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Abstract: Corona Virus Disease 2019 (COVID-19) poses a significant threat to human health and
safety. As the core of the prevention and control of COVID-19, the health and safety of medical and
nursing personnel are extremely important, and the standardized use of medical personal protective
equipment can effectively prevent cross-infection. Due to the existence of severe occlusion and
overlap, traditional image processing methods struggle to meet the demand for real-time detection.
To address these problems, we propose the ME-YOLO model, which is an improved model based on
the one-stage detector. To improve the feature extraction ability of the backbone network, we propose
a feature fusion module (FFM) merged with the C3 module, named C3_FFM. To fully retain the
semantic information and global features of the up-sampled feature map, we propose an up-sampling
enhancement module (USEM). Furthermore, to achieve high-accuracy localization, we use EloU as
the loss function of the border regression. The experimental results demonstrate that ME-YOLO
can better balance performance (97.2% mAP) and efficiency (53 FPS), meeting the requirements of
real-time detection.

Keywords: medical personal protective equipment detection; You Only Look Once version 5
(YOLOV)5); feature extraction; EloU

1. Introduction

Since the outbreak of COVID-19 in 2019, the lives and health of people worldwide
have been greatly threatened, causing long-term disruption to people’s lives and work, and
seriously hampering global economic development. The causative pathogen is a novel coro-
navirus (SARS-CoV-2), characterized by rapid transmission and high adaptability. Viruses
are generally transmitted via droplets, contact, and aerosols, with droplet transmission be-
ing their main mode of transmission. If a patient sneezes, speaks, or spits, droplets carrying
the novel coronavirus can be ejected, causing the virus to spread rapidly. Thus far, the virus
has differentiated into Alpha, Beta, Gamma, Delta, and other variant strains [1]. As of 2022,
600 million people have been diagnosed cumulatively worldwide, with an average of one
death from COVID-19 every 8 s [2]. Moreover, the rate of COVID-19 infection is growing
exponentially worldwide, with an average daily growth rate of 1.9 times. Despite the
increasing number of people being vaccinated, COVID-19 still greatly threatens people’s
health and safety, and the importance of protection against it cannot be underestimated [3].
As the main centers of epidemic prevention and control, hospitals, isolation hotels, and
nucleic acid testing sites are crowded. As the core of COVID-19 prevention and control,
the health and safety of medical and nursing personnel are extremely important, and once
cross-infection occurs, it can have an incalculable impact on the prevention and control
of the epidemic. Theoretically, medical personal protective equipment can isolate viruses,
harmful ultra-fine dust, etc., thereby effectively preventing the spread of viruses. Therefore,
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medical and nursing personnel needs to wear medical personal protective equipment
such as protective suits, goggles, and masks [4]. However, due to a lack of protective
awareness and insufficient supply and demand of medical personal protective equipment,
many medical and nursing personnel are not required to wear medical personal protective
equipment, resulting in high levels of infection. Currently, the supervision of wearing
medical personal protective equipment is mainly through manual testing, which results
in waste of human resources and the problem of missed and wrong detections. Therefore,
with the development of computer vision (CV), automatic identification and detection of
medical personal protective equipment based on deep learning are of great importance.

Traditional image detection algorithms are based on the shape and color of objects
for recognition [5]. These complex algorithms have certain limitations to their application,
such as a lack of sufficient robustness and error detection [6]. Deep-learning-based object
detection algorithms have become popular for current research and applications, as they can
overcome the limitations of traditional image detection algorithms and effectively extract
object features from complex scenes. Generally, deep-learning-based object detection
approaches can be divided into two categories: The first is two-stage algorithms, which
are based on candidate regions, such as Fast RCNN (region-based convolutional neural
network) [7] and Faster RCNN [8]. Despite the high detection accuracy of two-stage
algorithms, it is difficult to increase their detection speed effectively due to the amount
of computation required for extracting candidate regions. The other category is one-stage
algorithms, which are end-to-end learning algorithms with high detection speed, such as
SSD (single-shot multi-box detector) [9], RetinaNet [10], and YOLO (You Only Look Once)
series algorithms [11-17]. These algorithms directly generate the class probability and position
coordinate values of the object, obtaining the final detection result from a single inspection.

