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Abstract: Metaheuristic algorithms have been hybridized with the standard K-means to address the
latter’s challenges in finding a solution to automatic clustering problems. However, the distance
calculations required in the standard K-means phase of the hybrid clustering algorithms increase
as the number of clusters increases, and the associated computational cost rises in proportion to
the dataset dimensionality. The use of the standard K-means algorithm in the metaheuristic-based
K-means hybrid algorithm for the automatic clustering of high-dimensional real-world datasets
poses a great challenge to the clustering performance of the resultant hybrid algorithms in terms of
computational cost. Reducing the computation time required in the K-means phase of the hybrid
algorithm for the automatic clustering of high-dimensional datasets will inevitably reduce the
algorithm’s complexity. In this paper, a preprocessing phase is introduced into the K-means phase of
an improved firefly-based K-means hybrid algorithm using the concept of the central limit theorem
to partition the high-dimensional dataset into subgroups of randomly formed subsets on which
the K-means algorithm is applied to obtain representative cluster centers for the final clustering
procedure. The enhanced firefly algorithm (FA) is hybridized with the CLT-based K-means algorithm
to automatically determine the optimum number of cluster centroids and generate corresponding
optimum initial cluster centroids for the K-means algorithm to achieve optimal global convergence.
Twenty high-dimensional datasets from the UCI machine learning repository are used to investigate
the performance of the proposed algorithm. The empirical results indicate that the hybrid FA-K-means
clustering method demonstrates statistically significant superiority in the employed performance
measures and reducing computation time cost for clustering high-dimensional dataset problems,
compared to other advanced hybrid search variants.

Keywords: clustering algorithms; metaheuristic algorithms; hybrid clustering; K-means; firefly
algorithms; central limit theorem; high-dimensional datasets

1. Introduction

Explosive growth in data generation, acquisition, and storage has been observed
recently, with significant and valuable knowledge hidden within this large amount of
stored data. There is a need to extract the information and knowledge trapped within this
massive data to improve organizations’ decision-making processes. However, the explosive
yet increasing data size makes the extraction process difficult and complex, surpassing the
usual ability required to process, analyze, and understand the data [1]. Data mining as a
part of knowledge discovery in databases is one method to address this challenge.

Data clustering is an essential unsupervised data classification technique in data
mining. It involves grouping unlabeled data objects into clusters based on their similarities,
such that objects within a cluster are more similar to each other than to data objects in
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other clusters. It has found wide application in different areas such as pattern recognition,
image analysis, artificial intelligence, machine learning, computer vision, recommendation
systems, spatial databases, medicine, information retrieval, marketing, web mining, and
statistics [2,3].

High-dimensional datasets involve those whose dimensions vary from a few scores to
several thousands of dimensions [1]. According to [4], a dataset can be judged as large in
three ways: when the number of elements in the dataset is large, when each element in the
dataset has many dimensions, and when the dataset has many clusters. Large datasets are
common in domains such as social media data, recommendation systems, microarray data,
medicine, bioinformatics, text document clustering, and biology [1,5]. It is computationally
expensive to use a traditional clustering algorithm for a high-dimensional dataset [5]. This
problem associated with clustering high-dimensional data is generally referred to as the
“curse of dimensionality”.

The K-means algorithm is a traditional clustering algorithm that has gained wide
popularity and acceptability with wide usage based on its efficiency, ease of implementation,
and simplicity. It is categorized as a partitional clustering algorithm where data objects
of datasets are divided into separate groups such that each data object can only belong
to a single group. It employs a distance-based optimization criterion to minimize the
intra-cluster distance and maximize the inter-cluster distance. Several limitations, however,
have been identified in using the K-means clustering algorithm, including sensitivity to
initialization parameters, undesirable sample distribution vulnerability, and susceptibility
to noise [6,7]. The optimum performance of K-means is premised on the specification
of the correct number of clusters (which is difficult to determine in a real-life dataset)
and the selection of the optimum number of the initial cluster centroid. The K-means
algorithm uses the hill-climbing approach in its search for the optimum cluster centroid
resulting in local search around the initial cluster centroid with the algorithm having a high
probability of getting trapped into local optima. Moreover, the clustering process of the
classical K-means uses square distance limits to discover spherical-shaped clusters, which
is often unsuitable considering the actual nature of the complex data distribution of real-life
datasets. The clustering of real-life datasets characterized by high-dimensionality, presence
of noise and outliers, imbalance, sparse and irregular sample distribution, and narrow or
overlapping cluster margins poses many challenges to the K-means algorithm. According
to Xie et al. [8], the K-means finds it difficult to obtain the desired clustering results when
dealing with a high-dimensional dataset due to the dimensional disaster impact, data size,
noise, and distribution with low computational efficiency. The wide acceptability and
usage of K-means makes its performance enhancements inevitable; thus, this paper aims at
addressing the high computation time challenge of K-means due to the inherent problem
of the curse of dimensionality in big data. to improve its performance in finding solution to
automatic clustering problems of big data.

Several approaches have been proposed in the literature to address the high-computation-time
problems of the classical K-means algorithm in clustering high-dimensional data. According
to Xie et al. [8], a common approach is the dimensionality reduction approach which
involves seeking and clustering within low-dimensional features of high-dimensional data.
However, some of the difficulties identified in this approach are that there is a need first to
determine whether low-dimensional data are the dominating feature needed for clustering
practical problems, and if the distance mapping between low-dimensional data points is
conductive clustering [8]. In Alguliyev et al. [9], a K-means-based parallel batch clustering
algorithm was proposed, where the dataset is divided into equal partitions to reduce the
exponential computation growth. Each partition’s cluster centers are calculated using the K-
means algorithm, and the generated cluster centroids are merged and clustered. Although
the dataset’s characteristics are preserved with increased clustering speed, determining
the optimum number of clusters within each partition is still a problem. An improved
K-means algorithm based on density canopy was proposed in [10] which uses density
canopy as a preprocessing method for the K-means algorithm to determine the number
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of clusters and initial cluster centroids. According to the authors, the main goal is to
resolve the initialization problems, while the issue with clustering big data in terms of high
computation time is not addressed. In Alguliyev et al. [11], a batch clustering algorithm
for big data sets is proposed where large data sets are clustered in batches. Each batch is
clustered using the K-means algorithm, with cluster centroids of the previous batch added
to the subsequent batches until all batches are clustered. The cluster centroid obtained from
the final batch is used as the final cluster centroid for the final data points’ assignments.
Although the exponential growth of computational time is avoided, there is no guarantee
that the final cluster centroid is optimum for the entire dataset. In Olukanmi et al. [12], a
simple algorithm that addresses the poor scalability of K-means in relation to clustering
large datasets based on a statistical inference approach was proposed. Their algorithm uses
samples from the dataset to compute the centroids based on an intuitive extension of the
classical central limit theorem (CLT).

In recent times, hybridizing K-means with metaheuristics has also assisted in solv-
ing most of the problems associated with real-life datasets based on their global search
capability for the optimized number of clusters and cluster centroids [6,13–21]. Primarily,
metaheuristics algorithms have been used to help the K-means algorithm to escape from
local optima convergence by searching for global optimum initial cluster centroids. Their
effectiveness has been extensively validated in the literature [22]. However, some of the
metaheuristic algorithms has been hybridized with K-means algorithm to improve its
performance in solving automatic clustering problems [23]. In this paper, a further enhance-
ment is proposed for the firefly-based K-means hybrid algorithm for automatic clustering
of high-dimensional data by using a CLT-based K-means in the hybrid algorithm to reduce
the number of distance calculations required in the K-means phase thereby reducing the
algorithm’s computational time.

The firefly algorithm (FA) is a population-based metaheuristic algorithm proposed
by [24]. It has been applied to solve numerous problems in different fields because of its
efficiency, robustness, versatility, and ability to find an approximate solution to NP-hard
problems, among other benefits [25]. FA has been extensively used for automatic clus-
tering [25,26] with superior clustering performance reported in literatures in comparison
with other metaheuristic algorithms. The FA is easy to understand, simple to implement,
and has been used successfully to find the solution to problems in different areas. It
has outperformed several other metaheuristic algorithms and has demonstrated superior
performance when hybridized with other metaheuristic algorithms [25,27]. According to
Kumar and Kumar [28], the efficient performance of FA is based on the fact that it com-
bines the advantages of some of the existing metaheuristic algorithms, namely, simulated
annealing (SA), particle swarm optimization (PSO) and differential evolution (DE). Thus,
FA is regarded as a generalized form of DE, SA and PSO [28]. The FA has been combined
with K-means in several studies. In Hassanzadeh and Meybodi [29], the FA was combined
with the classical K-means; similarly, the investigation presented in [30] combined the
FA with parallel K-means, while [31] adopted optimized K-means and canopies in their
hybridization with FA. Behera et al. [16] used fuzzy C-means with FA. The study presented
in [32,33] aimed to improve the general clustering performance in their modification of
FA hybridized with the K-means algorithm. The popularity of the FA among global opti-
mization researchers is due to the algorithm’s application versatility in terms of robustness
and performance superiority, and because it is backed with mathematical proofs in dealing
with diverse, complex optimization problems encountered in the real-world, making it
the first choice for enhancing the inferior performance stability of the classical K-means
clustering algorithm [16]. However, the primary motivation for selecting the FA as a global
optimization enhancer for the classical K-means is because of its multimodality features,
adaptability to the problem landscape, and automatic subdivision of its population into
subgroups, which best fits the context of the problem at hand [16].

In this paper, an enhanced adaptive mutation-based FA is combined with the classical
K-means for the automatic clustering of high-dimensional data with a focus on addressing
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the curse of dimensionality problem of big data; this paper adopted the idea from the CLT
proposed in [12] to break the high-dimensional dataset into several overlapping subsets
on which the K-means algorithm is applied to obtain representative cluster centers for
the final clustering procedure. This preprocessing task reduces the number of distance
calculations needed in the K-means phase of the hybrid algorithm, thereby reducing the
computation time required for the clustering process to ensure scalability when handling
high-dimensional datasets. An initial investigation was conducted involving the proposed
algorithm and seven other metaheuristic-based K-means modelled using the same frame-
work as the proposed algorithm to justify the selection of the proposed algorithm. The
proposed hybrid algorithms’ performance was investigated using 20 high-dimensional
datasets, with the Davies Bouldin cluster validity index (DBI) [34] serving as the measuring
index to determine the validity of the clustering solutions obtained.

