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Abstract: In the past decade, the extraction of valuable information from online biomedical datasets
has exponentially increased due to the evolution of data processing devices and the utilization of
machine learning capabilities to find useful information in these datasets. However, these datasets
present a variety of features, dimensionalities, shapes, noise, and heterogeneity. As a result, deriving
relevant information remains a problem, since multiple features bottleneck the classification process.
Despite their adaptability, current state-of-the-art classifiers have failed to address the problem, giving
rise to the exploration of binary optimization algorithms. This study proposes a novel approach to
binarizing the Ebola optimization search algorithm. The binary Ebola search optimization algorithm
(BEOSA) uses two newly formulated S-shape and V-shape transfer functions to investigate mutations
of the infected population in the exploitation and exploration phases, respectively. A model is
designed to show a representation of the binary search space and the mapping of the algorithm from
the continuous space to the discrete space. Mathematical models are formulated to demonstrate the
fitness and cost functions used for evaluating the algorithm. Using 22 benchmark datasets consisting
of low, medium and high dimensional data, we exhaustively experimented with the proposed BEOSA
method and six other recent similar feature selection methods. The experimental results show that
the BEOSA and its variant BIEOSA were highly competitive with different state-of-the-art binary
optimization algorithms. A comparative analysis of the classification accuracy obtained for eight
binary optimizers showed that BEOSA performed competitively compared to other methods on nine
datasets. Evaluation reports on all methods revealed that BEOSA was the top performer, obtaining
the best values on eight datasets and eight fitness and cost functions. Computation for the average
number of features selected showed that BEOSA outperformed other methods on 11 datasets when
population sizes of 75 and 100 were used. Findings from the study revealed that BEOSA is effective
in handling the challenge of feature selection in high-dimensional datasets.

Keywords: feature selection; transfer function; binary optimization; EOSA; binary Ebola search
algorithm; BEOSA

1. Introduction

Machine learning and data mining are fast-growing topics in research and industry
because of the massive amount of data being generated which needs to be converted
into usable information. This conversion process plays an essential part in the process
of knowledge discovery, as it comprises a set of repetitive task sequences including the
transformation, reduction, cleansing, and integration of data, among others [1]. These
steps are known as pre-processing; their outcome directly impacts the machine learning
and data mining algorithm performance. Due to its importance, data is regarded as the
“currency” of the present decade. This makes the correct handling of data a necessity. With
the increase in data and the growth of machine learning and data mining, the processing
of data is becoming more and more tedious. The increase in dimensionality means that
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training machine learning and data mining algorithms takes longer, making them more
computationally expensive. Researchers have developed different methods to address
the problem of dimensionality. One such method is feature selection, which removes the
presence of noisy data such as unnecessary or useless features that do not assist with the
purpose of classification [2].

Feature selection is a pre-processing stage which assists in selecting valuable features
and separating them from a set of unwanted ones, thereby improving the performance of
the classifiers. This method eradicates redundant, irrelevant features, thereby reducing
time complexity [3]. Feature selection is generally performed in two ways, namely, wrapper
and filter methods [4]. The wrapper method utilizes learning algorithm(s) to choose the
subsets of features. This method produces better performance but is more computationally
expensive than the filter method. The feature selection under the wrapper technique is
referred to as an optimization problem [5]. The filter-based technique does not depend on a
learning algorithm; rather, it chooses useful features by utilizing information gain, mutual
information etc. [6]. This method is computationally inexpensive but does not produce
as good a performance as the wrapper-based techniques. Finding the relevant subset of
features is a challenging task, as the main aim is to select the minimum number of features
and get the maximum accuracy possible. Due to the increased time required to locate the
optimal subset of features, feature selection is referred to as an NP-hard problem [7]. Should
we have an N feature, the sum of 2N − 1 of the number of the combination of features
is needed to investigate and locate the best features [8]. The need for a high-performing
metaheuristic to take care of this type of problem is important to reduce the processing
time. The search processes of metaheuristics rely on the trade-off between the exploitation
(intensification)—that conducts a thorough neighborhood search to obtain better possible
solutions—and exploration (diversification)—that tests the solution of candidates not
within the neighborhood. These two objectives are the factors that define the ability to
find optimal solution(s). Recently, feature selection as an optimization problem has been
solved using metaheuristic algorithms because they show better performance than exact
methods [8–13]. However, due to the no free lunch (NFL) theorem, which proposes that no
one algorithm is sufficient to solve all optimization problems, the need to develop new or
improve existing methods that can make high-quality solutions for the candidate problem
becomes unavoidable.

Despite the great effort and advancements in this area, most metaheuristic algorithms
have at least one deficiency or shortcoming. Examples of such limitations include getting
trapped in local optima, premature convergence, too many parameters to be tuned and so
on. The question which raises serious research opportunity is: does good performance and
the superiority demonstrated by a continuous variant of an optimization algorithm translate
into similar good performance when applied to solve binary optimization problems? To
answer this question, this paper presents a binary Ebola optimization search algorithm
(BEOSA) to solve the feature selection problem and to avoid some of these drawbacks. The
baseline EOSA is a recently proposed metaheuristic algorithm [14], a bio-based algorithm
inspired by the Ebola virus disease propagation model. The base algorithm was evaluated
on 47 classical benchmark functions and compared with seven well-known techniques and
14 CEC benchmark functions, producing superior performance over other methods in the
study. This consideration and the selection of the EOSA method as the base algorithm for
the binary optimization method proposed in this study was motivated by the performance
of the algorithm itself and even a recent outstanding report of its immunity-based variant,
namely, IEOSA. The performance of this biology-based algorithm stood out among most
of the state-of-the-art optimization methods with similar sources of inspiration. Since the
algorithm has proven relevant in addressing some very difficult continuous optimization
problems, we sought to determine whether its operators and optimization process could
find optimal solutions for binary optimization problems. Hence, through an exhaustive
and rigorous experimentation on several heterogeneous and high-dimensional datasets,
this study investigates the influence, impact and benefit of designing and applying a binary
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variant of the EOSA/IEOSA methods. The performance of this method was the motivation
for this binarization, and since this method was developed, it has not been utilized to solve
the feature selection problem. Since the feature selection problem is binary, we present
a binary version of the EOSA to solve this problem. We also utilize the k-near neighbor
(kNN) as the classifier to test the goodness of the selected subset of features. The the major
contributions of this work are as follows:

• Proposal of the binary version of the EOSA algorithm (called BEOSA) for feature
selection problems.

• Evaluation of the performance of BEOSA using a convergence curve and other compu-
tational analysis metrics.

• Evaluation and validation of the proposed method with 22 small and medium size
and 3 high-dimensional datasets.

• The proposed method was assessed using seven classifiers to evaluate its performance.
• A comparison is made of the efficacy of the BEOSA with some other popular feature

selection methods.