The following problems currently exist in the identification and detection of current
medical personal protective equipment: there are few studies on the detection of medical
personal protective equipment, and the relevant datasets are sorely lacking, while main-
stream object detection models perform poorly due to the problems of overlapping and
obscuring medical personal protective equipment. To address these problems, based on
YOLOVS5, the ME-YOLO algorithm is proposed in this article. The main contributions of
this article are as follows:

1.  We propose a new medical personal protective equipment detection algorithm—ME-
YOLO. Firstly, to solve the problem of poor feature extraction by the backbone network
when the size of objects varies, a feature fusion module (FFM) is proposed and merged
with the C3 module, named C3_FFM. Secondly, to solve the problem of the traditional
up-sampling method, an enhanced up-sampling module is proposed. Thirdly, to solve
the problem of slow convergence of prediction box regression in CloU loss, EIoU loss
is used as the loss function of the border regression.

2. Compared with the other mainstream object detection algorithms, the experiments
demonstrate that the ME-YOLO network structure has good detection accuracy and a
high detection speed, enabling it to be applied for real-time detection.

2. Related Work
2.1. Existing Work

Most current medical personal protective equipment detection methods focus only
on identifying masks. Loey et al. [18] used three datasets: Labeled Faces in the Wild
(LFW), Simulated Masked Face Dataset (SMFD), and Real-World Masked Face Dataset
(RMFD). They also introduced a hybrid model consisting of two parts: ResNet-50 for
feature extraction and traditional machine learning algorithms for classifying whether or
not masks are worn. The experimental results demonstrate that the model introduced
in this paper is better than other machine learning algorithms. However, they tested
their model on simulated mask datasets—not real-world mask images—and the machine
learning algorithms had very poor generalization capabilities. Su et al. [19] proposed a
new algorithm for mask classification and detection fusing Efficient-YOLOvV3 and transfer
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learning, with good results, but there was still room for improvement in terms of detection
speed. Nagrath et al. [20] proposed the SSDMNV2 model for face mask detection; in this
model, the authors used the SSD algorithm to detect faces in real time, using the pre-trained
model MobileNetV2 to predict whether the people were wearing masks or not. Yu et al. [21]
improved the YOLOv4 algorithm to achieve better results in mask recognition and standard
wear detection.

To date, few studies have been conducted for the detection of gloves, goggles, pro-
tective suits, face shields, and gloves. Wang et al. [22] designed a surface defect detection
system for medical gloves; it uses a dual-model detection strategy, which divides edge
detection and texture detection into two steps. The experimental results demonstrated that
the system has a false detection rate of less than 0.05% and a missed detection rate of less
than 2%. However, the detection strategy requires high computational costs and can only
detect medical gloves. Le et al. [23] designed a ski goggle defect detection and classification
system. Although this system has high accuracy in defect detection and classification, it
can only be applied to ski goggles. To perform multi-class personal protective equipment
(PPE) compliance detection, Xiong et al. [24] proposed an extensible pose-guided anchoring
framework. They then used a shallow CNN-based classifier to identify PPE. Although their
proposed strategy has a higher detection accuracy, their detection categories are helmets
and reflective clothing; hence, this approach cannot be used directly for the detection of
medical personal protective equipment.

None of the aforementioned detection categories apply to the detection of medical
personal protective equipment, and the detection models cannot balance detection speed
and detection accuracy well. Therefore, in order to handle these issues, we used ME-YOLO-
based medical personal protective equipment detection to detect five types of medical
equipment: suits, face shields, gloves, goggles, and masks. In addition, our proposed
ME-YOLO algorithm can better balance performance and efficiency, enabling it to meet the
requirements of real-time detection.