The rest of the paper is outlined as follows: Section 2 presents the related works on
FA-based K-means hybrid algorithms. Section 3 describes the classical firefly algorithm,
K-means algorithms, the central limit theorem, and its application in the design of a scalable
K-means algorithm. It also describes the proposed improved FA-based K-means hybrid
algorithm. Section 4 presents the evaluation of the hybrid algorithm on high-dimensional
datasets and comparison with other metaheuristic algorithms from the literature. The
conclusion and future research direction are presented in Section 5.

2. Related Research

The FA is a metaheuristic algorithm that has been applied to solve numerous problems
in different fields as earlier stated. It has the unique capability of automatic subdivision,
which gives it the advantage of handling multimodal optimization problems compared
with other metaheuristic algorithms [28]. It records superior performance in clustering
analysis due to the clustering process’s high non-linearity and sub-optimal distraction [6].
A systematic review of the FA is presented in [28] describing the various characteristics and
variants of the algorithm. A comprehensive review of the FA regarding the various areas
of its successful application in a wide spectrum of real-world applications is discussed
in [35], and a performance study using classification error percentage criteria on the FA for
cluster analysis is presented in [36]. The algorithm used in this study was able to generate
the optimal cluster centroids, and their study acknowledged the algorithm’s strength. The
authors’ report shows that the classification efficiency of the FA is superior compared with
that of PSO, artificial bee colony (ABC) and other clustering methods.

For enhancement of the FA for clustering problems, its hybridization with other
metaheuristic algorithms has been reported in the literature. An automatic data clustering
using a hybrid firefly particle swarm optimization algorithm was reported by [26], where
an improved FA was integrated with PSO (FAPSO). The study result showed superior
performance over each of the individual clustering algorithms FA, PSO, and classical
DE with a high level of stability. Comparisons with other hybrid algorithms from the
literature (ACDE, DCPSO, and GCUK) were also performed, and FAPSO outperformed the
competing hybrid algorithms. Rajah and Ezugwu [37] reported a hybrid of SOS with FA
(SOSFA) alongside other SOS-based hybrid algorithms for handling automatic clustering.
SOSFA was reported as having superior performance in some of the datasets used during
the algorithms’ performance investigation.

Moreover, a comparative study of hybrid FAs for automatic data clustering was
performed and discussed in [38]. Their work investigated automatic clustering tasks on
unlabeled, large-scaled and high-density datasets using four firefly-based hybrid algo-
rithms. The FA was combined with PSO, ABC, invasive weed optimization (IWO), and
teaching–learning-based optimization (TLBO). These hybrid algorithms require no prior
knowledge of the data object to be classified, and the optimal number of clusters is auto-
matically determined during the execution of the hybrid algorithms. The cluster separation
index (CSI) and DBI cluster validity indices were used to evaluate the hybrid algorithms’
performances on 12 University of California Irvine (UCI) machine learning repository
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datasets. The clustering results were compared with other hybrid algorithms from the
literature with a noticeable performance improvement. However, it was observed that there
was an exponential increment in the computational cost of the hybrid algorithm relative to
the population size.

Based on the superior performances of the FA in handling both general and automatic
clustering, a few hybridizations of FA with K-means have been reported in the literature.
One of the earliest hybridizations with K-means is presented by [29] as a new approach
to clustering algorithm using FA tagged KFA. The FA finds optimum k-numbered cluster
centroids for the K-means algorithm to refine the cluster centroids. Their proposed algo-
rithm used a modified FA that uses global optima in the firefly’s movement in such a way
that the firefly with the maximum or minimum value influences the movement of other
fireflies. The cartesian distance was used to calculate the distance of fireflies for global
optima convergence. The performance of their algorithm was evaluated using five UCI
datasets and compared with other clustering algorithms. Their result recorded a relatively
stable algorithm with better clustering efficiency. Performance on the high-dimensional
datasets was not investigated, and the classical K-means algorithm was used.

The hybridization of the K-means algorithm with firefly using parallel architecture
to handle a large number of clusters was proposed by [30]. The K-means algorithm was
used in refining the initial optimal cluster centroids generated by the FA for improved
clustering accuracy. The FA was executed with the K-means algorithm for data clustering in
a sequential manner to avoid local optimal convergence entrapment. Parallel architecture
was adopted to reduce the execution time for large dimensional datasets, thus making
this class of problems more computationally feasible which otherwise would have been
computationally prohibitive. The proposed algorithm’s performance was evaluated using
four UCI repository datasets using six validity metrics (DBI, sum of squares within (SSW),
sum of squares between (SSB), Dunn-Dunn index, accuracy, and silhouette coefficient) to es-
tablish the validity of the clustering results. Their results were compared with the standard
parallel K-means algorithm showing a better clustering result with higher accuracy.

The FA was hybridized with fuzzy C-means in [16]. The fuzzy C-means (FCM)
algorithm is a variant of the K-means algorithm that uses a generalized least square
objective function to generate fuzzy partitions and prototypes for numerical data [39].
The FA was integrated with the FCM to generate initial optimal cluster centroids for the
FCM and avoid the latter from converging into local optimal. The performance of the
hybridized FCM-FA was investigated using various real-world datasets and compared with
other algorithms. The experimental results showed a better and more effective clustering
algorithm. In the same vein, Nayak et al. [32] leveraged the global search capacity of the FA
to assist the classical K-means in escaping convergence into local minimal in their proposed
firefly-based K-means (FA-K-means). Their simulation results showed that the hybrid
algorithm can efficiently handle the clustering problems without the K-means getting
trapped into local minimal and faster convergence.

The FA was integrated with the canopy pre-clustering algorithm in [31] and hybridized
with K-means. The canopy pre-clustering algorithm uses an approximate and inexpensive
distance measure to partition initial data into overlapping subsets tagged as canopies.
The main clustering is then performed using distances between points that occur in the
common canopy [40]. The Haberman’s survival dataset from the UCI repository was
used to investigate their proposed algorithm’s performance. The result showed that the
proposed data clustering algorithm had a better classification accuracy when compared
with the traditional K-means algorithm.

Two variants of the FA were hybridized with K-means by [6] to resolve the K-means
algorithm’s local optimal trap and initialization sensitivity problems. Their hybrid model
was based on the FA’s unique property of automatic sub-division and ability to tackle
multimodal optimization problems of the firefly algorithm. To improve the performance
of the FA, matrix-based search parameters and dispersing mechanisms were embedded
into the two FA variants. These enhance the exploration and exploitation capability of
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the variants. In the first variant, a randomly generated control matrix replaces the FA’s
attractiveness coefficient to elevate the one-dimensional search mechanism to a multi-
dimensional one. In the second variant, fireflies with high similarities are moved to a
new position using the dispersing mechanism for global exploration. The dispersing
mechanism introduces enough variance between fireflies to increase search efficiency. Their
proposed algorithms were evaluated on 15 UCI datasets and a skin lesion dataset. The
algorithms significantly outperformed the classical K-means algorithm in performance and
distance measure.

The FA-based-K-means hybrid algorithms have also been applied in solving some
real-life problems. The FA-K-means algorithm was applied for color image quantization,
computer graphics, and processing problems to reduce colors in an image with minimum
distortion [41]. The hybrid algorithm was tested on three commonly used images and
the results were compared with the outputs from classical K-means and conventional FA.
Their algorithm produced a better result than the baseline techniques. A hybrid algorithm
that integrated FA-based K-means with wavelet transform and FA-based support vector
regression was proposed by [42] as a three-stage forecasting model to develop a prediction
system for export trade value. The FA-based K-means was adopted to perform cluster
analysis on the export trade value dataset. The prediction model was then built for each
cluster, resulting in better performance of the prediction system.

In Kaur et al. [18], the FA-based K-means algorithm was applied for data-clustering
purposes in the clustering-based intrusion detection system (IDS), which replaced the
regular signature-based IDS. The clustering phase was used to build the training model for
the IDS, which then evaluated the test set using classification. Compared with the results
from other clustering algorithms, an impressive result was observed when the system
was tested on the NSL-KDD (network security laboratory–knowledge discovery dataset).
K-member fuzzy clustering was integrated with the FA by [43] for a combined anonymizing
algorithm for privacy preservation in social networks. In the hybrid algorithm, the modified
version of the fuzzy C-means—the K-member fuzzy algorithm—is employed for creating
balance clusters, with each cluster having at least K-members. The FA is then used to
optimize the clusters to anonymize the network graph and data. The system was tested
using four social network databases and observed a minimal loss of information on the
published graph and data.

Using a firefly-based K-means hybrid algorithm, a meteorological system was built to
accurately and quickly estimate reference evapotranspiration [37]. Reference evapotranspi-
ration is used in designing irrigation schedules, determining crop water requirements, and
planning and managing agricultural water resources when the available meteorological
data are limited. They coupled K-means clustering and FA with a novel kernel extreme
learning machine model alongside limited meteorological data ranging from 5 to 40 with
pooled temperature data from 26 weather stations in parallel computation to estimate
monthly evapotranspiration in the Poyang Lake basin of South China. Their algorithm
outperformed the existing methods in terms of the count of absolute errors. There was a
significant reduction in the computation time recorded by the proposed parallel algorithm
compared with its sequential counterpart and other competing existing methods.

Most of the existing methods focused on addressing the fundamental problems of local
optimal convergence and initialization sensitivity of the K-means algorithm except [30,31].
Hence, all except [31] used the convectional K-means algorithm or its fuzzy c-means vari-
ants in their hybridization with the FA. A parallel implementation approach was adopted
by [30] to reduce the computation time for high-dimensional datasets. In Nayak et al. [31],
the problem of the curse of dimensionality is also considered; the authors incorporated the
canopy pre-clustering method along with their proposed firefly-K-means hybridization
algorithm. The canopy pre-clustering method requires two parameter specifications of T1
and T2 representing the two distance thresholds required to determine the canopy center
that a data point will be assigned to, in order to specify the accurate number of clusters.
Determining the accurate distance thresholds for canopy formation for optimum clustering
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is difficult. In this work, we aimed to achieve better clustering robustness, clustering
optimality and efficient clustering results with reduced computational time when dealing
with the issue of high-dimensional datasets.