The remainder of this manuscript is structured as follows: Section 2 presents a review
of the relevant literature. Section 3 discusses the methodology used in this study. Section 4
details our proposed BEOSA approach and its application in feature selection. Section 5
centers on the results of the experiments and presents a discussion of this work. Section 6
provides the conclusion.

2. Related Work

A detailed review of related studies on the subject of the concept described in this
study is presented in this section. The literature shows that several binary metaheuristic al-
gorithms have been developed to solve the feature selection problem. The feature selection
technique based on the wrapper approach uses the binary search capability of metaheuris-
tic algorithms. Swarm- and evolutionary-based algorithms are becoming commonplace
methods in the feature selection domain [15].

Particle Swarm Optimization (PSO) [16] is a bio-inspired metaheuristic method which
has attracted much attention due to its tested and trusted mathematical modelling. This
algorithm has been binarized and enhanced to solve problems in discrete search spaces.
A study by Unler and Murat [17], presented a modified discrete PSO that used the lo-
gistic regression model and applied it to the feature selection domain. A year later,
Chuang et al. [18], proposed an improved BPSO that introduced the effect of catfish, called
“catfishBPSO”, for feature selection. The BPSO was also improved to tackle the optimization
problem of feature selection [19]. Ji et al. [13], proposed an improved PSO based on the
Levy flight local factor, a weighting inertia coefficient based on the global factor and a factor
of improvement based on the mechanism of mutation diversity, called (IPSO), to tackle
the feature selection problem. This improvement came with shortcomings, however, such
as the inclusion of more parameters compared with other improved versions of the PSO,
which makes tuning difficult for various application problems and increases computational
time. Since every particle in BPSO moves closer to and farther from the hypercube corner,
its major shortcoming is stagnation.

The genetic algorithm (GA) is another popular bio-inspired feature selection method
which has been widely utilized as a wrapper-based technique. Huang and Wang [20],
proposed a GA-based method using the support vector machine (SVM) as a learning algo-
rithm to solve the feature selection problem. The major goal of their work was concurrent
parameter and feature subset optimization without reducing the classification accuracy of
the SVM. The method reduced the number of feature subsets and improved the accuracy
of classification but was outperformed by the Grid algorithm. Later, Nemati et al. [21],
presented a hybrid GA and ant colony optimizer (ACO) as a feature selection method
to predict protein functions. These two algorithms were combined to enable better and
faster capabilities with very low computational complexity. Furthermore, Jiang et al. [22],
proposed a modified GA (MGA), i.e., a feature selection method using a pre-trained deep
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neural network (DNN) for the prediction of the demand for different patients’ key resources
in an outpatient department.

Apart from these two notable algorithms, several other nature-inspired methods have
been utilized to solve feature selection problems. The binary wrapper-based bat algorithm
was developed by Nakamura et al. in 2012 [23]. It uses the classifier optimum-path forest
to locate the feature sets that produce maximum classification accuracy. Hancer et al. [24],
proposed a binary artificial bee colony (ABC) that employed a similarity search mechanism
inspired by evolution to resolve the feature selection problem. Emary et al. [11], proposed
the binary ant lion optimizer (BALO) which utilizes the transfer function as a means of
moving ant lions within a discrete search space. The binary grey wolf optimizer with two
techniques was proposed the following year to locate a subset of features that cater for the
two conflicting objectives of the feature selection problem, i.e., to maximize the accuracy of
the classification and minimize the number of selected features. However, this method was
plagued with premature convergence, despite its outperformance of other methods used
for comparison in the study. Zhang et al. [25], designed a variation of the binary firefly
algorithm called return-cost-based FFA (Rc-FFA), which was able to prevent premature
convergence. A binary dragonfly optimizer was developed by Mafarja et al. [26], which
employed a time-varying transfer function that improved its exploitation and exploration
phases. However, its performance was not close to optimal.

Faris et al. [27], proposed two variants of the salp swarm algorithm (SSA) to solve the
feature selection problem. The first utilized eight transfer functions to convert a continuous
search space to a binary one, and the other introduced a crossover operator to improve
the exploration behavior of the SSA; however, the study did not provide an analysis of the
transfer functions. A binary grasshopper optimization algorithm (BGOA) was proposed
by Mafarja et al. [28], using the V-shaped transfer function and sigmoid. This study incor-
porated the mutation operator to enhance the exploration phase of the BGOA. In Mafarja
and Mirjalili [29], two binary versions of the whale optimization algorithm were proposed.
The first utilized the effect of a roulette wheel and tournament mechanisms of selection
with a random operator in the process of searching, while the second version employed the
mutation and crossover mechanisms to enhance diversification. Kumar et al. [30], proposed
a binary seagull optimizer which employed four S- and V-shaped transfer functions to
binarize the baseline algorithm, applying it to solve the feature selection problem. The
reported results showed competitive performance with other methods; their technique was
also evaluated using high-dimensional datasets.

Elgin Christo et al. [31], and Murugesan et al. [32], designed bio-inspired metaheuris-
tics comprising three algorithms. The former combined glowworld swarm optimization,
lion optimization algorithm and differential evolution, while the latter hybridized krill
herd, cat swarm and bacteria foraging optimizers, with both using the AddaBoostSVM
classifier as the fitness function and a backpropagation neural network to perform classifi-
cation, which was applied to clinical diagnoses of diseases. The methods showed superior
performance over other methods. However, these proposed methods were computationally
expensive due to the use of combinations of different metaheuristic methods. Balasubra-
manian and Ananthamoorthy [33], proposed a bio-inspired method (salp swarm) with
kernel-ELM as a classifier to diagnose glaucoma disease from medical images. The results
produced by this method showed superior performance over other methods. However, the
technique was not tested on collections of large, real-time datasets because this proved to
be more challenging. The different algorithms mentioned above provided better solutions
to many of the feature selection problems [34]. Many of these methods, however, could not
yield an optimal subset of features for datasets of high-dimensional magnitude. Addition-
ally, the inference from the NFL theorem that no single algorithm can solve all optimization
problems holds in the feature selection domain as well. Hence, a new binary method needs
to be developed to solve the optimization problem of feature selection.

Some bio-inspired metaheuristic algorithms are based on susceptible infectious recov-
ery (SIR), the class of models to which the EOSA algorithm belongs. Therefore, reviewing
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some efforts made using this model in the literature is appropriate here. Some such meth-
ods have been proposed to tackle the problem of detection and classification, among which
we may cite the SIR model [35]. This approach is based on sample paths and was employed
to detect the sources of information in a network. The assumption of that study was that all
nodes on the network were in their initial state and were susceptible, apart from a source
that was in a state of infection. The susceptible nodes could then become infected by the
infected node, which itself may have no longer been infected. The result of this simula-
tion revealed that the estimator that the reverse-infection algorithm produced for the tree
network was nearer to the real source. A further performance evaluation was conducted
on many real-world networks with good outcomes. However, the assumption of a single
source node only was the drawback of this model, since, in most real-world scenarios,
this is close to impossible. To overcome this problem, Zang et al. [36], utilized a divide-
and-conquer approach to find many sources in social networks using the SIR model. The
technique showed promising results with high accuracy of its estimations. However, these
methods have not been directly employed in the feature selection optimization problem.