2.2. YOLOwv5 Network Structure

In June 2020, UltralyticsLLC proposed the YOLOV5 algorithm. Compared with
YOLOv2, YOLOv3, and YOLOv4, YOLOVS5 is smaller and more convenient, enabling
flexible deployment and more accurate detection.

As shown in Figure 1, the YOLOV5 network structure consists of three main parts:
backbone, neck, and output. In YOLOV5, the backbone network mainly consists of the
focus module, the wrapped convolution module, the C3 module, and the SPP module. The
focus module performs slicing operations on the input images; the C3 module increases
the feature representation ability of the network, reducing memory consumption and
parameters while maintaining the accuracy of feature extraction. The neck network is
designed to make better use of the features extracted from the backbone network; it
reprocesses different-sized feature maps. In the fusion process, the structure of FPN and
PAN is used. The output classifies the categories and location of the target via the feature
map from the fusion of the neck network. Rather than using fully connected layers, YOLOv5
uses three 1 x 1 convolutional layers to predict the confidence, category probability, and
prediction box coordinates of objects on three different-sized feature maps.
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Figure 1. YOLOVS5 network structure.

3. Proposed Method

As the main centers of epidemic prevention and control, hospitals, isolation hotels,
and nucleic acid testing sites are crowded. Currently, deep learning-based detection of
medical personal protective equipment remains challenging for three main reasons: Firstly,
in complex scenes, it is difficult to distinguish small targets that are far away from the
camera. Secondly, the same region may contain more than one target, and there can be a
serious overlap of targets with occlusion, which greatly increases the difficulty of detection.
Furthermore, current object detection models are too computationally intensive and too
large to meet implementation requirements, and they cannot be deployed on edge devices.
To solve the above problems, in this paper, we propose the ME-YOLO model, which can
better balance performance and efficiency.

3.1. C3_FFM

In complex scenarios, the problem of varying sizes of medical personal protective
equipment—such as face shields, protective suits, and masks—makes the direct use of the
backbone network of the YOLOV5 algorithm less effective in extracting features, which can
easily lead to obvious missed and incorrect detection. Therefore, to improve the recognition
and detection of medical personal protective equipment of different sizes, the feature fusion
module (FFM) is proposed and combined with the C3 module, named C3_FFM. The feature
fusion module (FFM) expands the width of the network laterally by employing a multi-
branch structure composed of different-sized convolutions on multiple branches, stitched



Appl. Sci. 2022,12,11978

50f17

C3_FFM =

together to form multi-channel feature maps, thereby enhancing the receptive field of the
network and its adaptability to different-sized medical personal protective equipment.
The core of the FFM is a layer-by-layer concatenated convolutional structure. As
shown in Figure 2, it combines 3 x 3 convolutions (padding = 1), 5 x 5 convolutions
(padding = 2), and 7 x 7 convolutions (padding = 3) with different receptive fields layer
by layer. Convolution kernels of different sizes can detect objects of different sizes; small
convolutional kernels can extract localization information of objects, while large convolu-
tional kernels can extract deep semantic information of objects and contextual information
of small objects. The use of layer-by-layer parallel convolutions can enhance continuous
information and improve the ability of the network to extract objects of different sizes.
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Figure 2. C3_FFM. The core of the Feature Fusion Module (FFM) is a layer-by-layer concatenated

convolutional structure.

Firstly, we use 3D permutation to retain information across three dimensions of the
input feature map, and then we use MLP to magnify the cross-dimensional channels’ spatial
dependencies. For efficiency, the MLP is implemented using two linear projection layers,
i.e., the feature map is first downscaled by using a decay factor (r = 2) and then upscaled.
The HardSwish activation function is then used to increase the non-linearity of the network,
as shown in Equation (1). Secondly, to reduce the computational effort, we use 1 x 1
convolution to halve the size of the feature map. The feature map is then divided into 3
paths and passed through different-sized convolution kernels (3 x 3,5 x 5,and 7 x 7) in
a layer-by-layer parallel manner, obtaining the feature maps of three different receptive
fields. Finally, the three output channels are stitched together to retain the information of
different receptive fields, and we use 1 x 1 convolution to change the number of channels
in the output feature map, thereby obtaining the output feature map.

