
Citation: Musa, A.S.; Abdul Hadi,

M.F.R.; Ashour, N.I.; Hashikin,

N.A.A. Theranostic Investigation of

Gadolinium-159 for Hepatocellular

Carcinoma: Monte Carlo Simulation

Study. Appl. Sci. 2022, 12, 12396.

https://doi.org/10.3390/

app122312396

Academic Editor: Ioanna Kyriakou

Received: 15 November 2022

Accepted: 2 December 2022

Published: 3 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Theranostic Investigation of Gadolinium-159 for Hepatocellular
Carcinoma: Monte Carlo Simulation Study
Ahmed Sadeq Musa 1,2, Muhammad Fahmi Rizal Abdul Hadi 1, Nabeel Ibrahim Ashour 1,3

and Nurul Ab. Aziz Hashikin 1,*

1 School of Physics, Universiti Sains Malaysia, Penang 11800, Malaysia
2 Department of Physiology and Medical Physics, College of Medicine, University of Kerbala,

Kerbala 56001, Iraq
3 Department of Physics, College of Science, University of Kerbala, Kerbala 56001, Iraq
* Correspondence: hashikin@usm.my

Abstract: Gadolinium-159 (159Gd) is a beta emitter with appropriate energy for therapeutic applica-
tion. However, this radioisotope additionally emits gamma rays, enabling the distribution of 159Gd
to be detected by a gamma camera after each therapeutic administration. The current research is
innovative in the investigation of 159Gd as a theranostic radioisotope in the radioembolization of HCC
using Monte Carlo (MC) simulation. For 159Gd therapeutic investigation, various patient scenarios
including varying tumour involvement (TI), tumour-to-normal liver uptake ratio (T/N), and lung
shunting (LS) were simulated using Geant4 MC to estimate the absorbed doses to organs at risk.
For 159Gd planar imaging investigation, the SPECTHead example from GATEContrib (GitHub) was
utilized, and inside a liver a tumour was created and placed inside a torso phantom and simulated
using GATE MC simulation. The majority of 159Gd absorbed doses by normal liver and lungs were
less than the maximum dose limitations of 70 Gy and 30 Gy, respectively. Absorbed doses to other
organs were observed to be below 1 Gy. The utilization of 58 keV and 363.54 keV photopeaks in
combination produced optimal planar imaging of 159Gd. This research gives new insights into the use
of 159Gd as a theranostic radioisotope, with the potential to be used as an Yttrium-90 (90Y) alternative
for liver radioembolization.
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1. Introduction