Since the outbreak of the COVID-19 virus in 2020, more SIR model-based methods have
been designed to detect or diagnose corona virus infection in humans. In Al-Betar et al. [37],
a new coronavirus herd immunity optimizer (CHIO) was proposed which drew its inspi-
ration from the concept of herd immunity and social distance strategy so as to protect
society from contracting the virus. The herd immunity employed three main kinds of
individuals: susceptible, infected and immunized; it was applied to solve engineering
optimization problem. This algorithm has since been utilized to solve feature selection
and classification problems, including the introduction of a novel COVID-19 diagnostic
strategy, known as patient detection strategy (CPDS) [38], that combined the wrapper and
filter methods for feature selection. The improved k-near neighbor (EKNN) was used for
the wrapper method using the chest CT images of COVID-19 infected and non-infected
patients. The results revealed the superiority of the proposed method over other, recently
developed ones in terms of accuracy, sensitivity, precision, and time of execution. Similarly,
the greedy search operator was incorporated with and without the CHIO to make two
wrapper-based methods, which were evaluated on 23 benchmark datasets and a real-world
COVID-19 dataset.

Some high-dimensional datasets have been employed to assess the efficacy of the
proposed methods. Alweshah [39], boosted the efficiency of the probabilistic neural net-
work (PNN) using CHIO to solve the classification problem. Eleven benchmark datasets
were used to assess the accuracy of classification of the proposed CHIO-PNN which, on all
the datasets used, produced a summative classification rate of 90.3% with a quicker rate
of convergence than other methods. However, the drawback of this method was its use
on low and medium rank datasets. As such, there is a concern that higher dimensional
datasets may negatively impact its performance.

3. Methodology

This section presents the methodology of the proposed binarization approach for
the EOSA algorithm. To achieve the design, an overview of the EOSA algorithm and its
immunity-based variant is presented. This is followed by a description of the procedure
for the generation and binarization of the search space. The binary variant of EOSA is
then formulated and incorporated into the binary search space. The variant can use the
proposed transformation functions to map the continuous space to a discrete space. The
classification models used to support the feature selection process are also discussed.

3.1. Overview of EOSA and IEOSA

The EOSA metaheuristic [14] was inspired by the classical SIR model and the propaga-
tion model of the Ebola virus. Drawing from the natural phenomena associated with the
development of immunity by individuals against virus strains and the potential coverage
an immune individual provides for a susceptible individual, a new variant was proposed,
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named immunity-based variant (IEOSA). Both the base algorithm and the immunity-based
variant were exhaustively tested using continuous benchmark functions. The obtained
results confirmed their viability. We present a summary of the mathematical models
of the methods to support discussion of the techniques for the proposed BEOSA and
BIEOSA. The population initialization of EOSA and IEOSA is undertaken as shown in
Equations (1) and (2).

indi = L + rand ∗ ( U − L) (1)

indi+1 = g ∗ indi ∗ (1− indi) (2)

where g is a constant (3), rand is a randomly generated real number, L is the lower bound
and U is the upper bound of the optimization problem. The mutation of infected individuals
in the continuous space is described by Equation (3), where ∆ is the change factor of an
individual and gbest is a global best solution.

indi
new = ∆ ∗ erand cos(2πrand) ∗ (indi − gbest) (3)

The calculations for the allocation of individuals to compartments I, R, D, H, V and Q
were detailed in [14,40]. Considering the increasing demand for solving binary optimization
problems and the outstanding performance reported by the EOSA method, the binary EOSA
(BEOSA) is proposed in this study. In the following subsections, we include a detailed
discussion on the design of the algorithm for BEOSA and BIEOSA.

3.2. Binarization of Search Space

The BEOSA search space consists of individuals whose representations are of the
binary search space form. The entire population represents individuals whose anatomies
are made up of binary digits. This representation is required to aid in the processes of
identification and differentiation of selected features from those which are not. Figure 1
presents an illustration of the entire search space for the BEOSA algorithm. First, the
population of individuals in the search space is determined according to two parameters,
namely, population size psize and the dimension of dataset D. D is obtained by computing
the number of features in dataset X, while psize is declared during the initialization of
the population. Following an iterative approach, each individual indi in the population
is initialized to a value of 1 for the whole of D dimension in indi. It is expected that the
application of the BEOSA⊕ operation on the search space will result in optimized solutions
whose internal representation will have been modified to values between 0 and 1 for the
whole of the D dimension in indi.

The complete optimization process, which is expected to run for a number of iterations,
will yield output for each individual indi, similar to what is shown in Figure 2. It is assumed
that cells whose values are 1 s are considered to translate into the features which have been
selected. Recall that the dimension of D for arbitrary solution indi is similar to the number
of features |F| in the dataset of X. As a result, we simply count the number of 1 s in the
dimension of D for every indi which represents the instances in the dataset X.

The formalization of the search space is necessary to support the process of binarization
of EOSA which is suitable for solving the problem of feature selection. In the following
subsection, we describe the composition of the proposed BEOSA method.

3.3. Binarization of EOSA (BEOSA)

The design of the new variant of EOSA which will be able to optimize solutions in
a discrete solution space applies some new operators to existing ones in the algorithm.
The first is the definition of transformation functions which can change the solution rep-
resentation and optimization process from a continuous form to a discrete one. This is
necessary to allow the new method to process problems which are peculiar to feature
selection. The second operation modelled to achieve the new variant BEOSA is modifying
the fitness function. Evaluating the solutions to find the global best among all individuals
requires that the fitness of the solutions be computed. The definition of the fitness function
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is presented to suit the problem domain. Furthermore, the design of the BEOSA algorithm
and a flowchart are presented and discussed.
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3.3.1. Transformation of Method

We proposed four transformation functions to position infected individuals indi
in the discrete space. These functions follow the popular S-functions and V-functions
categories, so that two functions are described for the latter and two for the former.
Equations (4) and (5) contain the S1 and S2 functions which belong to the S-transform
function, while Equations (6) and (7) contain the V1 and V2 functions which belong to the
V-function family.