3. Methodology

This section describes the classical FA model, the conventional K-means algorithm
model, the central limit theorem, and its application in the design of a scalable K-means
algorithm. It also presents the hybridization models of the CLT-based hybrid FA-K-means
algorithm for the automatic clustering problem. The DBI is also described.

3.1. Firefly Algorithm

The FA is a nature-inspired metaheuristics algorithm developed by Yang et al. [44].
It is characterized as a swarm-based metaheuristic optimization algorithm with a high
convergence rate and short execution time compared to other metaheuristic techniques.

Fireflies emit bioluminescence flashes as a signaling system to communicate among
themselves. The signaling system uses the flashing rate, the flashes’ intensity, and the
amount of time between the flashes to pass a message across to other fireflies. The brightness
of a firefly flash and the timing accuracy of the flashes determines its attractiveness [44]. The
characteristics of the signaling system inherent in the firefly formed the basis for developing
the FA. A nonlinear term based on the exponential decay of light absorption and the inverse
square of light variation with distance is applied in simulating the variation in the intensity
of the light flashes of the firefly to determine its attractiveness [44].

In finding the optimization problem’s solution vector, the FA algorithmic equation is
given in Equation (1), illustrating the firefly’s movement from point i to point j

Xt+1
i = Xt

i + β0e−γr2
ij
(

Xt
j − Xt

i

)
+ αεt

i (1)

where:

α—a scaling factor that controls the random walk step sizes.
β0—the attractiveness constant when the distance between two fireflies equals zero, that is,
rij = 0.
γ—the scale-dependent parameter that controls the visibility of the fireflies.

β0e−γr2
ij
(

Xt
j − Xt

i

)
—gives the nonlinear attractiveness of a firefly, which varies with distance.

αεt
i —the randomization term (where εt

i refers to the use of Gaussian distribution for
generating random values at each iteration).

The distance between two fireflies can be defined as the Cartesian distance between
them. Sometimes, it could be the delay time in a routing problem or even the Hamming
distance between them for combinatorial problems. The firefly’s brightness is associated
with its objective landscape with its position as the indicator; thus, its attractiveness is
determined by its relative positions and relative brightness in relation to another firefly.
This necessitates a paired comparison of fireflies.

Three assumptions are made in the basic design of the FA: one, all fireflies are consid-
ered as unisex; two, the attractiveness of a firefly is directly proportional to its brightness;
and three, the fitness function landscape determines the brightness of the flashlight pro-
duced by any firefly. The distance and intensity of light emitted into the atmosphere affects
the brightness of any firefly. This is illustrated in Equation (2).

I(r) = I0e−γr2
(2)

where:

I0—the intensity of light when r = 0.
γ—the coefficient of light absorption.
r—the distance.
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The distance between two fireflies is illustrated by Equation (3)

rij = ‖xi − xj‖ =

√√√√ d

∑
k=1

(
xi,k − xj,k

)2
(3)

where:

d is the dimension of the problem.

For an automatic clustering problem, a given dataset DS = {ds1, ds2, . . . , dsn} with
dimensions di(i = 1, 2, . . . , n) is required to be partitioned into non-overlapping groups
called clusters C = {c1, c2, . . . , ck} with cluster centers cci(i = 1.2. . . . , k) such that:

Ci ∩ Cj = ∅, i, j = 1, 2, . . . , K, i 6= j (4)

C1 ∪ C2 ∪ . . . ∪ Ck = DS (5)

where:

Ci DS and Ci 6= 0, i = 1, 2, . . . , K

At the initialization stage, a population of size n is defined as X = (x1, x2, . . . , xn) as a
representative data point with reference to a clustering problem where x is a k x d-dimensional
vector DSn×b defined as X = x1, x2, . . . , x k = ( x11, x12, . . . , x1d), ( x21, x22, . . . , x2d),
. . . , ( xk1, xk2, . . . , xkd). The FA uses Equation (5) as the optimization function to minimize
the sum of the distance between the datasets ds and the cluster center cc with the lower
and upper bound set as min{ds1, ds2, . . . , dsd} and max{ds1, ds2, . . . , dsd} represented as
lb = (lb1 , lb2, . . . , lbd) and ub = (ub1 , ub2, . . . . . . .ubd), respectively, for the number of
groups in the population.

To find the solution to the clustering problem, the ith particle Xi is evaluated using
Equation (6)

Xi = rand (1, k× d) . ∗(ub− lb) + lb (6)

where rand(1, k × d) represents a vector of uniformly distributed random integer numbers
with values between 0 and 1. The FA algorithm uses the squared error function shown in
Equation (7) as its objective function.

f (DS, C) = ∑n
i=1 min

{
‖dci − cj‖2

∣∣∣j = 1, 2, . . . , k
}

(7)

For cluster analysis, the cluster centers are the decision variables, and the cluster
validity index is used as the fitness function to evaluate the quality of each firefly with
respect to its light intensity.

For a more efficient clustering task, the concept of mutation strategy suggested by [38]
is incorporated to improve the exploitation and exploration of the FA. The mutation
operator probability represented by Equation (8) is used for additional diversity among the
swarm of fireflies.

Mp = f ((xnew)− f (xold) (8)

where f (xnew) is the fitness value of the new firefly and f (xold) is the fitness value of an
old firefly. For optimum performance of FA, Kumar and Kumar [28] suggested the range
of values for the algorithm parameters β, γ, and α. The mutation strategy leverages the
desirable features of the attractive fireflies added to the less bright fireflies to enhance
their attractiveness. The mutation probability is used to calculate the extent of the feature
enhancement modification of any identified less bright firefly, such that fireflies with
low light intensity have a higher mutation probability. In comparison, those whose light
intensity is high have a lower mutation probability [38]. The introduction of the mutation
probability ensures that good-quality solutions are not reduced and low-quality solutions
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are improved. The basic algorithm listing for the standard FA can be found in [24], while
the improved FA used in this paper is given in Algorithm 1 [38].

The choice of using the FA over other metaheuristic algorithms for improving the
clustering capability of the classical K-means algorithm is justified by the track record of
the application of FA in handling similar clustering problems as presented in the literature.
Highlights of some of the outstanding performances of the FA in achieving better clustering
results are discussed in the extensive experimentation presented in [38].

Algorithm 1: Pseudocode for the improved FA

Input

Output
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

Data points X = {x1, x2, . . . , xn}

Obtained best location : x1min
Begin

Define the initial parameters for the firefly algorithms : MaxGen, β, γ, α, and n
Specify the fitness function f it f unc(a), 3 a = (a1, a2, . . . , aD)

iter

Generate n initial positions of fireflies (i = 1, 2, . . . , k)
Calculate the f it f unc(a) to generate the light intensity Linti of firefly a f ire f ly(i)

Do
for i = 1:n

for j = 1 : n
if Linti < Lintj

Move a f ire f ly(i) towards a f ire f ly(j) using Equations (2) and (3);
end

Compute MP = f f
(

a f ire f lynew

)
− f f

(
a f ire f lyold

)
Execute mutation ()
End

Compute the attractiveness variance with distance r using exp(−γr)

Compute new fitness value for all fireflies
Accept new solutions with the best fitness
End

Perform firefly light intensity Linti update
Increment algorithm counter iter = iter + 1
Perform α reduction by a factor;

While iter < MaxGen
End

3.2. K-Means Algorithm

The K-means algorithm uses the Euclidean distance as the objective function to group
N data points of D-dimensions into a predefined number of clusters k. The algorithm
selects a user-specified k number of data points at the initialization level to represent the
initial cluster centroids. Two significant steps follow this: the assignment step and the
centroid update step, which are iteratively repeated until the convergence condition is
achieved. In the assignment step, the algorithm calculates the distance of each data point
from the cluster centroids and assigns it to the closest cluster. The centroid update is then
performed by calculating the cluster’s mean to find a new cluster center. The algorithm
stops when a maximum number of iterations has been reached or when there are no longer
changes in the centroid vectors over many iterations. According to [45–48], the basic steps
of the K-means algorithm are:

i. Perform an initial partition into k number of clusters based on user-specified k.
ii. Repeat steps 3 and 4 until cluster membership is stable.
iii. Assign each data object to the closest cluster to it to generate a new partition.
iv. Perform cluster center update.

The pseudocode for the basic steps of the classical K-means algorithm is given in
Algorithm 2 [23].
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Algorithm 2: Standard K-means Pseudocode

Input :Array D {d1, d2, . . . , dn} //Input Dataset
k //Specified k number of clusters

Output :FCC = { f cc1, f cc2, . . . , f cck}//Final cluster centroids
1 Begin
2 //Parameter Initialization
3 A = ( a1, a2, . . . , an}) //dataset
4 RCC = ( rcc1, rcc2, . . . , rcck })//Select initial cluster centroids randomly
5 Do
6 //Calculations of Distance
7 for i = 1 to n do
8 for j = 1 to k do
9 Compute data objects’ Euclidean distance to all clusters
10 end j
11 //Data object Assignment to clusters
12 Assign data objects to the closest cluster
13 end i
14 //Updating Cluster centroid
15 Evaluate the new cluster centroid
16 While cluster centroids’ difference of two consecutive iterations are not the same

End

The number of distance calculations in the convectional K-means algorithm increases
as the data points in a dataset increase. This increases the computation time of the algorithm.
As a result, the classical K-means scalability in terms of a high-dimensional datasets is
poor. There is a significant performance increase and efficiency in the K-means algorithm’s
clustering process if the distance calculations required are significantly reduced.

Some distance-calculation reduction strategies have been proposed in the literature.
The use of Kd tree-based techniques was suggested by [48,49] and the single pass method is
another strategy proposed by [50,51]. For these two techniques, the uniformity of the cluster
centroid is not guaranteed. In view of this, Jin et al. [52] proposed the exact method, which
corrects the approximate cluster centroid as an improvement on the earlier techniques. In
Domingos and Hulten. [53], a general framework for scaling machine learning algorithms
was developed and applied to K-means. The objective was to develop a system that
guarantees results close to what is obtainable for infinite data points while minimizing the
running time. Their method is based on computation of bounds for the loss as a function of
the number of data points used at each step.