0, x < =3
flx) =% «x, x>3 1)
X * x—g3, otherwise

3.2. Up-Sampling Enhancement Module

For medical personal protective equipment far away from the camera, the network
can only extract a small number of features. Moreover, YOLOV5 uses nearest neighbor
interpolation method to up-sample small feature maps, but it has small receptive fields
and cannot capture rich semantic information. To address this issue, in this article, an up-
sampling enhancement module (USEM) is proposed to fully retain the semantic information
and global features of the up-sampled feature map. As shown in Figure 3, it consists of
content-aware reassembly of features (CARAFE) [25] and an enhanced multi-head self-
attention (E-MHSA) module.
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Figure 3. Up-sampling enhancement module (USEM). A feature map with size C x H x W is
upsampled by a factor of 6 (= 2) in this figure.

CARAFE can fully retain the semantic information of feature maps without adding
too many parameters, thereby reducing the computational costs. CARAFE mainly consists
of two modules: a content-aware reassembly module and a kernel prediction module. The
role of the kernel prediction module is to generate a reconstructed convolutional kernel.
Assuming that the input image size is C x H x W, where C represents the number of
channels, W and H represent the height and width of the image, respectively. Firstly,
to reduce the complexity, the input channels C is compressed into C, using the 1 x 1
convolution within the channel compressor module. The content encoder module then
performs convolution operations on the feature map output from the previous module,
generating reassembly kernels of size H x W x K? x §2. Finally, all channels for each
pixel are normalized by using softmax, so that their weights are summed to 1. The weights
reflect the correlation between different channels. The content-aware reassembly module
first performs the weighted sum operation on the reassembly kernel, reassembling the
features within the local region. Then, each pixel of the original input feature map selects a
k x k region for convolution and, finally, performs the inner product with the reassembly
kernel to obtain an output feature map of size C x 6H x dW.

As the CARAFE module is based on the CNN architecture, some feature map information—
especially global features—will still be lost in the process of convolution [26]. Therefore, based
on the Multi-Head Self-Attention (MHSA) module proposed by Srinivas et al. [27], the EEMHSA
module is proposed and combined with the CARAFE module to better extract the global features
of the feature map, as shown in Figure 4, where Ry, and Ry, represent the width and height of the
relative position encoding, respectively, while g, k, r, and v represent the query encoding, key
encoding, position encoding, and value encoding, respectively.



Appl. Sci. 2022,12,11978

7 of 17

E - MHSA CxH=W
(H * W) % (H* W) Cox(H* W)
I <
» -
Softmax
A

(L * W) x (1L * W) (H* W) x (H* W)

Content-position Content-content

Scaled cosine Scaled cosine

(H*W)x=C H‘mction k functicul\]
r g
Cx (H*W) C % (H* W) Cx (H*W)
CxHxlf\Cxle (
S G
A4 yy Y y

CxHx*xW

Figure 4. E-MHSA module. While we use 4 heads, we do not show them on the figure for simplicity.

Firstly, two learnable parameter vectors (R, and Ry,) are initialized, and they are
logically added through the broadcasting mechanism; then, the encoding of the (i, j)
position is (Ry, + Ry), and the size of the encoding matrix is (H * W) x C. Next, the input
feature map of size C x H x W is passed through three independent 1 x 1 convolution and
transposed to generate g, k, and v encoding matrices of size C x (H * W). In the original
MHSA, the similarity between different input features is measured using dot product
calculation. However, as known from [28], when using dot product calculation, certain
pixel pairs can have a significant impact on the learning attention of some blocks and
heads. To address this problem, in this article, we use the scaled cosine function instead
of the traditional dot product calculation. As shown in Equations (2) and (3), firstly, g, r
and g, k are passed through the scaled cosine function to generate the content—position
and content-content encoding matrices of size (H * W) x (H = W), respectively, and then
they are logically added and sent to the softmax function to generate a similarity feature
matrix of size (H * W) x (H * W). Finally, using the dot product calculation with the value
encoding matrix, an output feature map of size C x H x W is generated.