S1 =
1

1 + e(− x/2)
(4)

S2 = 1− 1
1 + ex (5)

V1 =

∣∣∣∣ x√
2 + x2

∣∣∣∣ (6)

V2 = |tan x| (7)

In Figure 3, the behavior of the transform functions is plotted to show that they are
truly able to generate patterns similar to the class of function they belong to. For instance,
the (a) part of the figure shows that the two S-functions result in an S-shaped pattern
when the function is applied to values [−6, 6], while a V-shaped pattern is reported for
the V-functions when they are applied to the same values. Note that these functions
confine their output on the y-axis to values between [0, 1], which is the aim of using the
transform functions.
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The aim of applying these transform functions is to ensure that they can help transfer
the composition of feature positions in an individual to either 0 or 1. Additionally, these
functions can increase the probability of changing the natural composition of that individual,
so that they become a potential solution for solving feature selection problems. This is
illustrated using Equations (8) and (9). The first part of the two equations controls the
selection of either the S1 or S2 function when applying the S-function and the use of
either T1 or T2 when applying the V-function. A determinant factor is used to guide this
decision, so that if rand(0|1), the function generates 1, and the S2 or T2 function is called
as appropriate; otherwise, the S1 or T1 function is called. In the second part of the two
equations, the value of the kth position in the representation of individual indi is modified
to be 1 when r > S

(
indk

i
)

for S-functions and r > T
(
indk

i
)

for T-functions; otherwise, 0
is assigned to the kth position whereby k lies between 0 ≤ k < D, and r is a randomly
generated between [0, 1].

S
(
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i

)
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(

indk
i

)
=

S2
(
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i

)
, T2

(
indk

i

)
rand(0|1) == 1

S1
(

indk
i

)
, T1

(
indk

i

)
rand(0|1) == 0

(8)

indk
i =

{
1 r > S

(
indk

i

)
| r > T

(
indk

i

)
0 otherwise

(9)

A flowchart of the process of applying the transform functions to achieve the transla-
tion of the BEOSA from the continuous space to the discrete space is illustrated in Figure 4.
The optimization process begins with a population described as the susceptible group.
Based on the natural phenomenon of the EOSA method, some individuals are exposed
to the virus, thereby leading to some of them being allocated to the infected subgroup.
It is these infected individuals that are optimized for a number of iterations. It is ex-
pected that during the iteration, almost all the members of the susceptible subgroup will
move to the infected subgroup. For each indi in the I subgroup, the kth position is mu-
tated using either of the S-functions or V-functions, depending on the satisfiability of
the pos(i) < THRESHOLD criteria. Note that the pos(i) function computes the current
position and displacement of individual indi. A constant value of 0.5 was assumed for
the THRESHOLD parameter during experimentation. The satisfiability of this condition
determines whether the S-functions or the V-function will be applied. The final output of
the optimization process is in a vector of 0 s and 1 s, as shown in Figure 4.

The mutation of the values of the kth position in every indi in the I subgroup and the
termination of the iterative condition will lead to the evaluation of the fitness values of each
individual in the entire population, thereby determining the current global best solution
for solving the feature selection problem. The following subsection discusses the fitness
function used in this study.
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3.3.2. Fitness and Cost Functions

A combination of both the fitness function evaluation and the cost function evaluation
was used to locate the best-performing solution to solve the feature selection problem. The
fitness function in Equation (10) evaluates the solution based on its performance on classifier
cl f on subset of the dataset X

[
: 1indi

]
and with the application of control parameter ω. The

notation 1indi , as used in the equation, returns the number of 1 s in the array representing
individual indi. Note that the notation |F| returns the number of features selected in the
individual, while D represents the dimension of the features in dataset X. For experimental
purposes, a value of 0.99 was used for ω.

f it = ω ∗ (1− cl f
(

X
[
: 1indi

])
+

(
(1−ω)

|F|
D

)
(10)

In Equation (11), the cost function is evaluated from the output of the fitness function,
i.e., by simply subtracting the value returned by f it from 1. Both the fitness and cost
function values are graphically applied to analyze and interpret the relevance and quality
of every best solution obtained for each dataset.

cost = 1− f it (11)

In the following subsection, we demonstrate how these functions are used in the
description of the proposed BEOSA method.

3.3.3. BEOSA Algorithm and Flowchart

The representative models for the binary search space and mathematical models
described in the previous subsections are formalized using the algorithm and flowchart
presented in this subsection. First, we present the algorithmic formalization as seen in
Algorithm 1, which indicates that the values for epoch (maximum number of iterations),
psize (population size), srate (short distance rate) and lrate (long displacement rate) are
required for input, while the output of the algorithm is the global best solution, the cost
values for each iteration and the feature count obtained for the optimization process. The
binarization of the solution space and computation of the fitness values for each solution
are listed in Lines 4–5. The current global best solution and the displacement positions
for all individuals in the susceptible compartment are computed in Lines 6–7. In Lines
8–34, the iteration for the optimization process is described, given the satisfiability of two
conditions: the number of maximum iterations is not reached, and some individuals remain
infected. An estimation of the number of individuals to quarantine from the infected is
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computed, and a declaration of the separation of quarantined from infected individuals is
made, in Lines 9–10. Iteration of the infected individuals is declared in Line 11, and the
number of newly infected cases in the susceptible group is shown in Line 12. In Lines 13–28,
we iterate the newly infected cases and generate the discriminant value in Line 14. If the
evaluation of the condition in Line 15 is true, then it implies that the method will search
within a local space; otherwise, it will search in a global space. In each case of exploitation
and exploration, we compute the anticipated number of infections. In Lines 17–21, we
apply the S1 () or S2 () function, depending on the value of d. Additionally, depending
on the satisfiability of the condition in Line 18, the feature position in that individual is
mutated to either 1 or 0. A similar procedure is repeated for the exploration phase using
the T1 () or T2 () function, depending on the value of d. Finally, the compartments are
updated and the global best solution is determined before executing the next iteration.

Algorithm 1 Pseudocode of the BEOS Algorithm

1. Input: epoch, psize, srate, lrate
2. Output: gbest, costs, fcount
3. begin
4. Initialize the populations (psize) as S
5. Binarize the solution space S
6. Assign first item in population to first infected case (I)
7. Make newly infected case global best
8. while e < epoch and size (I) > 0 do:
9. Compute individuals to be quarantinea
10. I = difference of current infected cases (I) from quarantine cases
11. for i in 1 to size(I) do:
12. generate new infected (nI) case from S
13. for i in 1 to size(nI) do:
14. randomly generate d between 1|0
15. if displacement(nI[i]) > 0.5 do:
16. update size of nI using srate
17. s = use S2(nI[i]) to transform all dimensions if d is 1, otherwise use S1(nI[i])
18. if s >= rand do:
19. nI[i] = 1
20. else:
21. nI[i] = 0
22. else:
23. update size of nI using lrate
24. t = use T2(nI[i]) to transform all dimensions if d is 1, otherwise use T1(nI[i])
25. if t >= rand do:
26. nI[i] = 1
27. else:
28. nI[i] = 0
29. Evaluate new fitness of nI[i]
30. add (nI) cases to (I) cases
31. Update all compartment
32. Update best solution so far
33. Increment e by 1
34. End while
35. Compute feature count (fcount)
36. Return best solution, cost of best solution, fcount

Figure 5 is a flowchart of the entire optimization process of the algorithm. The figure
provides a representation of the entire algorithm using a graphical method, including a
graphic representation of the flow of the use of the transformation functions. The parting
points for the S-functions and T-functions are shown clearly. The flowchart shows the
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initialization of the population and the global best updates upon the completion of an
iterative process.