A distance-calculation reduction strategy inferred from the classical central limit
theorem was proposed by [54]. It involves making inferences from a few small samples
of data points to avoid exhaustive comparisons between the data points and centroids.
This method is incorporated in this hybridization of K-means with the FA for automatic
clustering of high-dimensional datasets.

3.3. The Central Limit Theorem

The classical central limit theorem (CLT) is fundamental and popular in probability
theory and inferential statistics. It is mostly applicable in many practical scenarios where
the exhaustive study of the entire population of interest is not feasible. In CLT, samples from
large populations are used to draw a meaningful conclusion about the population. The
central limit theorem states that “Given a population with a mean µ and standard deviation
σ, regardless of the distribution of the population; the distributions of means µ1 ··· µn, of
n samples of size s collected from the population approaches a normal distribution with
mean µ and standard deviation σ√

s as n, s→ ∞ ”.
The statistical tradition for sample size given as n, s ≥ 30 is considered sufficiently

large enough for the inference to be true [54]. According to Olukanmi et al. [54], the
K-means algorithm is a particular case of the classical CLT with k = 1 (which can be
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generally inferred for other values of k) where the entire dataset is regarded as a single
cluster k with the µ representing the centroid. In K-means clustering, the central µ for
the entire population can be obtained by clustering several data samples from the entire
population to find the means µ1 ··· µn of n samples of size s which represents the centroids
of the n data samples. Clustering the collection of the n data sample means µ1 ··· µn (the
centroids for the sample means) using k = 1 produces a central mean µ of the entire
population as n, s grows in value.

Based on this basic understanding of the central limit theorem and its inference on the
design of the K-means algorithm, the CLT-based version follows these simple steps [54]:

i. Select n number of samples such that n, s ≥ 30.
ii. Use the K-means algorithm on the selected data samples and store the cluster centroids

of each sample.
iii. Combine the n numbered cluster centroids obtained from step 2 to produce a new

population of cluster centroids of size nk.
iv. Perform the data assignment step using the centroids obtained from step 3.

The pseudocode for the basic steps of the CLT-based K-means algorithm is given in
Algorithm 3.

3.4. The Proposed CLT-Based FA-K-Means Model

The proposed improved hybridized algorithm focuses on improving the scalability
of the FA-K-means algorithm on high-dimensional datasets. The advantages of FA and
K-means have been combined and enhanced by reducing the computation time required
for clustering datasets with massive data points and those with higher dimensions. An
improved FA suggested by [38] introduced a mutation priority into the classical FA to main-
tain a good exploitation and exploration balance during the search process. The improved
FA increases convergence speed, population diversity, and classical FA’s solution accuracy.

For the implementation strategy of our algorithm, the search process is initiated by
the FA for a global search of the search space. This is preferred because of its ability for
strong exploration of the search space. The K-means is then used as a local search algorithm
for intense exploitation around the promising region, thus enhancing the intensification
process of the proposed hybrid algorithm. The proposed hybrid algorithm’s efficiency and
effectiveness are measured using the DBI discussed in the next section. The DBI assists in
finding the best partition and also assists in determining the optimal number of clusters.

The search process commences by generating an initial population of fireflies, each
representing a candidate solution. The fitness of each candidate solution is evaluated using
the DBI cluster validity index. Subsequently, in an iterative manner, new solutions with
the best fitness values are updated using the operators of the firefly algorithm. The results
obtained from the first phase are improved using the K-means algorithm. The best results
generated by the FA algorithm are passed on to the K-means algorithm as its initial cluster
centroids. The execution of the two phases to convergence forms a complete run cycle of
the proposed algorithm. The best fitness with the smallest DBI value of the two cycles is
compared, and the best of the two is selected as the optimal value for the run. The steps
illustrated above are depicted in Algorithm 4, and the implementation flowchart of the
proposed algorithm is presented in Figure 1.
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Algorithm 3: Pseudocode for CLT-based K-means

Input:

Output:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

Array D {d1, d2, . . . , dn} //input Dataset
k //specified number of clusters
ns //number of samples
ss //sample size

FCC = { f cc1, f cc2, . . . , f cck}//final cluster centroids
For I = 1 to ns

//Generate random samples from dataset
SA(i) = Datasample (DS, ss) //select Sample Dataset randomly

//Generate optimal cluster centroids for the data sample
//Run K-means algorithm on the data sample

Begin
//Parameter Initialization
SA(i) = ( sa1, sa2, . . . , sass}) //dataset
RSACC(i) = ( rsacc1, rsacc2, . . . , rsacck })//Select initial cluster centroids randomly
Do
//Calculations of Distance

for i = 1 to ss do
for j = 1 to k do

Compute data objects’ Euclidean distance to all cluster centroids
end j

//Data object assignment to clusters
Assign data objects to the closest cluster

end i
//Updating cluster centroids

2Evaluate the new cluster centroid
IFCC(i) = {i f cc1, i f cc2, . . . , i f cck}
While cluster centroids’ difference of two consecutive iterations are not the same

//Keep the generated sample cluster centroids as a representative dataset
Add the generated sample cluster centroid to the existing collation of cluster centroids
IFCC = { i f cc1, i f cc2, . . . , i f cck×ns}End

//
//Generate final cluster centroids from the combined cluster centroids obtained from each data sample

IFCC = {i f cc1, i f cc2, . . . , i f cck×ns}
//Run K-means on collated cluster centroids as the new datasets

Begin
//Parameter Initialization
IFCC = { i f cc1, i f cc2, . . . , i f cck×ns}//collated cluster centroids form the new dataset
RIFCC = ( ri f cc1, ri f cc2, . . . , ri f cck })//Select initial cluster centroids randomly
Do
//Calculations of distance

for i = 1 to (ns× k) do
for j = 1 to k do

Compute data objects’ Euclidean distance to all clusters
end j

//Data object Assignment to clusters
Assign data objects to the closest cluster

end i
//Updating Cluster centroid

Evaluate the new cluster centroid
While cluster centroids’ difference of two consecutive iterations are not the same

End
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Algorithm 4: Pseudocode for the HFA-K-means Algorithm

Input:

Output:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Data point D = {d1, d2, . . . , dn}

Optimal Cluster centers OCC = {occ1, occ2 . . . , occn}
Begin
Randomly create a k number of cluster centres as the initial population
Evaluate the objective function using the DB cluster validity index
for i = 1 to n

Compute the cost function to determine the best individual using the Euclidean distance
if current Pop(i).Cost <= BestSol.Cost

Update Current Pop(i) as the best solution;
end if

end for
while iteration is not more than the maximum do

for i = 1 to n
for j = 1 to n

if Pop(j) < Pop(i).Cost
Use the firefly operators to move Pop(i) towards Pop(j)
if NewSol.Cost <= NewPop(i).Cost

NewPop(i) is made the new solution;
if NewPop(i).Cost <= BestSol.Cost

Update NewPop(i) as the new solution
end if

end if
end if

end For
end for

end while
Apply CLT-based K-means using output from FA
Compute cost function using optimal clusters from CLT-based K-means
if CLTKmeans.Cost <= BestSol.Cost

BestSol.Cost = CLTKmeans.Cost
end if
end
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3.5. Davies Bouldin Index

The Davies Bouldin index (DBI) is a cluster validity index introduced by [34]. In the
DBI, the quality of clustering is evaluated using the mean distances of data points from
the centroid (intra-cluster distance) and the mean distances between the cluster centroids
(inter-cluster distance) based on Equation (9).

Yi =

[
1
Ai

∑C∈Ai
Z(P, ci)

t
] 1

t
(9)

where Z(P, ci) represents the distance between the data points in Ai and its centroid ci and
t ≥ 1 represents an independently selected integer. The value Yi is the average Euclidean
distance of the objects from the centroid with the cluster when the value of t = 1. However,
when the value of t = 2, Yi represents the standard deviation of the objects’ distances
from the centroid within a cluster. If Lij represents the inter-cluster distance between two
centroids ci and cj, then

Lij = Z
(
ci, cj

)
, i 6= j (10)

let Zi be defined as:

Zi = max

{
Yi + Yj

Lij

∣∣∣∣∣1 ≤ i, j ≤ K, i 6= j

}
(11)

Then, the DBI is given as:

DBval(A, Z) =
1
K ∑1

K Zi (12)

where K is the number of clusters.

3.6. Computational Complexity of the HFA-K-Means Algorithm

The proposed HFA-K-means clustering method is simple in terms of complexity, mak-
ing it easy to implement for the problem at hand. The HFA-K-means is designed to retain
the two inner loop structures of the classical FA when going through the population n
and one outer loop for evaluation in terms of the maximum number of function evalu-
ations (MaxFE). So, the complexity in the extreme case is as of the standard FA, which
is O

(
n2MaxFE

)
. Moreover, as n is small (typically the value of n = 25 in our case), and

MaxFE is large (MaxFE = 50,000), the computation cost is relatively inexpensive because
the algorithm complexity is linear in terms of MaxFE. Therefore, considering the clustering
objective, in this case, the algorithm’s overall computational complexity is O(n.K.MaxFE).

4. Experimentation, Performance Evaluation, and Discussion

This section discusses the experimental configuration of the proposed enhanced HFA-
K-means with the parameter settings for its performance evaluation. The benchmark
datasets used in validating the HFA-K-means are also described. The simulation results
and discussion on the proposed algorithm are presented alongside its comparison with
other results found in the literature.

4.1. System Configuration

Experiments were carried out using a 2.80 GHz Intel® Core™ i7-1165 processor with
8 GB RAM on the Windows 11 OS Version 21H2. The proposed algorithm was programmed
in MATLAB R2020b and used the IBM SPSS statistics Version 25 to validate the experimental
results’ statistically significant differences.

4.2. Parameter Settings

The proposed HFA-K-means algorithm was set up using the following parameter
settings: the population size is set using the established statistical tradition of a population
size ≥ 30. Therefore, a population size of n = 40 + 2k is adopted for the FA algorithm
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and for the size of the dataset subsets used in the K-means phase of the HFA-K-means
algorithm. The MaxFE (maximum function evaluation) is 50,000; mutation coefficient m is 2;
attraction coefficient β is 2, the coefficient for light absorption γ is 1; and the damping ratio
α for the mutation coefficient is 1. The parameter configuration for the different algorithms
is detailed in Table 1.