Content — position = % o)
Content — content = COS(QLI{) 3)

3.3. Improvement of the Loss Function

As the loss function can determine the difference between the prediction of the model
and the actual object, it is crucial in the training process. Choosing a suitable loss function
can speed up the convergence of the model and help to obtain a better model. The principle
of the traditional IoU loss [29] function is 1 minus the ratio of the intersection of the
prediction box and the ground-truth box to the concatenation of the prediction box and the
ground-truth box. The traditional IoU loss function is formulated as follows:

| B N B

ToU = 1> 1 51
T IBU B

4)
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where, B is the area of the prediction box and B; is the area of the ground-truth box. The
IoU loss function has the advantages of symmetry, non-negativity, and homogeneity, but
when the ground-truth box and the prediction box are not intersected, the IoU is 0 and the
model cannot continue to learn.

To avoid the above issue, YOLOVS5 is based on a CloU loss for border regression. The
ClIoU loss function is formulated, as follows:

02 (0,57)

Lciou =1 —1oU + CIZ + av 6)
where b is the centroid of the prediction box, b is the centroid of the ground-truth box, p
denotes the Euclidean distance between them, ¢ is the length of the diagonal of the smallest
outer rectangle formed by the intersection of the prediction box and the ground-truth box.

« is a learnable weight parameter, v is the aspect ratio, and « and v are defined, as follows.

v
— — 7
T A-IoU) +u @
4 wst w2
v= ?(arctanﬁ — arctanﬁ) 8)

Although the ClIoU loss function introduces the aspect ratio of the border as a penalty
term in the loss function, which continuously makes the prediction box close to the ground-
truth box through iteration, it is too complicated to measure the aspect ratio, and the
following two issues reduce the speed of convergence of the regression of the prediction
box: (1) The difference in aspect ratio cannot fully reflect the true difference in width and
height. When & = h$! and w = w$!, the penalty term no longer works. (2) When the aspect
ratio of the prediction box and the ground-truth box is linear, the width and height of the
prediction box cannot change at the same time when regressing.

To solve the above problems, in this paper, we introduce the EloU loss function [30], which
takes into account the centroid distance and the aspect ratio. As shown in Equation (9), the
EloU loss function consists of three components: loss of overlapping area, loss of distance
to the central point and loss of aspect ratio. The first two losses continue to follow the CloU
method, while the addition of the aspect ratio loss solves the problem of the CloU loss where
the length and width cannot be increased or decreased at the same time. Compared with the
ClIoU loss function, the EloU loss function converges faster and with more accurate regression.

2(b,b8Y) | p*(w,ws")  p*(h,hS!
LEIoU:LIOU+Ldis+LaSP:1_IOU+p(Cz )+p(cz >+p(cz ) ©)
w i

3.4. ME-YOLO Network Structure

The framework and implementation details of the medical personal protective equip-
ment detection model ME-YOLO are shown in Figure 5. Specifically, C3_FFM is proposed
to improve the feature extraction capability of the backbone network, the up-sampling
enhancement module (USEM) is proposed to fully retain the semantic information and
global features of the feature map after up-sampling, and the EloU loss is introduced as the
loss function of the border regression to improve the regression convergence speed of the
prediction box.
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Figure 5. ME-YOLO network structure.

4. Experiments and Results
4.1. Dataset and Expansion Method

As there is no relevant large dataset of medical personal protective equipment avail-
able, the dataset used in this article was derived from images screened in CPPE-5 [31] as
well as from our collection of medical personal protective equipment images, ultimately
obtaining 2500 images with five categories—suit, mask, glove, face shield, and goggle—as
shown in Figure 6, containing different scenarios as well as small targets small targets and
obscured targets. The dataset was then expanded to 5000 images by panning, rotating,
cropping, and color jittering. The number of the different categories in the dataset is shown
in Table 1. Finally, we used the Labellmg tool to label every face in each picture in the
dataset and to determine its category and coordinate information in order to obtain the
real box to annotate the dataset and save the labels in xml format. As the YOLO series
algorithms load tag files in txt format, the format of the tag files needed to be converted to
txt format.
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Figure 6. Categories of medical personal protective equipment. (a) Suit; (b) Face shield; (c) Goggle;
(d) Mask; (e) Glove.