In the following subsection, we describe the various classifiers applied in this study to
obtain the fitness and cost values of the BEOSA method.

3.4. Feature Selection and Count

The computation of the fitness and cost functions largely depends on the classification
accuracy obtained by using a classifier on a selected fragment of the dataset. In this study,
an investigative exploration was carried out to determine the influence of different popular
classifiers in solving the feature selection problem. Although the K-nearest-neighbor
(KNN) was used as the base classifier, we applied the random forest (RF), multi-layer
perceptron (MLP), decision tree (DT), support vector machine (SVM), and Gaussian Naive
Bayes (GNB) classifiers as well. On this basis, the number of features selected for arbitrary
individual indi is computed using Equation (12), where D and 1indk

i represent the dimension
of the feature size in the dataset and the number of feature positions with 1s in individual
indi, respectively.

f ci =
∑D

k=0(1
indk

i )

D
(12)

The following listing summarizes and describes the procedures and parametrization
used for each of the classifiers investigated in this study:

(a) KNN model: this model solves the classification problem by obtaining K-sets of items
sharing some similarity. k-fold values of 5, 3 and 2 were investigated to ascertain
the most viable settings. For most of the applied datasets, we found a k-fold of 5 to
yield optimal performance, whereas in the case of the Iris and Lung datasets using
the BSFO algorithm, we found a k-fold of 2 to be optimal.

(b) DT model: similar to the KNN, this study found that k-fold values of 5 and 2 were
more suitable for most algorithms and the datasets studied. A significant number of
the experiments showed impressive performance using a k-fold of 5. Meanwhile, the
maximum depth used for the decision tree model was 2.

(c) RF model: the classification task of RF for all of the benchmark datasets that were
applied using the proposed algorithm was tested using 300 estimators, while the
k-fold used for the cross-validation operation remained at 5.

(d) MLP model: the MLP model was tested with the settings of 0.001 for the alpha
parameter and with hidden layer sizes of the tuple (1000, 500, 100). The model was
trained over 2000 epochs with a random state of 4. Additionally, a k-fold of 5 was
used for the cross-validation task.

(e) SVM model: the SVM undertakes its classification operation by identifying a decision
boundary which is approximate enough to separate items in a dataset into classes. The
linear function was applied for the kernel settings, while a C value of 1 and a k-fold
value of 5 were investigated with the proposed BEOSA and BIEOSA algorithms.

(f) GNB model: The default values for the parameters of the GNB model were applied
for the experimentation, although we manually set the k-fold value to 5 for the cross-
validation task. These default parameters demonstrated optimal performance in
computing the probability value, which may be described as follows: given class label
Y and feature vector X, we can compute the probability of X when that of Y is known,
as shown in Equation (13).

P(Y|X) =
P(X|Y)P(Y)

P(X)
(13)

In the next section, we present a detailed discussion of the experimental settings
and computational environment with the datasets used to test the method presented in
this section.
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4. Experimental Setup

A description of the experimental configuration is presented in this section. We first
note that the computational environment used for our experiments was a personal computer
(PC) with the following configuration: CPU, Intel® Core i5-4210U CPU 1.70 GHz, 2.40 GHz;
RAM of 8 GB; Windows 10 OS. We also experimented on a series of computer systems
with the following configuration: Intel® Core i5-4200, CPU 1.70 GHz, 2.40 GHz; RAM of
16 GB; 64-bit Windows 10 OS. The binary metaheuristic algorithms were implemented
using Python 3.7.3 and supporting libraries, such as Numpy and other dependent libraries.
While this describes the computational environment, the following subsections detail the
parameter settings and the nature of the input supplied during the experiments. This
section also presents and justifies the selection of some of the evaluation metrics applied
for our comparison of results.

4.1. Dataset

Exhaustive experimentation with BEOSA was carried out using 22 benchmark and
popularly available datasets [41]. These datasets have been widely used for comparative
analyses of binary metaheuristic algorithms and were therefore considered suitable for
testing the efficiency and performance of the method proposed in this study. Table 1
provides some information about the applied datasets. High, moderate and low-dimension
datasets are included, making them suitable for experimenting with the BEOSA method on
those three dimensions. This became necessary, considering the importance of investigating
the suitability of an algorithm on a variety of datasets, high-dimension ones in particular,
since these often have similarities with real-life binary optimization problems.

The number of biomedical datasets is growing rapidly; this has led to the genera-
tion of high-dimensional features that negatively affect the classifiers of machine learning
processes [42]. Many of the feature selection methods described in the literature suffer
from diversity of population and local optima problems when they are evaluated against
high-dimensional datasets, such as the ever-growing body of biomedical datasets. Feature
selection is aimed at selecting the most effective features from an original set contain-
ing irrelevant elements; this becomes especially challenging to with high-dimensional
datasets, which is why it is important for us to prove the efficacy of the BESOA with such
data dimensionality.

Table 1. Datasets and their corresponding details, such as the number of features, classes and
instances, and a description of each.

Dataset and References Number of
Features

Number of
Instances

Number of
Class Description

BreastEW 569 30 2 Biology-based and medical-oriented dataset
Lung [43] 3312 203 5 Biology-based and medical-oriented dataset

CongressEW [44] 435 16 2 Congressional voting dataset
Exactly [45] 1000 13 2 Artificial binary classification dataset

Iris [46] 4 150 2 Biology-based dataset
Exactly2 [45] 1000 13 2 Artificial binary classification dataset

HeartEW 270 13 2 Biology-based and medical-oriented dataset
Ionosphere [47], 351 34 2 Electromagnetic dataset

Prostate 5966 102 2 Biology-based and medical-oriented dataset
Lymphography [48] 148 18 4 Biology-based and medical-oriented dataset

M-of-n 1000 13 2 Biology-based and medical-oriented dataset
Leukemia 7070 72 2 Biology-based and medical-oriented dataset

PenglungEW 325 73 7 Biology-based and medical-oriented dataset
Sonar 208 60 2 Sonar signal classification dataset

SpectEW [49] 267 22 2 Biology-based and medical-oriented dataset
Colon 2000 62 2 Biology-based and medical-oriented dataset