Hepatocellular Carcinoma (HCC) is one of the major causes of cancer-related deaths in
the world [1]. Furthermore, liver cancer is the fourth most prevalent cause of cancer-related
death, and the sixth most commonly diagnosed cancer [2]. Based on annual projections,
the accumulated death caused by liver cancer will be more than one million by the year
2030, according to World Health Organization predictions [3]. However, in many countries,
HCC morbidity and mortality are on the rise [4]. Currently, systemic drug treatments
for HCC are limited, and side effects are prevalent [5]. There is a strong need to find
other effective HCC treatment methods. The portal vein supplies most blood to normal
liver tissue, whereas the hepatic artery supplies blood to most liver malignant tumours.
As a result, locoregional therapies such as transarterial radioembolization (TARE) can be
delivered preferentially in the arteries supporting tumours, resulting in particle deposition
selectively in the tumour while avoiding detrimental side effects on healthy liver tissue [6].
Although radionuclides are increasingly used in nuclear medicine for both therapeutic and
diagnostic purposes, precise patient-specific dosimetry is still not routinely conducted in
clinical practice [7]. However, treatment planning for radioembolization of HCC might be
challenging, because the amount of radiation that may be delivered to a tumour is restricted
by the absorbed dose of organs at risk (OARs), which must be below the tolerable dose limit.
Various MC codes can be used to simulate radiation transport over any media, providing
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precise dose estimation. The MC program based on the GEometry ANd Tracking 4 (Geant4)
simulation toolkit has been developed for medical radiation dosimetry applications [8].
Geant4 Application for Tomographic Emission (GATE) is one MC simulation software for
nuclear medical imaging based on the Geant4 code used for nuclear imaging devices [9]. In
gamma camera imaging, the acquisition energy window is centred around the photopeak
to detect most primary photons. A well-established therapy option for hepatic radioem-
bolization is the radioisotope, 90Y, which provides beta radiation for therapy with the
possibility of post-treatment imaging by bremsstrahlung radiation but with significantly
poor quality [10], as the spectrum of bremsstrahlung radiation is both complicated and
continuous; one of the most challenging topics in nuclear medicine is selecting acquisition
energy windows [11]. Macroaggregated albumin (MAA) labelled with technetium-99m
(99mTc) is currently employed as a radioactive tracer for planning 90Y microsphere radioem-
bolization therapy. It is critical to include this post-treatment imaging radioactive tracer
in order to estimate the in vivo effects of 90Y radiation [12]. Numerous theranostic (ther-
apy and diagnostic) radioisotopes such as Samarium-153 (153Sm), Holmium-166 (166Ho),
Lutetium-177 (177Lu), and Rhenium-188 (188Re) have been proposed as 90Y alternatives
for radioembolization of HCC [13].159Gd has also been proposed for theranostic applica-
tions, however, has not been fully explored, especially in radioembolization of HCC. The
159Gd radioisotope has a physical half-life of 18.48 h and emits β particles with energy of
970.5 keV, making it suitable for HCC therapeutic purposes. The 159Gd gamma spectrum
has two photopeaks (58 keV and 363.54 keV) [14], enabling the dose distribution of 159Gd
to be detected by a gamma camera and SPECT during TARE therapeutic administration
for HCC. Furthermore, it is a highly paramagnetic element, useful in imaging via MRI. In
addition, imaging properties of 159Gd using gamma camera, SPECT and MRI assist in the
evaluation of liver radioembolization toxicity and efficacy and also enable quantitative
imaging assessment of the post-administration intrahepatic dose distribution—or, more
precisely, on the proportion of dose absorbed by the tumour compared to the dose absorbed
by healthy tissue. These agents may also be used to predict patient response and optimize
a patient-specific therapeutic dose. The 159Gd radioisotope offers a broader therapy option
as a theranostic radioisotope in hepatic radioembolization for HCC. In the current work, a
Geant4 MC simulation was employed in order to delineate the dosimetric investigation
of 159Gd in the context of HCC radioembolization when the advised 120 Gy dose [15] is
administered to a tumour for various patient parameter combinations, i.e., TI, T/N, and LS.
Moreover, GATE MC simulations were employed in order to investigate the feasibility of
utilizing 159Gd gamma scintigraphic imaging following hepatic radioembolization and to
compare our findings with 99mTc scintigraphic imaging.

To the best of our knowledge, this is the first study that has conducted the investigation
of 159Gd as a theranostic radioisotope in hepatic radioembolization of HCC using MC
simulation.

2. Materials and Methods
2.1. Absorbed Dose Calculation
MIRD-5 Phantom Geant4 MC Simulations

According to Pamphlet 5 of the Medical Internal Radiation Dose (MIRD), a mathemat-
ical hermaphrodite adult phantom (Figure 1) was used in this study, which consisted of
entire anatomical organs [16], with male and female reproductive organs (testicles) and
(ovaries and uterus). Female breasts were also incorporated into the phantom by adopting
the breasts from [17]. The MIRD-5 phantom is made up of three different types of tissues
with densities of bone 1.4862 g/cm3, lung 0.2958 g/cm3, and soft tissue 0.9869 g/cm3.
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Figure 1. The MIRD-5 adult hermaphrodite human phantom as constructed and visualized using
Geant4.

The Geant4 version 10. 6 toolkit was used in this study [18,19] as an advanced example
human phantom. Within the liver, a single tumour was created with the same shape as
the MIRD-5 mathematical liver, positioned in the centre and variable in mass (Figure 2).
Equation (1) was used to calculate the tumour involvement (TI)(%).

Tumour Involvement (TI)(%) =
Mass o f tumour

Mass o f liver
× 100% (1)
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Figure 2. Antero-superior view of the tumour model for (a) 10, (b) 30, (c) 50, and (d) 70% tumour
involvement (TI).