Table 1. Parameter Setting of Algorithms.

GA [55,56] ABC [25] DE [25] PSO [25] FA [24] IWO [25] TLBO [55] SOS [57]

Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value Parameter Value ParameterValue Parameter Value

n 25 n 25 n 25 n 25 n 25 n 25 n 25 n 25

Pc, Pm
0.8,
0.3 a 0.009 CRmin,

CRmax

0.2,
1.0

W1,
W2

1.0,
0.99 β0 2 s 5 m 2 Pc 0.2

MP 0.02
#nOn-
looker
bees

25 F 0.8 τ1, τ2
1.5,
2.0 γ 1 Σ1, Σ2

0.5,
0.001 Fl, Fu 0.2, 0.8

Kmin 2 m 2 Kmin 2 Kmin 2 Kmin 2 e 2 mr 0.02
Kmax 16 MaxFE 50,000 Kmax 256 Kmax 256 Kmax 256 Kmax 256

MaxFE 50,000 MaxFE 50,000 MaxFE 50,000 MaxFE 50,000 MaxFE 50,000 MaxFE 50,000 MaxFE 40 + 2k

Remarks: n: population size; Pc: crossover probability; Pm: mutation probability; W1: inertia weight; W2: inertia
weight damping ratio; τ1: personal learning coefficient; τ2: global learning coefficient; Kmin and Kmax denote,
respectively, the maximum and minimum number of clusters that can be encoded in a single trial solution vector
for GA, DE, PSO, FA and IWO; CR: crossover rate; F: scaling factor; Fl: lower bound of scaling factor; Fu: upper
bound of scaling factor; mr: mutation rate; MP: mutation probability; β0: attractiveness; γ: light absorption
coefficient; e = variance reduction exponent; Σ1 = initial value of standard deviation; Σ2 = final value of standard
deviation; s = maximum number of seeds. Note that FADE [19], PSODE [47], IWODE [47], FAPSO [19], and
FATLBO [19] use the same parameter representation scheme as their respective standard algorithms as provided
in the given references.

4.3. Data Sets

The characteristics of data samples, such as dimensionality, data distribution, and noise,
significantly influence the performance of clustering algorithms. Given this, 20 datasets
from different domains with various characteristics were used to investigate the pro-
posed algorithm’s efficiency. Specifically, among the datasets are 12 synthetically gener-
ated high-dimensional datasets, including three A-datasets (A1, A2, and A3), three Birch
datasets (Birch1, Birch 2, and Birch 3), two DIM datasets (DIM002 and DIM1024) and four
S-datasets (S1, S2, S3, and S4). The A-datasets and the Birch datasets are two-dimensional,
with the A-datasets having varying clusters: 20, 35, and 50, respectively, while the Birch
datasets have a uniform number of clusters which is 100, each with varying structures.
The DIM 002 dataset has 15 dimensions with clusters, while the DIM1024 has 1024 di-
mensions with 16 clusters characterized by well-separated clusters. The S-datasets are
spatial-distribution-based two-dimensional datasets with 15 clusters of varying complexity.
Additionally, included among the datasets are two high-dimensional UCI datasets: Letter
with 16 dimensions and 26 clusters, and Yeast with 8 dimensions and 10 clusters; two
high-dimensional RGB images, Housec5 and Housec8, have 3 dimensions and 256 clusters,
each having 34,112 data points. A two-dimensional shape set, D31, with 31 clusters was
also included. Two-dimensional Mopsil-location datasets (Finland) with four clusters and
one two-dimensional miscellaneous dataset with three clusters completed the number of
datasets used. The summary of the 20 datasets is presented in Table 2.
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Table 2. The characteristics of twenty high-dimensional datasets.

Datasets Dataset Types Dimension of
Data

Number of Data
Objects

Number of
Clusters References

A1 Synthetically generated 2 3000 20 [58–60]
A2 Synthetically generated 2 5250 35 [58–60]
A3 Synthetically generated 2 7500 50 [58–60]

Birch1 Synthetically generated 2 100,000 100 [38,40,61]
Birch2 Synthetically generated 2 100,000 100 [38,40,61]
Birch3 Synthetically generated 2 100,000 100 [58,60,61]
Bridge Grey-scale image blocks 16 4096 256 [60,62]

D31 Shape sets 2 3100 31 [60,63]
Dim002 Synthetically generated 2–15 1351–10,126 9 [58,60,64]
Dim1024 High-dimensional 1024 1024 16 [58,60,65]
Housec5 RGB image 3 34,112 256 [60,62]
Housec8 RGB image 3 34,112 256 [60,66]

Letter UCI dataset 16 20,000 26 [60,62]
Finland Mopsi locations 2 13,467 4 [60,67]

S1 Synthetically generated 2 5000 15 [58,60,68]
S2 Synthetically generated 2 5000 15 [58,60,68]
S3 Synthetically generated 2 5000 15 [58,60,68]
S4 Synthetically generated 2 5000 15 [7,58,60,68]

T4.8k Miscellaneous 2 8000 3 [60,69]
Yeast UCI dataset 8 1484 10 [60,62]

4.4. Metrics for Performance Evaluation

At the first instance, experiments were conducted coupling seven other metaheuristic
algorithms (ABC, IWO, SOS, TLBO, DE, PSO and genetic algorithm (GA)) with K-means
using the same framework as the proposed HFA-K-means algorithm. Their performances
were evaluated and compared with that of the proposed HFA-K-means algorithm over
the 20 high-dimensional datasets using the DBI as the cluster validity index. This was to
investigate the performance of the proposed HFA-K-means algorithm in comparison with
these metaheuristic-based K-means hybrid algorithms in order to further justify its selection
as the best option before its comparison with results from the literature. The experimental
results of the performances of these seven metaheuristic-based K-means hybrid algorithms
compared with the proposed HFA-K-means algorithm are presented in Table 3. The non-
parametric Friedman mean rank test was also conducted to further validate the clustering
solution of the various metaheuristic-based K-means hybrid algorithms. The results from
the Friedman mean rank test are presented in Table 4.

The proposed HFA-K-means algorithm was compared with conventional metaheuris-
tic search methods and other FA-based hybrid algorithms for a comprehensive and objective
investigation of the clustering performance. The proposed algorithm was evaluated against
classical FA, K-means, GA, DE, PSO, and IWO with four hybridized metaheuristics algo-
rithms (FADE, PSODE, IWODE, Improved SOSK-means) and other FA variants (FAPSO,
FATLBO, and FADE). The DBI was used to evaluate the proposed algorithm’s performance
over 20 high-dimensional datasets with dimensions between 9 and 256 and dataset sizes
between 1000 and 100,000, as shown in Table 2.
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Table 3. Computation results for Improved FA-K-means and other seven metaheuristic-based K-means hybrid algorithms on twenty high-dimensional datasets.

Dataset HFAK-
Means HABCK-Means HIWOK-Means HSOSK-Means HTLBOK-Means HDEK-Means HPSOK-Means HGAK-Means

Min Max Mean Std.
Dev Min Max Mean Std.

Dev Min Max Mean Std.
Dev Min Max Mean Std.

Dev Min Max Mean Std.
Dev Min Max Mean Std.

Dev Min Max Mean Std.
Dev Min Max Mean Std.

Dev

A1 0.2441 0.3503 0.2942 0.0304 0.2892 0.6123 0.5794 0.0691 0.2387 0.6550 0.2964 0.0866 0.2519 0.3126 0.2768 0.0194 0.2424 0.5902 0.2983 0.0717 0.2638 0.3323 0.2853 0.0148 0.2512 0.5901 0.3017 0.0720 0.5902 0.6116 0.5944 0.0087
A2 0.2186 0.4406 0.3155 0.0746 0.2865 0.6840 0.6594 0.0879 0.2445 0.4275 0.3027 0.0465 0.2530 0.4622 0.3344 0.0573 0.2198 0.5199 0.3407 0.0916 0.2349 0.6776 0.3595 0.1025 0.2226 0.4016 0.2954 0.0493 0.6776 0.6780 0.6778 0.0002
A3 0.7908 0.7922 0.7915 0.0007 0.7796 0.7929 0.7881 0.0036 0.7730 0.9172 0.8402 0.0322 0.8124 0.8743 0.8406 0.0181 0.7908 0.7970 0.7932 0.0026 0.7908 0.7922 0.7912 0.0005 0.7922 0.8019 0.7994 0.0037 0.7909 0.8043 0.7967 0.0054

Birch 1 0.7774 0.8018 0.8001 0.0053 0.7753 0.7965 0.7881 0.0059 0.8081 0.8996 0.8335 0.0204 0.8165 0.8577 0.8345 0.0143 0.8010 0.8018 0.8014 0.0003 0.8010 0.8018 0.8010 0.0002 0.8010 0.8025 0.8020 0.0005 0.8010 0.8034 0.8018 0.0006
Birch 2 0.1585 0.2154 0.1880 0.0198 0.5070 0.5082 0.5074 0.0004 0.1617 0.2071 0.1852 0.0117 0.1511 0.2170 0.1886 0.0192 0.1630 0.2490 0.1972 0.0231 0.1740 0.2318 0.1977 0.0155 0.1471 0.2226 0.1909 0.0167 0.5070 0.5071 0.5070 0.0000
Birch 3 0.6130 0.7160 0.6539 0.0421 0.7161 0.7438 0.7244 0.0082 0.5188 0.7973 0.6264 0.0747 0.4679 0.7413 0.6631 0.0690 0.5187 0.7139 0.6155 0.0578 0.4217 0.7160 0.6160 0.0882 0.4928 0.7179 0.6150 0.0722 0.7160 0.7660 0.7356 0.0223
Bridge 0.3289 0.3714 0.3489 0.0132 0.5202 0.9266 0.6549 0.1471 0.3110 1.0576 0.5210 0.1509 0.3168 0.6670 0.5014 0.1096 0.3064 0.5795 0.3667 0.0751 0.3044 0.5810 0.3589 0.0567 0.3216 0.6117 0.4277 0.0930 0.4650 0.6305 0.5930 0.0551

