bi)

k
(17)

Figure 10 shows the results of LSE for all 20 stego ciphered images. The figure
indicates that only two local Shannon entropy values are not within the range to pass the
test, indicating that the pass rate is as high as 97.5%. The global and the local Shannon
entropy test confirm that our algorithm generates stego encrypted images exhibiting both
global and local randomness; thereby, they are capable of resisting the entropy attacks.

Figure 10. The local Shannon Entropy (LSE) results for all 20 stego ciphered images.

3.2.6. Image Sensitivity

A good algorithm designed for image encryption must be sensitive to any tiny differ-
ence between two input images, even though there is only a one-bit difference because a
hacker can try to find the relationship between two ciphered images by modifying one bit
of the plaintext image. Thus, image sensitivity is also an indicator to show the ability of
resisting differential attacks. The number of pixel change rates (NPCR) and the unified
averaged changed intensity (UACI) are the two most common quantities used to evaluate
the strength of image encryption algorithms with respect to differential attacks [41–43].
NPCR and UACI are defined in Equations (18)–(20), where I1(i, j) and I2(i, j) are the pixel
values in images I1 and I2:

D(i, j) =
{

0 i f I1(i, j) = I2(i, j)
1 i f I1(i, j) 6= I2(i, j)

(18)

NPCR(I1, I2) =
∑i,j D(i, j)

H ×V
× 100% (19)

UACI(I1, I2) =
1

H ×V

(
∑i,j

|I1(i, j)− I2(i, j)|
255

)
× 100% (20)

The variance of NPCR and UACI is related to the resolutions of the test images. In
addition, it is unclear how high NPCR/UACI is such that the image cipher does actually
have a high security level able to resist malicious attacks. To this end, Wu et al. [42] proposed
a mathematical model for ideally encrypting images and then they derived expectations
and variances of NPCR and UACI used to form statistical hypothesis tests. Their findings
indicate that the ideal values of NPCR and UACI are 99.6094 and 33.4635, respectively.

Table 9 reports the results of NPCR and UACI for the test image “memorial”. We
remark that E-channel has a narrow histogram band in the plaintext image (see Figure 7a).
However, our encryption performs so effectively that it shows near uniform distortion after
the image encryption, as shown in Figure 7b. Consequently, all NPCR values, including the
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E channel, are close to the ideal value (99.6094), while the UACI statistics are also close to
the ideal value (33.4635), reflecting that the stego encrypted image, “memorial”, can resist
the differential attack.

Table 9. NPCR and UACI values for the stego encrypted test image, “memorial”.

Channel NPCR (%) UACI (%)

R 99.60586548 33.46571998
G 99.62015788 33.46139127
B 99.60901896 33.46733462
E 99.60657756 33.46112799

We conducted a statistical hypothesis test, suggested in [42] for all 20 stego encrypted
images. We first flipped the least significant bit (LSB) of four corner pixels and the center
pixel in R-channel, generating five respective stego encrypted images, each of which is
one-bit different from its original. We then calculated the NPCR and UACI values for five
pairs of images (original vs. the image with a flipping pixel) for analysis.

Figure 11 shows the NPCR and UACI results averaged from five pair of images for
20 stego encrypted images. The NPCR results show that their values are larger than the
threshold, thus passing the hypothesis test. The UACI results indicate that their values are
within the range formed by the lower bound and upper bound, implying that these images
pass the UACI hypothesis test. According to Table 9 and Figure 11, we conclude that our
encryption scheme produces good performance in resisting the differential attacks.

Figure 11. The results of NPCR and UACI values for statistical hypothesis tests. (a) NPCR. (b) UACI.

3.2.7. Key Security

Key security can be discussed from the perspectives of key space and key sensitivity.
In order to resist the brute force attack, the encryption algorithm must have large key
space. In addition, the eligible encryption algorithm needs to be sensitive so that any subtle
changes of the keys produce a completely different ciphered image. We discuss the key
space and key sensitivity in the following:

• Key space: When employing the 2D-SLMM pseudo-random sequence generator, we
use three 64-bit double-precision floating-point numbers: h, xK, yK, and a 16-bit integer
q to discard the first q items to avoid the transient effect. For the encryption algorithm,
we adopt five 8-bit integers: P0,R′ , P0,G′ , P0, B′ , P0,E′ , C0,E′ as the initial values. Therefore,
the key space is 2248, larger than the minimal requirement of 2128, thus capable of
resisting a brute force attack.

• Key sensitivity: We conducted the key sensitivity test for our algorithm as follows:
First, we used two keys, K1 and K2, with only one-bit difference. We then encrypted
the test image using K1 and K2, thus producing EIk1 , shown in Figure 12b and EIk2 ,
shown in Figure 12d. Next, we decrypted EIk1 using K1, thus producing the original
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image, shown in Figure 12c. In addition, when we decrypted EIk1 using a different
key, K2, the decrypted image produced looks like a noise image containing no useful
information, shown in Figure 12f. The NPCR and UACI between EIS1 and EIS2 are
close to the ideal values, 99.6094 and 33.4635. We conclude that our algorithm provides
the benefit of strong key sensitivity features.