We used tumour shape as the shape of the mathematical MIRD-5 liver in this study.
Due to the geometrical boundaries which were allowed, only spheres with a radius of up
to 4.3 cm could be confined within the liver, resulting in a tumour mass of 333 g and a
maximum tumour involvement of only 18.2% [13].
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The electromagnetic interactions of photons and electrons were modelled using the
low-energy electromagnetic package [20], which was based on the Livermore Evaluated
Data Libraries. The generation threshold for secondary particles was set at one millimetre.
The decay of 159Gd and its distribution in the tumour, normal liver, lungs, and other organs
were modelled using the Geant4 radioactive decay and general particle source components.
The 159Gd radionuclide point sources within each organ were evenly distributed, with
activity uptake based on the T/N and LS, having emissions that are randomized in their
direction. Normal liver, tumour, lungs, and other organs were set at sensitive volumes.
The simulation’s result was defined as mean energy (MeV) transferred into each volume.
Several patient scenarios, including varying TI (10, 30, 50, and 70%), LS (0, 5, 10, 15, and
20%), and T/N (1, 2.5, 5, 7.5, and 10) were simulated. The Geant4 MC package was used to
simulate the setup with 107 histories. The simulation was run thrice for each parameter
combination to achieve a less than 1% standard deviation. To obtain a tumour dose of
120 Gy, the tumour, normal liver, lungs, and other organ doses acquired via simulation were
multiplied by the same factor that provides a tumour dose of 120 Gy. When a recommended
dose of 120 Gy [15] was delivered to the tumour, the absorbed dose (Gy) to normal liver,
lungs, and other organs was calculated by converting the mean energy (MeV) transferred
within the organs to joules (J) and dividing it by the mass of the organ.

2.2. Scintigraphic Imaging
2.2.1. GATE MC Simulation

GATE is a widely used MC simulation platform, comprising a general-purpose code
called Geant4 and advanced open-source called OpenGATE, first publicly released in 2004
by the OpenGATE international collaboration (Los Angeles, CA, USA) [21]. Many studies
have confirmed the platform’s usefulness, accuracy, and effectiveness [21–24]. This study
runs simulations on an open-source Debian-based Linux distribution using the latest long-
term support (Ubuntu 18.04 LTS) using an Intel Xeon Gold 6242 (16 cores, 32 threads) with
Geant4 version 10.6 p.01, ROOT 6.14/06, and GATE version 9.1 installed. We used the
Geant4 with code including electromagnetic physics list option four as a physics list with
one millimetre cut off. The setup was simulated via the GATE MC package, with histories
of 109. The SPECTHead example obtained from the GATEContrib (GitHub, San Francisco,
CA, USA) was used in order to construct representative geometry for the current work.

2.2.2. Geometry Setup

The geometry was configured to engineer a trapezoid liver, with a density of 0.9869 g/cm3,
containing a spherically shaped tumour with a 1 cm diameter. This combination was in-
serted into a cylindrical torso phantom as shown in Figure 3.
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2.2.3. Image Acquisition

A gamma head (with NaI detector) was modelled for image acquisition using the
SPECTHead example from GateContrib (GitHub) [25], with dimensions of 21 × 30 ×
13 cm3 and a position of 3.5 cm from the phantom’s centre as shown in Figure 4. The 159Gd
and 99mTc sources were simulated separately, and for image acquisition were distributed
uniformly throughout the liver and tumour volumes (assuming a tumour-to-normal liver
ratio of 2:1). For the simulation, the matrix size was set at 256 × 256. The 159Gd and
99mTc necessitated employing high-energy general-purpose (HEGP) and low-energy high-
resolution (LEHR) collimators, respectively, the properties of which are presented in Table 1.
The primary energy windows for 159Gd included 20% photopeaks at 58 keV (46.4–69.6 keV)
and 363.54 keV (290.8–436.2 keV); for 99mTc, a 10% photopeak at 140 keV (126–154 keV)
was used. During the simulation, acquisition of the individual images was performed over
a minimum of 10 K counts.

Appl. Sci. 2022, 12, 12396 5 of 14 
 

2.2.3. Image Acquisition 
A gamma head (with NaI detector) was modelled for image acquisition using the 

SPECTHead example from GateContrib (GitHub) [25], with dimensions of 21 × 30 × 13 
cm3 and a position of 3.5 cm from the phantom’s centre as shown in Figure 4. The 159Gd 
and 99mTc sources were simulated separately, and for image acquisition were distributed 
uniformly throughout the liver and tumour volumes (assuming a tumour-to-normal liver 
ratio of 2:1). For the simulation, the matrix size was set at 256 × 256. The 159Gd and 99mTc 
necessitated employing high-energy general-purpose (HEGP) and low-energy high-reso-
lution (LEHR) collimators, respectively, the properties of which are presented in Table 1. 
The primary energy windows for 159Gd included 20% photopeaks at 58 keV (46.4–69.6 
keV) and 363.54 keV (290.8–436.2 keV); for 99mTc, a 10% photopeak at 140 keV (126–154 
keV) was used. During the simulation, acquisition of the individual images was per-
formed over a minimum of 10 K counts. 