D31 0.5773 0.7929 0.6923 0.0658 0.8017 0.8556 0.8271 0.0114 0.5385 0.8354 0.7251 0.0858 0.5906 0.8701 0.7374 0.0821 0.4945 0.8363 0.7056 0.0845 0.5503 0.7930 0.7134 0.0669 0.6315 0.8412 0.7290 0.0679 0.7930 0.8591 0.8236 0.0237
Dim002 0.7309 0.7309 0.7309 0.0000 0.7160 0.7841 0.7563 0.0160 0.7309 0.8429 0.7862 0.0304 0.7046 0.9054 0.8395 0.0599 0.7309 0.7614 0.7552 0.0110 0.6872 0.7377 0.7293 0.0101 0.7309 0.7913 0.7547 0.0217 0.7311 0.7928 0.7586 0.0183
Dim1024 0.3717 1.1511 1.0698 0.1783 1.8425 1.9023 1.8814 0.0166 0.8700 1.9619 1.8897 0.2403 0.3701 2.0337 1.8350 0.3987 1.4323 1.5769 1.5023 0.0306 1.4495 1.6282 1.5808 0.0541 0.7368 2.0528 1.9086 0.3991 1.7855 1.8308 1.8122 0.0137
Housec5 0.2465 0.4808 0.3255 0.0572 0.5159 0.7018 0.6150 0.0622 0.2730 0.6019 0.3405 0.0671 0.2349 0.4649 0.3321 0.0669 0.2576 0.5400 0.3558 0.0927 0.2815 0.5557 0.4950 0.0528 0.2819 0.4987 0.3333 0.0464 0.4987 0.6445 0.6073 0.0643
Housec8 0.3131 0.4720 0.4164 0.0460 0.3941 0.5715 0.5264 0.0376 0.3487 0.5184 0.4113 0.0435 0.3246 0.7094 0.4276 0.0874 0.2689 0.5209 0.3926 0.0587 0.3519 0.4874 0.4401 0.0438 0.3009 0.4781 0.4110 0.0422 0.4644 0.5212 0.5097 0.0232

Letter 0.7548 0.8157 0.7921 0.0231 0.8457 0.9814 0.9368 0.0359 0.6294 1.3885 1.1558 0.2253 0.2180 1.3460 0.9572 0.3256 0.3461 0.9189 0.8158 0.1167 0.7773 0.8305 0.8064 0.0146 0.7701 0.8880 0.8233 0.0346 0.8033 0.9284 0.8616 0.0261
Finland 0.2042 0.4789 0.3061 0.0910 0.2193 0.4994 0.4424 0.0553 0.1833 0.7142 0.3327 0.1364 0.2000 0.6692 0.3628 0.1282 0.2212 0.4397 0.3105 0.0724 0.1797 0.4393 0.2799 0.0784 0.2153 0.5731 0.3632 0.1305 0.4393 0.5766 0.4473 0.0305

S1 0.6801 0.7767 0.7714 0.0215 0.7660 0.7903 0.7730 0.0057 0.6693 0.8565 0.8074 0.0403 0.6395 0.8380 0.8068 0.0428 0.7500 0.7767 0.7751 0.0060 0.7741 0.7767 0.7755 0.0011 0.5897 0.7969 0.7693 0.0425 0.7746 0.7973 0.7800 0.0053
S2 0.5412 0.9898 0.7332 0.1215 0.7382 0.7700 0.7453 0.0067 0.5991 0.7928 0.7082 0.0699 0.6173 0.8288 0.7291 0.0629 0.4908 0.7470 0.7029 0.0729 0.6072 0.7391 0.7103 0.0510 0.5469 0.7470 0.7053 0.0574 0.7392 0.7470 0.7447 0.0030
S3 0.3782 0.6038 0.5073 0.0641 0.7126 0.7305 0.7174 0.0047 0.3878 0.6352 0.4823 0.0599 0.3824 0.7527 0.4891 0.0773 0.3853 0.5973 0.4883 0.0529 0.3868 0.6838 0.4993 0.0727 0.3863 0.5955 0.4846 0.0600 0.7112 0.7305 0.7162 0.0063
S4 0.6802 0.7690 0.7645 0.0198 0.7684 0.7810 0.7761 0.0032 0.6714 0.8334 0.7962 0.0329 0.6784 0.8170 0.7928 0.0330 0.6951 0.7699 0.7641 0.0167 0.7690 0.7696 0.7691 0.0002 0.7229 0.7898 0.7726 0.0152 0.7693 0.7829 0.7773 0.0033

T4.8k 0.0178 0.0227 0.0218 0.0020 0.0213 0.0427 0.0300 0.0067 0.0178 0.3229 0.1248 0.0990 0.0179 0.3341 0.1582 0.0783 0.0176 0.0227 0.0220 0.0017 0.0182 0.0227 0.0220 0.0016 0.0179 0.0227 0.0215 0.0020 0.0218 0.0227 0.0226 0.0002
Yeast 0.4379 0.5559 0.5205 0.0570 0.5882 0.9583 0.8232 0.1141 0.2335 0.5569 0.5286 0.0784 0.7694 0.9057 0.8665 0.0300 0.2248 0.7931 0.6228 0.1514 0.2323 0.5660 0.4892 0.0745 0.2021 0.7869 0.5539 0.1992 0.2986 0.8131 0.6637 0.1409

Overall
average 0.4533 0.6164 0.5522 0.0467 0.6402 0.7717 0.7276 0.0349 0.4604 0.7911 0.6347 0.0816 0.4409 0.7803 0.6487 0.0890 0.4678 0.6776 0.5813 0.0545 0.5028 0.6581 0.5860 0.0400 0.4581 0.7005 0.6031 0.0713 0.6689 0.7424 0.7116 0.0225
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Table 4. Friedman mean rank for the eight metaheuristic-based K-mean hybrid algorithms.

Metaheuristic-Based K-Means Hybrid Algorithm Mean Rank

HFAK-means 2.48
HTLBOK-means 3.21
HDEK-means 3.36
HPSOK-means 3.67
HIWOK-means 4.90
HSOSK-means 5.62
HABCK-means 6.29
HGAK-means 6.48

The summary of the results obtained by the proposed HFA-K-means for the clustering
problem over 20 high-dimensional datasets is presented in Table 5. The results are presented
to show the best, worst, average, and standard deviation values over 20 independent runs
of each of the algorithms on 20 datasets. This signifies the optimal, the worst, the mean,
and the standard deviation of the clustering solutions. The average computation time taken
to achieve the optimal solution for the HFA-K-means is shown in Figure 2. To investigate
the performance gain in terms of the computation time, the HFA-K-means computation
time is compared with the computation time of a standard hybrid of FA and K-means. This
is presented in Figure 3. The computation results of the HFA-K-means are compared with
the classical FA and K-means algorithms. The summary of the results obtained by the
proposed HFA-K-means compared with the classical FA and K-means algorithm for the
problem at hand over 20 high-dimensional datasets is presented in Table 6.

Table 5. Computation result for Improved FA-K-means on twenty high-dimensional datasets.

High-Dimensional Datasets
DB Index

Best Worst Mean Std. Dev

A1 0.2441 0.3503 0.2942 0.0304
A2 0.2186 0.4406 0.3155 0.0746
A3 0.7908 0.7922 0.7915 0.0007

Birch1 0.7774 0.8018 0.8001 0.0053
Birch2 0.1585 0.2154 0.1880 0.0198
Birch3 0.6130 0.7160 0.6539 0.0421
Bridge 0.3289 0.3714 0.3489 0.0132

D31 0.5773 0.7929 0.6923 0.0658
Dim002 0.7309 0.7309 0.7309 0.0000

Dim1024 0.3717 1.1511 1.0698 0.1783
Housec5 0.2465 0.4808 0.3255 0.0572
Housec8 0.3131 0.4720 0.4164 0.0460

Letter 0.7548 0.8157 0.7921 0.0231
Finland 0.2042 0.4789 0.3061 0.0910

S1 0.6801 0.7767 0.7714 0.0215
S2 0.5412 0.9898 0.7332 0.1215
S3 0.3782 0.6038 0.5073 0.0641
S4 0.6802 0.7690 0.7645 0.0198

T4.8k 0.0178 0.0227 0.0218 0.0020
Yeast 0.4379 0.5559 0.5205 0.0570

Average 0.4544 0.6164 0.5522 0.0464

The performance of the HFA-K-means is also compared with results from the literature.
The mean and standard deviation metrics from experiments in this study and that available
in the literature are used for the comparisons. There are three categories of comparisons
with results from the literature. The first category compares with classical metaheuristics
algorithms GA, DE, PSO, and IWO. This is presented in Table 7. The second category com-
pares HFA-K-means with other hybrid metaheuristics algorithms: ISOSK-means, PSODE,
FADE, and IWODE, as shown in Table 8. A comparison with other FA-based hybrid meta-
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heuristics algorithms, FADE, FAPSO, and FATLBO, is considered in the third category. This
can be seen in Table 9.
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Table 6. Comparison of HFA-K-means with FA and K-means over 20 independent program execu-
tions.

High-Dimensional Datasets
HFA-K-Means FA K-Means

Best Worst Mean Std.
Dev Best Worst Mean Std.