Figure 12. Key sensitivity test using the image, “rosette,” where the secret key K2 is one-bit different
from the secret key K1; (a) the original stego image IS; (b) using K1 to cipher IS and producing EIS1;
(c) deciphering EIS1 by K1 to produce the genuine IS; (d) using K2 to cipher IS and producing EIS2;
(e) NPCR and UACI results for the image pair (EIS1, EIS2); (f) deciphering EIS1 by the incorrect key,
K2, and producing a noisy image.

3.3. A Comparison with the Current State-of-the-Art Works

Table 10 compares our algorithm with the current state-of-the-art works presented
for HDR data hiding/HDR image encryption. While most of the schemes were based on
RGBE format, only two algorithms adopted the OpenEXR format. The embedding rates for
these schemes vary ranging from less than 1.0 bpp to as large as 20.0 bpp. Our algorithm
performs better than most competitors except Lin et al.’s work [16]. With regard to the
quality of tone-mapped image, our scheme produces a tone-mapped stego image with
moderate PSNR (50.49 dB), which is inferior to [16,19] but superior to [17,18]. Note that the
PSNR depends not only on the tone mapping algorithm adopted but also on the number of
concealed secret messages.

Table 10. A comparison of our scheme with the current state-of-the-art works.

Algorithm Proposed [20] [19] [18] [17] [16] [13] [14] [15] [12] [11]

Year 2022 2022 2022 2020 2019 2017 2016 2012 2011 2011 2009

Format OpenEXR RGBE RGBE RGBE RGBE OpenEXR RGBE RGBE RGBE LogLuv RGBE

ER (bpp) 7.30~9.29 6.19~7.03 1.07~2.34 0.490–2.292 1.90~2.43 2.433~20.002 0.1391–0.1472 0.1340–0.1373 0.1256–0.1281 26.0 5.04~9.70

PSNR 32.60–51.90 N.A. 61.39–75.66 50.65–51.77 35.96–39.36 45.12–82.32 N.A. N.A. N.A. 30.47–37.00 30.00–40.00

SSIM 0.9943–1.0000 N.A. 0.9994–0.9999 0.8542–0.9954 N.A. 0.7572–0.9999 N.A. N.A. N.A. N.A. N.A.

Encryption Yes Yes No No No No No No No No No

NIST Test Yes No No No No No No No No No No

Adaptive Yes No No Yes No Yes No No Yes No Yes

Prediction Yes No No No No No No No No No No

User Req. Yes No No No No No No No No No No

Constructive Yes No No No No No No No No No No

Evaluation Six Metrics Visual - - - - - - - - -

Security High Low - - - - - - - - -

Our algorithm is the first constructive data hiding approach that can adaptively convey
secret messages, encrypt the stego HDR image, and offer the prediction ability. Our scheme
conceals more secret messages in pixels with low luminance. In addition, the user has
flexibility to embed in a high payload with more distortion allowed, or to conceal a low
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payload in exchange for high image quality. In this paper, the user demand embedding
rate is set to be 7.3 bpp, but our scheme can offer the embedding rate to reach 9.29 bpp,
larger than most of our competitors, or alternatively to reduce to 4.3 bpp or even lower.
Nevertheless, thanks to the adaptive embedding and the optimal base, the stego image
produced by our scheme maintains high image quality. Furthermore, Tsai et al. [20] and
our algorithm investigated the HDR image encryption. However, we propose six metrics
to evaluate the security analysis completely rather than providing only visual perception.
The security analysis confirms that our scheme produces a secure image encryption result
to become the current state-of-the-art work.

4. Conclusions and Future Work

In this paper, we proposed a constructive adaptive HDR data hiding method, where
a stego HDR image is synthesized during the HDR format conversion. Secret messages
are adaptively embedded based on the distribution of the E channel information, so more
messages are conveyed in lower-luminance pixels and fewer in higher-luminance areas.
Thanks to the optimal base mechanism we propose, our algorithm not only complies with
a user’s demand, but also generates a stego image with minimal mean squared error. To
the best of our knowledge, our algorithm is the first providing prediction and satisfying the
user’s embedding capacity demand in the HDR image literature. To further protect the stego
image from unauthorized user access as well as the hidden secret message, we adopted
2D Sine Logistic modulation map and the sequence produced passed 16 randomness tests
in the NIST SP 800-22 test suite, confirming that it has better hyperchaotic behavior to
cipher the stego HDR image. We introduced a random permutation technique able to fully
shuffle the pixel contents, thus achieving the bit-level permutation image ciphering. We
adopted six metrics to thoroughly and comprehensively evaluate the security of the stego
ciphered HDR RGBE image. Our scheme offers 18% to 32% larger embedding rate than
the current state-of-the-art schemes’ results without degrading the quality of stego image.
The security evaluation confirms that our scheme provides high security that is superior to
the competitors.

Our future work is to extend the current algorithm to provide the reversibility, able to
restore the original HDR image after message extraction, and to improve our algorithm by
taking into consideration human visual sensitivity for message embedding.
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