Tic-tac-toe [50] 958 9 2 Endgame dataset
Vote 300 16 2 Electioneering domain

Wine [51] 178 13 3 Wine dataset showing the results of analysis of chemicals in wines.
Zoo 101 16 7 Biology-based dataset

KrVsKpEW 3196 36 2 Game dataset

WaveformEW [52] 5000 40 3
A generator dataset generates three classes of waves, with each class
sampled at 21 intervals. Additionally, each class is a random convex

combining 2 out of 3 base waves.
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The Lung, Prostate, Leukemia, KrVsKpEW, Colon and WaveformEW datasets are
considered here as high-dimensional datasets with feature sizes ranging between 4 and
7070. Additionally, most of these datasets have binary classification problems or, in the
case of Lung and WaveformEW, multi-classification problems. BreastEW, Exactly, Exactly2,
M-of-n and Tic-tac-toe are medium-sized dimensional datasets. Most of the datasets in
this category have a number of instances between 9 and 203, and numbers of features are
mostly more than 270, except for Iris, which has about four features. Meanwhile, are all
binary classification problems. Low-dimensional datasets are those considered to have
<500 instances and probably fewer features. The CongressEW, Iris, HeartEW, Ionosphere,
Lymphography, PenglungEW, Sonar, SpectEW, Vote and Zoo datasets are in this category.
The Iris dataset demonstrates exceptional characteristics, since only four features exist in
that dataset, but each has 150 instances. All are binary classification problems except for
PenglungEW, Zoo and Lymphography, which are multi-classification problems.

A description of each of these datasets is included. Most share some biological features,
while the rest were collated from various other domains.

4.2. Parameter Configuration and Settings

Eight binary variants of metaheuristic algorithms were employed for a comparative
analysis with the method proposed in this study, i.e., the binary dwarf mongoose optimizer
(BDMO) [14], the binary simulated normal distribution optimizer (BSNDO), the binary
particle swarm optimizer (BPSO), the binary whale optimization algorithm (BWOA), the
binary sailfish optimizer (BSFO), the binary grey wolf optimizer (BGWO), BEOSA and
BIEOSA. Table 2 lists the parameter settings applied for each of the algorithms. The values
for the parameters π, β1, β2, β3 and β4, as used in our experiments with BEOSA and
BIEOSA, are listed in the table as 0.1, 0.1, 0.1, 0.1 and 0.1, respectively. Similarly, the values
for nb, na, ns, peep, τ and L were set at 3, (N-nb), (n-nb), 1, [0,1] and round (0.6*D*nb) for
BDMO. The mean of the population size was computed to set the mo parameter of the
BSNDO. Additionally, the BPSO control parameters c1, c2, W and Vmax were initialized at
2, 2, 0.9 and 6. The parameters for the remaining algorithms are shown in the table, with p,
l, b r, and C for BWOA being initialized at [0,1], [0,1], 1, [0,1] and 2r. In BSFO, p was 0.1,
A was 4 and epsilon was 0.001. Lastly, BGWO was initialized within the bound [2, 0] as
coefficient for decreasing power attack.

Table 2. Parameters for the BEOSA, BIEOSA, BDMO, BSNDO, BPSO, BWOA, BSFO and BGWO
metaheuristic algorithms in this study. N, as used for BDMO and BSNDO, denotes the population size.

Method Parameter Value Definition

BEOSA π 0.1 Recruitment rate

β1, β2, β3 and β4 0.1, 0.1, 0.1, and 0.1 Contact rate of infected individuals, of the host, with the dead
and with the recovered individuals

BIEOSA π 0.1 Recruitment rate

β1, β2, β3 and β4 0.1, 0.1, 0.1, and 0.1 Contact rate of infected individuals, of the host, with the dead
and with the recovered individuals

BDMO nb 3 Number of babysitters
na N- nb Number of alpha
ns N- nb Number of subordinates

peep, τ 1, rand (0, 1) Peep sound, tau operator for fitness evaluation
L round (0.6*D*nb) Babysitter exchange parameter

BSNDO mo mean(N) Mean position of the population
BPSO c1, c2 2, 2 Positive learning factors constant 1 and constant 2

W 0.9 Initial weight
Vmax 6 Maximum velocity vector

BWOA p, l [0, 1], [-1, 1] Random number, random number
b 1 Shape of spiral

r, C [0, 1], 2r Random vector, coefficient vector
BSFO Pp 0.1 Percentage of the sardine population

A, ε 4, 0.001 The coefficient for decreasing power attack
BGWO au [2,0]
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Population sizes of 25, 50, 75 and 100 were investigated for each of the algorithms
to show how this variable affected performance. The training of the algorithms followed
50 iterative processes, and the experiment for each algorithm was typically repeated
10 times/runs to determine the average performance. The formulae applied to compute
these averages and all other similar metrics used for our comparative analysis are presented
in the following subsection.

4.3. Evaluation Metrics

The evaluation metrics presented in the following paragraphs describe the approach
used to quantify the obtained values to support our performance comparison. The follow-
ing metrics are discussed: classification accuracy, mean accuracy, best accuracy and the
standard deviation fitness obtained using Equations (14)–(16).

(a) Classification accuracy (CA): this computes the accuracy of classifier cl f with dataset
X and label Y, as described in Equation (14):

CA = cl f (X, Y) (14)

(b) Mean accuracy (MA): this computes the mean of all classification accuracies obtained
after a certain number of runs on a given algorithm, where acci is the accuracy
obtained during iteration i after N iterations and all accuracy values acc obtained for
N times, as described in Equation (15):

Meanacc =
1
N

N

∑
i=0

CAi (15)

(c) Best Accuracy (BA): the best of all classification accuracies obtained after a certain
number of runs, as described in Equation (16):

bestacc = max(CA) (16)

(d) Average feature count (AFC): obtained by finding the average value for all numbers
of selected features for all population groups (PG), as described in Equation (17):

AFC =
1

PG

PG

∑
i=0

f ci (17)

The following section presents the results of all experiments and a comparative analy-
sis of the algorithms. Additionally, the findings derived from the results are highlighted.

5. Results and Discussion of Findings

The results presented in this section are focused on the performance of BEOSA and
BIEOSA in comparison with those of similar methods, i.e., the binary dwarf mongoose
optimizer (BDMO) [3], the binary simulated normal distribution optimizer (BSNDO) [9],
the binary particle swarm optimizer (BPSO) [53], the binary whale optimization algorithm
(BWOA) [54], the binary grey wolf optimizer (BGWO) [55] and the binary sailfish optimizer
(BSFO) [56] algorithms. The selection of these algorithms was based on their outstanding
performance, as described in various reports, and their status as state-of-the-art methods
for binary optimization. We note that our evaluations of most of these algorithms applied
the same parameterizations, e.g., the number of iterations and parameter settings. The
following subsections are organized as follows. Firstly, we provide a comparative analysis
of the various methods based on their fitness performance and the number of selected
features. We then examine the classification accuracy of each method as compared with
others. Next, we compare the cost functions of all methods and show the impact of
the choice of classifiers on the feature classification procedure. Finally, we report the
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computational time of each method and discuss our findings. The following subsections
using tabular and graphical means for the sake of clarity.