Dev Best Worst Mean Std.
Dev

A1 0.2441 0.3503 0.2942 0.0304 0.5901 0.5901 0.5901 0.0000 0.7788 0.7788 0.7788 0.0000
A2 0.2186 0.4406 0.3155 0.0746 0.6776 0.6776 0.6776 0.0000 0.9229 0.9229 0.9229 0.0000
A3 0.7908 0.7922 0.7915 0.0007 0.7908 0.7922 0.7915 0.0007 1.2433 1.2793 1.2631 0.0184

Birch1 0.7774 0.8018 0.8001 0.0053 0.8010 0.8018 0.8013 0.0003 1.2875 1.2875 1.2875 0.0000
Birch2 0.1585 0.2154 0.1880 0.0198 0.5070 0.5070 0.5070 0.0000 0.5882 0.5882 0.5882 0.0000
Birch3 0.6130 0.7160 0.6539 0.0421 0.7160 0.7160 0.7160 0.0000 1.1592 1.1726 1.1650 0.0037
Bridge 0.3289 0.3714 0.3489 0.0132 0.6108 0.6116 0.6113 0.0003 0.9876 0.9876 0.9876 0.0000

D31 0.5773 0.7929 0.6923 0.0658 0.7929 0.7929 0.7929 0.0000 1.3446 1.3446 1.3446 0.0000
Dim002 0.7309 0.7309 0.7309 0.0000 0.7309 0.7309 0.7309 0.0000 1.1535 1.1535 1.1535 0.0000
Dim1024 0.3717 1.1511 1.0698 0.1783 0.9489 1.1511 1.1106 0.0625 3.4291 3.4291 3.4291 0.0000
Housec5 0.2465 0.4808 0.3255 0.0572 0.4987 0.6422 0.5561 0.0721 0.8678 0.8678 0.8678 0.0000
Housec8 0.3131 0.4720 0.4164 0.0460 0.4644 0.5209 0.5068 0.0251 0.6395 0.6395 0.6395 0.0000

Letter 0.7548 0.8157 0.7921 0.0231 0.7548 0.8157 0.7921 0.0231 2.0355 2.0360 2.0359 0.0002
Finland 0.2042 0.4789 0.3061 0.0910 0.4393 0.4393 0.4393 0.0000 0.5461 0.5461 0.5461 0.0000

S1 0.6801 0.7767 0.7714 0.0215 0.7743 0.7767 0.7762 0.0010 1.2048 1.3463 1.3044 0.0455
S2 0.5412 0.9898 0.7332 0.1215 0.7391 0.7391 0.7391 0.0000 1.1230 1.1230 1.1230 0.0000
S3 0.3782 0.6038 0.5073 0.0641 0.7111 0.7111 0.7111 0.0000 1.0750 1.0750 1.0750 0.0000
S4 0.6802 0.7690 0.7645 0.0198 0.7690 0.7771 0.7694 0.0018 1.2354 1.2354 1.2354 0.0000

T4.8k 0.0178 0.0227 0.0218 0.0020 0.0227 0.0227 0.0227 0.0000 0.9649 0.9649 0.9649 0.0000
Yeast 0.4379 0.5559 0.5205 0.0570 0.4379 0.5559 0.5205 0.0570 0.7084 1.7844 1.7257 0.2395

Average 0.4544 0.6164 0.5522 0.0464 0.6389 0.6686 0.6581 0.0122 1.1647 1.2281 1.2219 0.0154

Table 7. Comparison of HFA-K-means with GA, DE, PSO, and IWO on twenty datasets.

High-Dimensional
Datasets.

HFA-K-Means GA DE PSO IWO

Mean Std.
Dev Mean Std.

Dev Mean Std.
Dev Mean Std.

Dev Mean Std.
Dev

A1 0.2942 0.0304 0.6907 0.0420 0.6016 0.0116 0.6662 0.0424 0.6308 0.0265
A2 0.3155 0.0746 0.7549 0.0293 0.7081 0.0348 0.7134 0.0284 0.7483 0.0468
A3 0.7915 0.0007 0.7758 0.0418 0.7349 0.0184 0.7279 0.0287 0.7545 0.0339

Birch1 0.8001 0.0053 0.7976 0.0309 0.7480 0.0171 0.7528 0.0169 0.7644 0.0211
Birch2 0.1904 0.0174 0.6197 0.0361 0.5086 0.0016 0.5876 0.0358 0.5168 0.0052
Birch3 0.6577 0.0647 0.7718 0.0431 0.7488 0.0297 0.7213 0.0306 0.7568 0.0248
Bridge 0.3489 0.0132 - - 0.8292 0.0516 0.9786 0.1331 1.1575 0.0967

D31 0.6923 0.0658 - - 0.8757 0.0302 0.7630 0.0514 0.7896 0.0312
Dim002 0.7309 0.0000 0.6772 0.0664 0.6685 0.0263 0.5823 0.0772 0.6661 0.0403

Dim1024 1.0698 0.1783 - - 1.7678 0.0114 1.8224 0.0481 2.0105 0.0193
Housec5 0.3255 0.0572 - - 0.6190 0.0412 0.7456 0.0679 0.7034 0.0430
Housec8 0.4164 0.0460 - - 0.5245 0.0139 0.6418 0.0858 0.6206 0.0546

Letter 0.7921 0.0231 - - 0.9852 0.0303 2.0354 0.1084 1.2245 0.0416
Finland 0.3061 0.0910 0.4407 0.0009 0.4575 0.0082 0.5761 0.0630 0.5036 0.0398

S1 0.7714 0.0215 0.7006 0.0293 0.7363 0.0150 0.6472 0.0470 0.7572 0.0315
S2 0.7332 0.1215 0.7417 0.0393 0.7256 0.0221 0.6878 0.0318 0.7625 0.0296
S3 0.5073 0.0641 0.7682 0.0395 0.7265 0.0179 0.7261 0.0282 0.7567 0.0333
S4 0.7645 0.0198 0.7663 0.0240 0.7635 0.0180 0.7455 0.0316 0.7809 0.0191

T4.8k 0.0218 0.0020 0.0023 0.0000 0.0228 0.0001 17.5004 22.6863 0.1119 0.0665
Yeast 0.5205 0.0570 - - 0.8053 0.0401 0.7710 0.1219 0.5700 0.1055

Average 0.5526 0.0474 0.6544 0.0325 0.7279 0.0220 1.6696 1.1882 0.7793 0.0405



Appl. Sci. 2022, 12, 12275 21 of 27

Table 8. Comparison of HFA-K-means with ISOS-K-means, PSODE, FADE, and IWODE on 20 high-
dimensional datasets.

High-Dimensional
Datasets

HFA-K-Means ISOSK-Means PSODE FADE IWODE

Mean Std.
Dev Mean Std.

Dev Mean Std.
Dev Mean Std.

Dev Mean Std.
Dev

A1 0.2942 0.0304 0.5911 0.0003 0.5949 0.0086 0.6171 0.0347 0.6525 0.0621
A2 0.3155 0.0746 0.6781 0.0002 0.6912 0.0161 0.6976 0.0215 0.7296 0.0391
A3 0.7915 0.0007 0.7945 0.0011 0.7106 0.0176 0.7085 0.0332 0.7527 0.0319

Birch1 0.8001 0.0053 0.8030 0.0006 0.7256 0.0276 0.7232 0.0257 0.7692 0.0279
Birch2 0.1904 0.0174 0.5071 0.0001 0.5070 0.0002 0.5155 0.0235 0.5176 0.0084
Birch3 0.6577 0.0647 0.7168 0.0004 0.7074 0.0151 0.7012 0.0191 0.7570 0.0247
Bridge 0.3489 0.0132 0.6464 0.0009 0.7141 0.1007 0.6405 0.0709 1.1397 0.0666

D31 0.6923 0.0658 0.8125 0.0070 0.8021 0.0407 0.7788 0.0376 0.7972 0.0514
Dim002 0.7309 0.0000 0.6384 0.0222 0.5975 0.0445 0.6280 0.0607 0.6705 0.0432

Dim1024 1.0698 0.1783 1.1332 0.3795 1.7644 0.0112 1.4759 0.1200 1.9654 0.0261
Housec5 0.3255 0.0572 0.5377 0.0123 2.2408 4.0861 0.5467 0.0287 0.6865 0.0229
Housec8 0.4164 0.0460 0.4919 0.5305 0.5022 0.0315 0.4707 0.0383 0.6344 0.0408

Letter 0.7921 0.0231 0.9683 1.0545 0.9121 0.0628 0.8665 0.0663 1.2057 0.0571
Finland 0.3061 0.0910 0.4427 0.0011 0.4465 0.0060 0.4686 0.0547 0.4864 0.0371

S1 0.7714 0.0215 0.7770 0.0009 0.6739 0.0351 0.6756 0.0270 0.7501 0.0280
S2 0.7332 0.1215 0.7412 0.0008 0.6844 0.0280 0.6939 0.0345 0.7556 0.0190
S3 0.5073 0.0641 0.7126 0.0005 0.7106 0.0199 0.7072 0.0181 0.7559 0.0317
S4 0.7645 0.0198 0.7723 0.0009 0.7299 0.0162 0.7356 0.0226 0.7896 0.0303

T4.8k 0.0218 0.0020 0.0227 0.0000 0.0227 0.0000 0.0423 0.0882 0.0928 0.0515
Yeast 0.5205 0.0570 0.7489 0.0682 0.7193 0.0677 0.6375 0.1344 0.5949 0.1144

Average 0.5526 0.0474 0.6768 0.1041 0.7729 0.2318 0.6665 0.0480 0.7752 0.0407

Table 9. Comparison of HFA-K-means with FA-based hybrid algorithms: FAPSO, FADE, and FATLBO
on seven high-dimensional datasets.

High-Dimensional Datasets
HFA-K-Means FAPSO FADE FATLBO

Mean Value Mean Value Mean Value Mean Value

Birch1 0.8001 0.6572 0.7232 0.6952
Birch2 0.1904 0.5040 0.5155 0.5163
Birch3 0.6577 0.6812 0.7012 0.7596
Bridge 0.3489 0.5901 0.6405 0.6108

Housec5 0.3255 0.4187 2.2408 0.4158
Housec8 0.4164 0.4245 0.5022 0.4559

Letter 0.7921 0.7146 0.9121 0.7775
Average 0.5046 0.5700 0.8908 0.6044

In comparing the performance of the proposed HFA-K-means with other algorithms,
the solution quality determined by the DBI, which was used as the clustering objective
during the program execution, was used. The clustering solutions are recorded using four
decimal place values, and optimal clustering solutions are marked in boldface to indicate
which algorithm produced the optimal clustering solution for each dataset.

For validating the significant difference between the clustering results produced
by the separate algorithms statistically, the Friedman statistical test with the Wilcoxon
post hoc test was performed. The results of both tests are presented and recorded in
Tables 10 and 11, respectively.
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Table 10. Friedman rank-sum test for the HFA-K-means and the two classical algorithms tested across
the twenty datasets for the twenty algorithm runs.