Table 1. The number of different categories.

Suit Face Shield Goggle Mask Glove
10,101 3298 4133 10,188 9937

As shown in Figure 7, we visualized the distribution of object box occurrences and
sizes in the dataset. Figure 7a represents the position of the object boxes’ centroids in the
image after normalizing the image sizes, and it can be observed that the objects are mostly
concentrated in the center of the images; Figure 7b represents the ratio of the size of object
boxes to the size of images, where it can be observed that the objects vary in size.

1.0- 4.0
0.8- 0.8 -
0.6 - HD.S-
£
> =
(]
0.4- <o04-
0.2- 0.2- E
0.0 - 0.0-
) 1 1 1 1 I 1 1 1 1 1 1
00 02 04 06 08 1.0 00 02 04 06 08 10
x width
(@ (b)

Figure 7. Visualization of the dataset. (a) The location of object boxes; (b) The size of object boxes.

In addition, as shown in Figure 8, the mosaic data enhancement method was applied to
the images, where four training images were blended into one image by random scaling and
cropping operations. Through this method, the negative impact of large objects on the detection
effect of the model can be reduced, and the effect of the model in detecting small objects can be
enhanced, effectively solving the problem of detecting small objects in the dataset.

Figure 8. Mosaic data enhancement method.
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4.2. Experimental Environment

The configuration parameters of the hardware and software platforms for the algo-
rithms implemented in this article are shown in Table 2.

Table 2. Configuration parameters.

Device Configuration
System Ubuntul8.04
CPU Intel®Xeon E5-2680 v4@2.40 GHz
GPU GeForce RTX 2080Ti, 12G
GPU accelerator CUDA 11.2, Cudnn 11.0
Frames PyTorch
Compilers PyCharm, Anaconda
Python version 3.6

For the medical personal protective equipment dataset used in this article, suitable
prior boxes need to be set up to obtain accurate prediction results. As shown in Table 3, the
dimensions of the prior box were calculated by using the k-means algorithm in this article.
Small feature maps are suitable for detecting large objects due to the large receptive field
and the content of abstract information. Meanwhile, large feature maps are suitable for
detecting small objects due to the small receptive field and the content of rich positional
information. Before training, the dataset was divided into a training set, validation set, and
test set at a ratio of 8:1:1. In this study, we used the default hyperparameters, that were
obtained by the authors of YOLOVS for training the COCO dataset, the number of epochs
was set to 2000, the batch size was set to 16, and the initial learning rate was set to 0.01.

Table 3. The size of prior boxes.

Feature Map Receptive Field Prior Box Size

(163 x 214)
19 x 19 Large object (179 x 501)
(365 x 601)
(53 x 81)
38 x 38 Medium object (82 x 133)
(93 x 61)
(20 x 31)
76 x 76 Small object (30 x 60)
(46 x 43)

4.3. Evaluation Metrics

In this study, we used six evaluation metrics to evaluate the performance of ME-YOLO:
precision (P), recall (R), mean average precision (mAP), Fl-score, gigaflops per second
(GFLOPS), and frames per second (FPS). Precision (P) indicates the number of correctly
detected samples as a percentage of the total detected samples, which can reflect the
classification ability of the model for the object. Recall (R) indicates the number of correctly
detected samples as a percentage of all real samples, which can reflect the detection ability
of the model for the object. AP is the average of the precision at different recall, while
mAP is the average of AP under all categories, which can reflect the overall performance
of the model. The Fl-score combines the results of the precision and recall, and model
performance is proportional to the Fl-score. GFLOPS means one billion floating point
operations per second—the smaller the better. The formulae are as follows:

P
P= TP + FP (19
TP
R= 07— 11
TP +FN ()
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1
AP = /O P(R)dR (12)
mAP = - Y AP(g) (13)
Qe
2xPxR

where TP is the number of positive samples predicted by the model as positive, FP is the
number of negative samples predicted by the model as positive, and FN is the number of
positive samples predicted by the model as negative.