5.1. Comparative Analysis of Fitness and Cost Functions

BEOSA and BIEOSA are now compared with related algorithms based on the results
obtained for fitness and cost functions. The fitness function aims to minimize the objective
function, while the cost function aims to maximize it. Table 3 lists the results obtained for
each of the binarized algorithms for all benchmark datasets.

The BWOA algorithms performed better on the BreastEW, Lung, Iris, Exactly2, Colon
and Vote datasets, with fitness values of 0.0307, 0.0006, 0.0050, 0.2384, 0.0004 and 0.0013, re-
spectively. BWOA showed superiority with six benchmark datasets, while BGWO showed
superiority with WaveformEW, yielding a fitness value of 0.1817. BSNDO outperformed
the other methods on eight datasets, i.e., Lymphography, M-of-n, PenglungEW, Sonar,
SpectEW, Tic-tac-toe, Wine and KrVsKpEW, with fitness values of 0.0380, 0.0046, 0.0013,
0.0047, 0.0948, 0.1647, 0.0298 and 0.0250, respectively. Interestingly, BEOSA outperformed
most of the other methods, showing superiority with nine datasets, i.e., CongressEW,
Exactly, Exactly2, HeartEW, Ionosphere, Prostate, Wine and Zoo, with fitness values of
0.0575, 0.2620, 0.2384, 0.0772, 0.0722, 0.0002, 0.0298 and 0.0533, respectively. Meanwhile,
the associated variant of the proposed algorithm, BIEOSA, was competitive with BEOSA,
showing superiority on two datasets. The implication of these findings is that the new
method is suitable for minimizing the fitness function, allowing it to solve the difficult
problem of feature selection on a wide range of datasets with different dimensionalities.

The values obtained for the cost function are plotted in Figure 6 to show the variation
in the performance of the algorithms with the various datasets. A close examination of the
plots for the Zoo, Vote, Wine, Sonar and Tic-tac-toe datasets shows that BEOSA yielded
outstanding cost values during the iterative process. In the five considered datasets, the
BGWO method showed unstable performance on the cost function, whereas the BEOSA,
BIEOSA, BDMO, BSNDO, BPSO, and BWOA were stable and BEOSA, BIEOSA, and BPSO
often yielded similar results. The BEOSA curve was above those of the other methods for
the Zoo, Sonar and Tic-tac-toe datasets and was close behind those of other methods for
the Vote and Wine datasets. In the second category, we compared the performance curves
of all the methods using M-of-N, Ionosphere, Exactly, Exactly2, and HeartEW datasets.
The BGWO maintained its unstable performance along the curve line, whereas all the
remaining methods yielded good results. For example, BEOSA and BPSO closely shared
the top section of the plots, meaning that their performance on the cost function was
superior to those of the other methods. At the same time, both BDMO and BWOA were
low in all the plots, showing that their performance in evaluating the cost function was
poor. The BIEOSA and BSNDO were average performers in the five datasets. The third
categories of datasets for comparison were Congress, Lymphography, BreastEW, Colon,
and SpectEW. With the high dimensional Colon dataset, the BEOSA yielded similar results
to BPSO and BGWO, even though the latter was unstable, while the variant BIEOSA and
BSNDO methods demonstrated average performance. For the BreastEW dataset, both
BEOSA and BIEOSA outperformed the other methods, yielding the best cost function curve.
The BEOSA algorithm was just below that of BPSO on the Lymphography dataset, which
superseded all other algorithms. The BIEOSA, BPSO, and BWOA were all plotted at the top
section for the CongressEW datasets, while the BEOSA algorithm trailed behind. Similarly,
the BEOSA outperformed all methods on the SpectEW datasets, although the BIEOSA
algorithm yielded a curve in the lower section.
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Table 3. Results of fitness and cost functions for BWOA, BPSO, BSFO, BGWO, BDMO, BSNDO, BEOSA and BIEOSA on all benchmark datasets.

Dataset
BWOA BPSO BSFO BGWO BDMO BSNDO BEOSA BIEOSA

Fitness Cost Fitness Cost Fitness Cost Fitness Cost Fitness Cost Fitness Cost Fitness Cost Fitness Cost

BreastEW 0.0307 0.9693 1.0000 0.0000 0.0374 0.9626 0.0564 0.9436 0.8233 0.1767 0.9265 0.0735 0.0404 0.9596 0.0651 0.9349
Lung 0.0006 0.9994 0.0516 0.9484 0.0535 0.9465 0.0307 0.9693 0.9729 0.0271 0.9729 0.0271 0.0490 0.9510 0.0492 0.9508

CongressEW 0.0588 0.9412 0.2175 0.7825 0.026 0.9742 0.0259 0.9741 0.9071 0.0929 0.9071 0.0929 0.0575 0.9425 0.1068 0.8932
Exactly 0.6923 0.3077 0.4859 0.5141 0′0147 0.9853 0.026 0.9740 0.6923 0.3077 0.6923 0.3077 0.2620 0.7380 0.3553 0.6447

Iris 0.0050 0.9950 0.6295 0.3705 NA 1.0000 0.0025 0.9975 0.7005 0.2995 0.8300 0.1700 0.0380 0.9620 0.2030 0.7970
Exactly2 0.2384 0.7616 0.2399 0.7601 0.0355 0.9645 0.2324 0.7676 0.6984 0.3016 0.6984 0.3016 0.2384 0.7616 0.2384 0.7616
HeartEW 0.2582 0.7418 0.4431 0.5569 0.3744 0.6256 0.1322 0.8678 0.5401 0.4599 0.4859 0.5141 0.0772 0.9228 0.2956 0.7044

Ionosphere 0.0734 0.9266 0.2171 0.7829 0.1791 0.8209 0.1335 0.8665 0.8860 0.1140 0.0162 0.9838 0.0722 0.9278 0.1288 0.8712
Prostate 0.0004 0.9996 0.0963 0.9037 0.0064 0.9936 0.0064 0.9936 0.9526 0.0474 0.9526 0.0474 0.0002 0.9998 0.0486 0.9514

Lymphography 0.2024 0.7976 0.3669 0.6331 0.3647 0.6353 0.1062 0.8938 0.5996 0.4004 0.0380 0.9620 0.1040 0.8960 0.3003 0.6997
M-of-n 0.2506 0.7494 0.6252 0.3748 0.3678 0.6322 0.0054 0.9946 0.7281 0.2719 0.0046 0.9954 0.1581 0.8419 0.3678 0.6322