  
Figure 4. Geometry setup of gamma camera and phantom. Yellow dots represent the tumour. 

Table 1. Characteristics of collimators used for 159Gd and 99mTc. 

Radioisotope Collimator Length (mm) Septal Thickness (mm) Hole Diameter (mm) 
159Gd High-energy general purpose (HEGP) 60 2 4 
99mTc Low-energy high-resolution (LEHR) 24.05 0.160 1.11 

2.2.4. Image Quality Analysis Using ImageJ 
Once the simulations were complete, the output of simulation file format (pla-

nar.mhd) underwent importation into the software, ImageJ, version 1.53c, in order to as-
sess image quality. The latter was determined following computation of the signal: back-
ground ratio (SBR) and the coefficient of variation (CV). 𝑆𝐵𝑅 = 𝑚𝑒𝑎𝑛 𝑝𝑖𝑥𝑒𝑙 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑢𝑚𝑜𝑢𝑟𝑚𝑒𝑎𝑛 𝑝𝑖𝑥𝑒𝑙 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑                  (2)

𝐶𝑉 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑢𝑚𝑜𝑢𝑟𝑚𝑒𝑎𝑛 𝑝𝑖𝑥𝑒𝑙 𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑢𝑚𝑜𝑢𝑟  (3)

A region of interest (ROI) was created within the tumour, which enabled mean pixel 
value and standard deviation to be acquired. Copies of the tumour ROI were then applied 
to three different background locations within the visible liver region, as shown in Figure 
5. The mean and standard deviation values were again taken. The SBR and CV were ob-
tained by using Equations (2) and (3) [26], respectively. 

Figure 4. Geometry setup of gamma camera and phantom. Yellow dots represent the tumour.

Table 1. Characteristics of collimators used for 159Gd and 99mTc.

Radioisotope Collimator Length (mm) Septal Thickness (mm) Hole Diameter (mm)
159Gd High-energy general purpose (HEGP) 60 2 4
99mTc Low-energy high-resolution (LEHR) 24.05 0.160 1.11

2.2.4. Image Quality Analysis Using ImageJ

Once the simulations were complete, the output of simulation file format (planar.mhd)
underwent importation into the software, ImageJ, version 1.53c, in order to assess image
quality. The latter was determined following computation of the signal: background ratio
(SBR) and the coefficient of variation (CV).

SBR =
mean pixel count o f tumour

mean pixel count o f background
(2)

CV =
standard deviation count o f tumour

mean pixel count o f tumour
(3)

A region of interest (ROI) was created within the tumour, which enabled mean pixel
value and standard deviation to be acquired. Copies of the tumour ROI were then applied
to three different background locations within the visible liver region, as shown in Figure 5.
The mean and standard deviation values were again taken. The SBR and CV were obtained
by using Equations (2) and (3) [26], respectively.
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3. Results and Discussion
3.1. Absorbed Dose to Normal Liver

When the tumour received 120 Gy, the range of normal liver absorbed doses from
159Gd is between 12.98 and 117.49 Gy for all parameter combinations of TI, LS, and T/N
(Figure 6). Moreover, the absorbed doses exceeded the acceptable dose limit of normal
liver (i.e., 70 Gy) [15,27] only at a T/N of 1 because the sources in the liver and tumour are
similar and cause higher doses.
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Figure 6. Absorbed dose to the normal liver for various TIs of (a) 10, (b) 30, (c) 50, and (d) 70%, LS,
and T/N, when 120 Gy is delivered to the tumour. The red dotted lines represent the maximum dose
limit of 70 Gy for a normal liver.

3.2. Absorbed Dose to Lungs

When the tumour received 120 Gy, the range of the left and right lung absorbed
doses was between 0.019 and 51.39 Gy, respectively, and 0.11 to 51.86 Gy for all parameter
combinations of TI, LS, and T/N (Figures 7 and 8). In terms of comparison, the doses were
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slightly higher in the right lung because it was closer to liver. Furthermore, the absorbed
doses by the lungs exceeded the acceptable dose limit of lungs (i.e., 30 Gy) [28,29] at 15%
LS with a T/N of 1 (for all TI) and 20% LS with various T/Ns: 1 (for all TI), 2.5 (30, 50, and
70% TI), 5 (50 and 70% TI), 7.5, and 10 (both for 70% TI).
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Appl. Sci. 2022, 12, 12396 8 of 15