4.4. Training Results and Analysis

The mAP and PR curves are shown in Figures 9 and 10, respectively. It can be observed
that the mAP tends to increase as the training proceeds, while the PR curve is very smooth,
with no spikes during the iterations. When reaching 300 epochs, the mAP tends to be stable.
After completing 2000 epochs, the final training model is obtained.
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Figure 9. mAP.
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Figure 10. PR curve. The larger the area under the PR curve, the better the performance of the model.
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4.5. Comparison of Mainstream Object Detection Models

To verify the performance of this algorithm for medical personal protective equipment
detection, nine other network structures—SSD, RetinaNet, CenterNet, YOLOv3, YOLOvV4,
YOLOv4-tiny, YOLOv5s, YOLOv5m, and YOLOv5l—were selected for comparative exper-
iments. In this experiment, the mAP, Fl-score, parameters, and FPS (frames per second)
were used as the evaluation metrics for the above detection algorithm. The comparative
results for performance metrics achieved by the ME-YOLO algorithm and its counterparts
are shown in Table 4 and Figure 11.

Table 4. Comparison of mainstream object detection models.

Models Backbone mAP (%) F1 Parameters (M) FPS (Frame-s—1)
SSD VGG16 80.1 75 90.6 30
RetinaNet ResNet50 76.0 58 138.9 27
CenterNet ResNet50 77 .4 67 124.0 71
YOLOvV3 Darknet-53 90.5 86 234.7 25
YOLOv4 CSPDarknet53 92.1 88 244.0 22
YOLOv4-tiny ~ CSPDarknet53 87.8 83 22.6 67
YOLOv5s CSPDarknet53 94.2 93 7.0 56
YOLOvV5m CSPDarknet53 95.4 94 21.2 47
YOLOvV51 CSPDarknet53 96.1 94 46.5 32
ME-YOLO - 97.2 96 7.5 53
M suit o face_shield B mask goggle H glove
CenterNet YOLOvV3 YOLOv4 YOLOv4-tiny YOLOvSs YOLOv5Sm YOLOv5l ME-YOLO

Figure 11. AP for each model.

To further verify the suitability of this algorithm for edge computing devices, we
deployed YOLOvV3, YOLOv4, YOLOv5s, YOLOv5m, YOLOV5], and ME-YOLO on the
Nvidia Jetson TX2 platform, using FPS as the evaluation metric; the results are shown in
Table 5. It can be observed that the ME-YOLO algorithm achieves 42 FPS, meaning that it
can be used for actual medical personal protective equipment detection tasks.
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Table 5. Comparison of different models in FPS.

Models One Image Test Time(s) All Reasoning Time(s) FPS (Frames-s—1)
YOLOv3 0.047 235 21

YOLOv4 0.059 29.5 17

YOLOv5s 0.022 11.0 46

YOLOv5m 0.026 13.0 38

YOLOV5I 0.037 18.5 27

ME-YOLO 0.023 11.5 42

Figure 12 visualizes the detection results of YOLOv5s and ME-YOLO. For dense
objects, small-scale objects, and occluded objects, ME-YOLO is superior to the YOLOv5s
algorithm. As can be observed from the first column of images, both ME-YOLO and
YOLOVb5s could detect all objects. As can be observed from the second column of images,
ME-YOLO could detect all objects, but YOLOv5s mistakenly detected the scarf as a glove.
As can be observed from the third column of images, ME-YOLO could detect all objects, but
YOLOV5s neglected a glove. In the last column of images, YOLOv5s produced missed and
false detections when the objects were severely obscured and overlapped, while ME-YOLO
produced accurate detection.

it p.s5Hit O.87 it G UG R SIROEnE

put 085

suit 0.92

(b)
Figure 12. Visual comparison between YOLOv5s and ME-YOLO. (a) YOLOvb5s; (b) ME-YOLO.