Datasets FA K-Means HFA-K-Means

A1 2.00 3.00 1.00
A2 2.00 3.00 1.00
A3 1.50 3.00 1.50

Birch1 1.53 3.00 1.48
Birch2 2.00 3.00 1.00
Birch3 1.85 3.00 1.15
Bridge 2.00 3.00 1.00

D31 1.95 3.00 1.05
Dim002 1.50 3.00 1.50

Dim1024 1.55 3.00 1.45
Housec5 1.55 3.00 1.45
Housec8 1.95 3.00 1.05

Letter 1.50 3.00 1.50
Finland 1.83 3.00 1.18

S1 1.53 3.00 1.48
S2 1.60 3.00 1.40
S3 2.00 3.00 1.00
S4 1.53 3.00 1.48

T4.8k 2.00 3.00 1.00
Yeast 1.50 3.00 1.50

Table 11. Wilcoxon signed-rank test p values for equal medians on DB Index.

Datasets HFA-K-Means vs.
FA

HFA-K-Means vs.
K-Means FA vs. K-Means

A1 0.001 0.001 0.001
A2 0.001 0.001 0.001
A3 1.000 0.001 0.001

Birch1 0.317 0.001 0.001
Birch2 0.001 0.001 0.001
Birch3 0.002 0.001 0.001
Bridge 0.001 0.001 0.001

D31 0.001 0.001 0.001
Dim002 1.000 0.001 0.001

Dim1024 0.180 0.001 0.001
Housec5 0.180 0.001 0.001
Housec8 0.001 0.001 0.001

Letter 1.000 0.001 0.001
Finland 0.001 0.001 0.001

S1 0.317 0.001 0.001
S2 0.638 0.001 0.001
S3 0.001 0.001 0.001
S4 0.317 0.001 0.001

T4.8k 0.001 0.001 0.001
Yeast 1.000 0.001 0.001

4.5. Results and Discussion

The experimental results presented in Table 3 indicate that the proposed HFA-K-means
algorithm had the lowest mean clustering value of 0.5522 for all the 20 high-dimensional
datasets. This indicates that the proposed algorithm averagely performed better compared
to the other seven metaheuristic-based K-means algorithms. The proposed HFA-K-means
algorithm and PSO-based K-means recorded best results in five of the datasets each while
the best performance records for the other ten datasets were shared among the other
competing K-means-based hybrid algorithms. The Friedman mean rank test result of the
eight competing algorithms presented in Table 4 also shows that the proposed HFAK-means
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algorithm ranked better with the lowest mean rank of 2.48 to further justify its superior
performance over the PSO-based K-means that recorded a mean rank of 3.67.

The computation results shown in Table 5 show that the proposed HFA-K-means can
cluster high-dimensional datasets efficiently. The high convergence rate of the HFA-K-means
is reflected in Figure 2, showing the average computation time required to achieve conver-
gence. In comparison with the classical FA and K-means algorithms, as shown in Table 4,
the proposed HFA-K-means recorded the best performance in 16 of the 20 datasets, namely,
A1, A2, Birch1, Birch2, Birch3, Bridge, D31, DIM1024, Housec5, Housec8, Finland, S1, S2,
S3, S4, and T4.8k. HFA-K-means recorded ties with FA in the remaining ones, namely
A3, DIM002, Letter, and Yeast. In terms of average performance across all the 20 datasets,
the HFA-K-means recorded the lowest value, followed by the FA. The lesser values of
HFA-K-means compared with FA and K-means in most datasets show better performance.
Based on this, we can infer that HFA-K-means can effectively and efficiently automatically
cluster high-dimensional datasets.

Table 7 compares the proposed algorithm with other classical metaheuristic algorithms.
The results show that HFA-K-means demonstrated the best performance in f14 datasets,
namely, A1, A2, Birch2, Birch3, Bridge, D31, DIM1024, Housec5, Housec8, Letter, Finland,
S3, T4.8k, and Yeast. PSO outperformed the HFA-K-means in three datasets, namely A3, S2,
and S4. The remaining algorithms, GA, DE, and IWO, outperformed the HFA-K-means in
one dataset, namely S1, Birch1, and DIM002, respectively. HFA-K-means had the minimum
average clustering results compared with the classical metaheuristic algorithms. This
shows that the proposed HFA-K-means demonstrates superior performance over all the
other competing metaheuristic algorithms.

Table 8 compares the HFA-K-means with other hybrid algorithms, namely ISOS-K-
means, PSODE, FADE, and IWODE. From the table, HFA-K-means also shows the best
optimal solutions in 14 datasets, namely, A1, A2, Birch2, Birch3, Bridge, D31, DIM1024,
Housec5, Housec8, Letter, Finland, S3, T4.8k, and Yeast. PSODE recorded a better perfor-
mance in S1, S2, and S4, while FADE performed better on the A3, Birch1, and DIM002
datasets. The minimum average clustering result across the 20 datasets was recorded
by HFA-K-means followed by FADE, ISOSK-means, PSODE, and IWODE. This indicates
that HFA-K-means had performance superiority compared with other competing hybrid
metaheuristic algorithms.

The HFA-K-means algorithm was also compared with three other FA-based hybrid
metaheuristic algorithms, FAPSO, FADE, and FATLBO, on seven high-dimensional datasets,
as shown in Table 8. From the results, the HFA-K-means recorded superior performance in
five of the seven datasets, namely, Birch2, Birch3, Bridge, Housec5, and Housec8. FAPSO
demonstrated better performance in the Birch 1 and Letter datasets. HFA-K-means again
recorded the smallest average clustering solution across the seven datasets, followed by FAPSO.
Based on this, it can be stated that on the basis of comparison of all the FA-based hybrid
metaheuristic algorithms, it is evident that the HFA-K-means had superior performance.

Furthermore, in terms of comparison of HFA-K-means with the K-means-based al-
gorithm ISOSK-means, it can be seen from Table 8 that HFA-K-means outperformed its
counterpart in all except one of the datasets, namely, DIM002. This shows that the improve-
ment in the K-means contributes substantially to the superior performances recorded by
the HFA-K-means algorithm.

In Figure 3, the performance gain in the computation time using the CLT-based K-
means in the proposed hybrid algorithm is clearly demonstrated against the regular hybrid
of FA and K-means. The HFA-K-means recorded a lower computation time to achieve
convergence than its standard FA-K-means counterpart in all 20 datasets.

4.6. Statistical Analysis Tests

To further validate the results of the clustering solutions of the proposed HFA-K-means,
a nonparametric test was performed using the Friedman rank-sum test. This test identifies
significant differences and was used in this study to draw statistically meaningful con-
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clusions about the performance claims of the proposed algorithm reported earlier in the
previous section. The report of the Friedman rank-sum test for the HFA-K-means and the
two classical algorithms tested across the 20 datasets for the 20 algorithm runs is presented
in Table 10. The report shows that the HFA-K-means had the best performance having the
lowest rank value of 1 and highest rank value of 1.5 compared to FA and K-Means. The
FA recorded a minimum rank value of 1.53 and a maximum rank value of 2.0, while the
K-means had its minimum and maximum rank values as 3.0.

An additional post hoc test was performed on the Friedman rank-sum test using the
Wilcoxon signed-rank test to verify the significant differences between the algorithms. The
Wilcoxon signed-rank test presents p values for determining the significant differences
between the competing algorithms. The p-values were tested against the significant value of
0.05, meaning that if the p-value is larger than 0.05, there is no significant difference between
the two algorithms. The results of the Wilcoxon signed-rank test presented in Table 11
clearly show significant differences in the performance of the representative algorithms.
From the report, it can be clearly stated that HFA-K-means achieved a significant perfor-
mance improvement in clustering high-dimensional datasets over the classical K-means
algorithm in all the datasets and over the FA in 11 of the 20 datasets.

5. Conclusions

In this study, a new HFA-K-means algorithm has been proposed and successfully
implemented to cluster high-dimensional datasets automatically. The idea of the CLT was
incorporated into the K-means phase of the hybrid algorithm to reduce the number of
distance calculations required by the K-means algorithm. A mutation probability was also
introduced into the FA phase to improve the exploitation and exploration of the FA. An ini-
tial investigative experiment conducted using another seven metaheuristic-based K-means
hybrid algorithms modelled using the same framework as the proposed algorithm further
confirmed the superior performance of the FA for automatic clustering, thus justifying
its selection among other metaheuristic algorithms. The non-parametric mean rank test
conducted on the experimental results of the eight metaheuristic-based K-means hybrid
algorithms provided a further justification for the selection of FA among the other meta-
heuristic algorithms. The results obtained from the other computation experiments over the
20 high-dimensional datasets clearly show that the HFA-K-means algorithm demonstrates
outstanding performance compared with the two classical algorithms, FA and K-means.
Statistical tests were conducted on the simulation results to confirm the performance of the
proposed hybrid algorithm, namely, the Friedman mean rank test and Wilcoxon rank-sum
(a post hoc) test. A comparison of the results with other metaheuristics algorithms from
the literature (GA, DE, PSO, and IWO) and other similar hybrid algorithms (SOSK-means,
PSODE, FADE, and IWODE) was also performed. The proposed algorithm recorded supe-
rior results in 13 (65%) out of the 20 datasets compared with the other metaheuristics and
hybrid metaheuristic algorithms. The numerical results were also compared with different
FA-based hybrid algorithms from the literature, namely, FAPSO, FADE, and FATLBO, on
seven high-dimensional datasets. The results showed that the proposed algorithm had
superior performance in five of the seven datasets in terms of the quality of clustering
solutions obtained. This indicates that the HFA-K-means performed well in 71% of the
total datasets used for the comparison. The computational time for the proposed algorithm
was also compared with regular FAK-means, and there was a substantial reduction in the
computation time of the proposed HFAK-means over all the 20 high-dimensional datasets.
These confirm that the adoption of the CLT in the K-means phase of the proposed algorithm
assists in the reduction in the computation time, thereby enhancing the performance of
the proposed algorithm in terms of reduced computational cost. The modified CLT-based
K-means can be substituted for the standard K-means algorithm in many of the existing
applications where it has been used to improve the clustering performance in various
domains. For future study, the modified CLT-based K-means can be combined with other
metaheuristic algorithms for respective hybridization models. Additionally, a further com-
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putation time reduction in the FA phase can be explored by incorporating Levy flights
into the algorithm update phase to increase the fireflies’ movement, thereby reducing the
foraging time of the fireflies. Moreover, further comparative analysis and performance
studies involving FA-based hybrid algorithms and K-means-based metaheuristic algo-
rithms can be carried out. Aside these, the proposed algorithm can also be applied to other
real-life applications.
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