3.3. Absorbed Dose to Other Organs

In order to estimate the absorbed dose from 159Gd to other organs when 120 Gy
is delivered to the tumour, we selected the parameter combinations which have higher
impacts on the absorbed dose: TI (70%), LS (20%), and T/N (1), as illustrated in Figure 9.
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Figure 9. Absorbed dose to other organs for tumour involvement of 70%, lung shunting (LS) (20%),
and tumour to normal liver uptake ratio (T/N) 1, when 120 Gy is delivered to the tumour. L: left,
R: right, ULI: upper large intestines, LLI: lower large intestines.

The outcome following radioembolization is predominantly linked to the radiation
dose absorbed by normal liver, lungs, and other organs [30]. As radiation oncologists carry
out hepatic brachytherapy on a routine basis, they should have an empirical comprehension
of the absorbed dose which reaches the tumour [31]. This is paramount in order to maximize
the radiation received by the tumour and to reduce the collateral damage to normal tissue
as much as possible. Previously, hepatic radioembolization has been applied without a
precise appreciation of the respective quantities of radiation absorbed by the normal liver,
lungs, and other organs [32,33]. From this study, it has been observed that the absorbed
dose to the normal liver is primarily dependent on T/N because when T/N increases, the
absorbed doses of the normal liver decrease due to the lower administered activity required
to deliver the 120 Gy tumour dose [34] and not due to TI and LS (Figure 6). The absorbed
dose to left and right lungs are impacted by all three factors, i.e., TI, LS, and T/N; and LS
was the most influential parameter [35] as illustrated in Figures 7 and 8. Figure 9 show the
absorbed doses from gamma emission to the other organs which are similar in shape and
equal in mass; it is clearly observed that organs located on the same side as the liver (right
side of the body) absorb a higher dose than organs located on the left side according to the
inverse square law, and the absorbed dose to other organs decreases as the distance from
the liver increases [36]. The highest absorbed dose was found in the right adrenal because
it is located just below the liver. Despite the fact that the right and left adrenals are roughly
equal in mass, the right adrenal absorbs a significantly higher dose than the left adrenal
due to their unequal distance from the liver, as shown in Figure 9. Results demonstrate
that 159Gd gamma emission is not risky and is completely safe, and that the treatment is
not restricted by the absorbed dose received by other organs. This is because when 120 Gy
is delivered to the tumour, all other organs’ absorbed doses were below 1 Gy or only less
than 1% as compared to the absorbed dose given to the tumour. This was supported by
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dosimetric research for radioembolization with Holmium-166 microspheres, which found
that the gamma emission contributed just 1.1% of the overall absorbed dose [37].

The90Y, 166Ho, 153Sm, and 177Lu radioisotopes have been studied and investigated by
Hashikin et al. (2016) using the MIRD phantom. However, in their study it was concluded
that the total estimated tumour dose for all radionuclides was 262.9 Gy. Furthermore, the
tumour dose of 1.82 GBq 90Y has been obtained, whereby 153Sm, 166Ho, and 177Lu obtained
same tumour doses at 8.32, 5.83, and 4.44 GBq, respectively. In terms of comparison, the
normal liver doses of the other radionuclides were lower than 90Y, which was advantageous
for sparing normal tissue. Interestingly, even though the other organ doses from 153Sm and
177Lu were higher due to higher gamma energy, they were still below 1 Gy. They show
promise as 90Y substitutes, delivering comparable tumour doses, reduced normal liver and
lung doses, and doses absorbed by other organs considerably below the tolerance limit [13].
In our study, we obtained similar results when the recommended therapeutic dose from
159Gd was given to the tumour, as all other organs’ absorbed doses were below 1 Gy, as
illustrated in Figure 9.

3.4. 159Gd vs. 99mTc Scintigraphic Imaging

The GATE MC simulation for 99mTc and different photopeaks of 159Gd were con-
ducted separately, the output of the simulation (file format planar.mhd) was imported into
the software VV Image Viewer version 1.4 to obtain the planar images, as illustrated in
Figure 10.
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Figure 10. Planar image acquired from GATE MC simulation for 159Gd and 99mTc utilizing VV image
viewer: (a) 159Gd (58 + 363.54 keV), (b) 159Gd (58 keV), (c) 159Gd (363.54 keV), and (d) 99mTc (140 keV).