4.6. Analysis of Ablation Experiments

To further analyze the impact of different improvement methods on the performance
of the YOLOV5 algorithm, three sets of experiments were designed to analyze the different
improvement methods. In these experiments, precision (P), recall (R), average precision
(AP), mean average precision(mAP), and F1-score were used as the evaluation metrics of
experiments, as shown in Table 6, where “,/” indicates that the improvement method is
introduced in the model and “x” indicates that it is not introduced in the model.

Table 6. Ablation experiments.

Models C3_FFM USEM EloU AP 00) P(%) R(%) mAP(%) GFLOPS
Suit  Face Shield Goggle Mask Glove

YOLOvbs X X X 95.7 94.8 926 927 955 95.5 90.1 94.2 15.9

YOLOv5s +/ X X 95.6 94.9 953 959  96.6 96.4 93.4 95.7 16.8

YOLOv5s +/ Vv X 99.0 95.0 955 965 965 97.0 94.3 96.5 17.5

YOLOv5s / Vv v 99.1 95.9 9.0 970 977 97.7 94.4 97.2 17.5
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As shown in Table 6, C3_FFM can fully merge the semantic information of deep feature
maps with the localization information of shallow feature maps, improving the adaptability
of the backbone network to different sizes of medical personal protective equipment and
its ability to extract features. Compared with the original YOLOV5s algorithm, the mAP
increased by 1.5%, and the AP of the class “mask” increased significantly. In addition,
GFLOPS increased by 1. Based on the above, the up-sampling enhancement module (USEM)
was introduced, which can fully retain the semantic information and global features of
the up-sampled feature map. Compared with the first experiment, the mAP increased
by 0.8%, and the AP of the class “suit” increased significantly. The third experiment
introduced EloU loss as the loss function of the border regression, solving the problem of
slow convergence of the regression of the prediction frame in the original loss function.
Based on the aforementioned two experiments, the precision, recall, and mAP of the
improved model were 97.7%, 94.4%, and 97.2%, respectively, i.e., 2.2%, 4.3%, and 3.0%
better than the original YOLOv5s algorithm, respectively. The GFLOPS was 17.5—slightly
higher than that of the original YOLOv5s algorithm.

5. Conclusions

In this article, we propose the ME-YOLO model, which is an improved model based
on the one-stage detector. The main idea was to introduce the C3_FFM module in the
backbone network to fully merge the semantic information of deep feature maps with the
localization information of shallow feature maps, in order to improve the adaptability of
the backbone network to different sizes of medical personal protective equipment and its
feature extraction ability. In addition, an up-sampling enhancement module was introduced
to fully retain the semantic information and global features of the up-sampled feature maps.
Then, EloU loss was introduced as the loss function of the border regression to improve
the regression convergence speed of the prediction box. We then built a medical personal
protective equipment dataset, used the k-means algorithm for clustering, and initialized
the prior boxes. The performance of the ME-YOLO model was experimentally evaluated
and compared to that of mainstream object detection models. The results demonstrate
that the mAP of the ME-YOLO model is 97.2% and its FPS is 53 frame-s—!, which means
that this algorithm can meet the requirements for accurate and real-time detection of
medical protective equipment. Due to the robustness of this deep learning algorithm for
special cases such as object occlusion, it is suitable for most environments. This algorithm
greatly reduces the waste of human resources and improves the efficiency of the automatic
detection of medical personal protective equipment. It can be widely used in hospitals,
isolation hotels, and other high-risk places, and is of great significance to protecting the
health of medical and nursing personnel. In the future, the categories of medical personal
protective equipment should be expanded, and the model should continue to be optimized
to further improve the effectiveness of detection. Moreover, to further ensure the health of
medical and nursing personnel, further research should be carried out on the identification
and classification of broken protective suits.
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