Figures 11 and 12 demonstrate the gamma spectra of 159Gd and 99mTc detected from
the root file of the GATE MC simulation; ROOT software version 6.26/10 was used for
this process.
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The quality assessment of planar images obtained using ImageJ software for 99mTc
and different photopeaks of 159Gd were determined using Equations (2) and (3) to compute
SBR and CV, as demonstrated in Figures 13 and 14.
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The beta-emitting characteristics of 159Gd ensure that it is an efficacious radioisotope
for cancer oncotherapeutic applications [38–41]. Radioembolization procedures of liver
tumours necessitate quantitative imaging following therapy [42]. Currently, there are no
studies regarding the use of 159Gd as a theranostic radioisotope in this context. We used
GATE MC simulation in this study to investigate the scintigraphic imaging possibility of
159Gd for hepatic radioembolization. The 159Gd photopeak selection was 58 vs. 363.54 vs.
58 + 363.54 keV. Figure 13 shows that the image quality using both photopeaks combined
(58 + 363.54 keV) is better with the highest SBR; a higher SBR indicates that the images can
provide superior spatial information. Figure 14 shows that the lowest CV is obtained using
both photopeaks combined (58 + 363.54 keV); a lower CV indicates minor variation (better
estimation). This observation can be explained by combining two photopeaks resulting
in the highest count statistics. The hexagonal hole pattern of the collimator is visible in
the 159Gd acquired planar image because of 159Gd emitting high-energy gamma rays, the
thicker septa, and the larger hole size of the HEGP collimator used [43,44] (Figure 10). The
58 keV photopeak of the 159Gd gamma spectrum appears with significantly higher intensity
than expected based on its emission intensities (Figure 11), because low-energy photons are
more likely to penetrate the HEGP collimator’s larger hole size. In comparison to 99mTc, in
the 159Gd planar image acquired using the two photopeaks in combination, SBR for 99mTc
was 19.7% higher than for 159Gd (Figure 13); CV was 53% lower than for 159Gd (Figure 14).

Bouzekraoui et al. (2019) employed the SIMIND Monte Carlo simulation code using
159Gd to determine the energy windows for the triple energy window (TEW) scatter
correction approach. However, it has been observed that 20% of the main energy windows
with 3 and 6 keV sub-energy windows were best for the TEW method implementation
in 159Gd [45]. Furthermore, a similar pattern of results was obtained in our study, which
found that using two energy windows during acquisition admits better planar image
quality results than using a single peak energy window, as illustrated in Figures 13 and 14,
respectively.

The research findings suggest completing the following study phases, where cell
cultures (in vitro) and animal experiments (in vivo) can be investigated to supplement the
trials before moving into the clinical phase.

4. Conclusions

In this study, we showed that 159Gd beta particle emission provides the recommended
therapeutic dose of 120 Gy to tumours while maintaining the permissible absorbed dose of a
normal liver (70 Gy) [15,27] and for lungs (30 Gy) [28,29]. Additionally, the treatment is not
restricted by the gamma emission absorbed dose received by other organs, because when
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120 Gy was delivered to the tumour, all other organs’ absorbed doses were below 1 Gy [13]
or less than 1% as compared to the absorbed dose given to the tumour [37]. Furthermore,
the combination of 58 keV and 363.54 keV gamma energy photopeaks produced optimal
planar imaging of 159Gd. Hence, 159Gd offers a broader therapy option for HCC with
increased availability and perhaps lower treatment costs. In conclusion, this study gives
new insights into the use of 159Gd as a theranostic radioisotope with the potential to be
used as a 90Y alternative for liver radioembolization.
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Abbreviations

159Gd Gadolinium-159
90Y Yttrium-90
MC Monte Carlo
HCC Hepatocellular Carcinoma
TI Tumour involvement
T/N Tumour-to-normal liver uptake ratio
LS Lung shunting
TARE Transarterial radioembolization
OARs Organs at risk
GATE Geant4 Application for Tomographic Emission
Geant4 GEometry ANd Tracking
99mTc Technetium-99m
153Sm Samarium-153
166Ho Holmium-166
177Lu Lutetium-177
188Re Rhenium-188
MRI Magnetic resonance imaging
SPECT Single-photon emission computed tomography
MIRD Medical Internal Radiation Dose
HEGP High-energy general-purpose
LEHR Low-energy high-resolution
SBR Signal to background ratio
CV Coefficient of variation
ROI Region of interest
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