Leukemia 0.0662 0.9338 0.0736 0.9264 NA 1.0000 0.0063 0.9937 0.9297 0.0703 0.9297 0.0703 0.0662 0.9338 0.0042 0.9958
PenglungEW 0.0705 0.9295 0.0042 0.9958 0.2065 0.7935 0.0059 0.9941 0.6672 0.3328 0.0013 0.9987 0.0672 0.9328 0.2689 0.7311

Sonar 0.0724 0.9276 0.1194 0.8806 0.1946 0.8054 0.1946 0.8054 0.7626 0.2374 0.0047 0.9953 0.0717 0.9283 0.1889 0.8111
SpectEW 0.1315 0.8685 0.2223 0.7777 0.2465 0.7535 0.1159 0.8841 0.7764 0.2236 0.0948 0.9052 0.1498 0.8502 0.2433 0.7567

Colon 0.0004 0.9996 0.3860 0.6140 NA 1.0000 0.0063 0.9937 0.8449 0.1551 0.8449 0.1551 0.0001 0.9999 0.0776 0.9224
Tic-tac-toe 0.2623 0.7377 1.0000 0.0000 0.7635 0.2365 0.1750 0.8250 0.6534 0.3466 0.1647 0.8353 0.2943 0.7057 0.3809 0.6191

Vote 0.0013 0.9988 1.0000 0.0000 0.1681 0.8319 0.0203 0.9798 0.8471 0.1529 0.0019 0.9981 0.0545 0.9455 0.0863 0.9138
Wine 0.0306 0.9694 0.3865 0.6135 0.3048 0.6952 0.0863 0.9137 0.6685 0.3315 0.0298 0.9702 0.0298 0.9702 0.1131 0.8869
Zoo 0.0520 0.9480 0.2005 0.7995 0.1992 0.8008 0.0545 0.9455 0.7500 0.2500 0.7500 0.2500 0.0533 0.9468 0.2017 0.7983

KrVsKpEW 0.0612 0.9388 0.4728 0.5272 0.3519 0.6481 0.0348 0.9652 0.6828 0.3172 0.0250 0.9750 0.0382 0.9618 0.4083 0.5917
WaveformEW 0.2102 0.7898 0.5468 0.4533 0.3149 0.6851 0.1817 0.8183 0.3394 0.6606 1.0000 0.2431 0.7569 0.2762 0.7238

Summary 6 6 0 0 0 0 1 1 0 0 8 8 8 8 2 2
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(h) Exactly; (i) Exactly2; (j) HeatEW; (k) CongressEW; (l) Lymphography; (m) Colon; (n) BreastEW;
and (o) SpectEW datasets.
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The performance of the algorithms on the Zoo dataset were as follows: the cost values
range for BIEOSA was 0.50–0.52, BSNDO 0.64–0.65, BDMO 0.75–0.76, BWOA 0.80–0.81,
BPSO 0.84–0.85, BGWO 0.74–0.95, and BEOSA 0.99–1.0. The Vote dataset yielded the
following results: BWOA 0.80, BGWO 0.75–0.93, BSNDO, BDMO and BEOSA all 0.94,
BIEOSA 0.94–0.97, and BPSO 0.98. The Wine dataset results were as follows: BDMO
0.58, BGWO 0.58–0.97, BSNDO 0.7750–0.7799, BWOA 0.81, BEOSA 0.94, BPSO 0.88–0.97,
and BIEOSA 0.97. Performance with the sonar dataset was as follows: BDMO was the
lowest among all curves at less than 0.55; meanwhile, BSNDO was at 0.76, BIEOSA was
0.78, BWOA was 0.81, BGWO 0.88–0.87, BPSO 0.88–0.91, and BEOSA 0.86–0.93. For the
tic-tac-toe dataset performance BGWO outperformed the other methods by running from
0.62–0.82, BDMO was 0.59, BWOA was 0.62, BIEOSA was 0.63, BSNDO was 0.66, BPSO
was 0.68, and BEOSA was 0.73.

The performance of the algorithms on the M-of-n dataset was as follows: the cost
function values for BDMO were just above the 0.50 value, while those of BSNDO were
0.62, BWOA was 0.72, BIEOSA was 0.78, BEOSA was 0.83, BGWO was 0.80–0.84 with its
peak at 0.97, and BPSO was 0.92-1.0. The Ionosphere dataset yielded the following results:
BGWO began its curve from 0.752 and ended at 0.777, BWOA ran through 0.812, BDMO
ran through 0.8125, BIEOSA went from 0.826 to 0.840, BSNDO was above 0.850, the BEOSA
curve was just above 0.875, and the BPSO curve started from 0.805 and extended to just
above 0.900. The Exactly and Exactly2 datasets yielded the following patterns: the BDMO
curves were at 0.577 and 0.45 for Exactly and Exactly2, respectively. The BIEOSA curve was
0.625 with Exactly and ranged from 0.64 to 0.68 on Exactly2, BWOA was 0.635 with Exactly
and 0.47 with Exactly2, BSNDO was 0.635 with Exactly and 0.60 on Exactly2, BGWO ranged
from 0.650 to 0.635 on Exactly and from 0.75 to 0.70 on Exactly2, BPSO was 0.675 with
Exactly and 0.75 with Exactly2, and BEOSA was just below 0 to above 0.76 with Exactly
and Exactly2, respectively. The result for HeartEW showed that BWOA and BDMO ranked
lowest, with cost function value of around 0.50. BGWO followed, starting at 0.55, peaking
at 0.83 and ending at 0.69; BIEOSA was 0.64, BPSO ran from 0.65 to 0.75, and lastly, BEOSA,
was above all the other algorithms at 0.78.

The CongressEW and Lymphography datasets demonstrated some similarity, with
the BSNDO curve at the bottom with 0.62 and 0.52, respectively. This was followed by
BDMO, which was at 0.80 and 0.70 with the CongressEW and Lymphography. While
the BIEOSA, BWOA and BPSO curves were around 0.95 for the CongressEW dataset, the
same algorithms were sparsely plotted with the Lymphography dataset at 0.68, 0.80, and
0.90, respectively. Typically for BGWO, in this case, it started at 0.89 and ended at 0.86
for CongressEW and started at 0.84 and ended at 0.78 with the Lymphography dataset.
The BEOSA curve was a 0.875 on the CongressEW dataset and 0.80 on the Lymphography
dataset. The algorithm curves showed different performance with the Colon and BreastEW
datasets. For instance, where the BWOA algorithm curve was below 0.70 with Colon, it
shot up above 0.90 with BreastEW. Additionally, the curve of BSNDO was around 0.85 for
the Colon graph but fell below 0.70 with the BreastEW graph. BIEOSA also showed some
disparity on Colon, where it crossed the graph close to 0.85; meanwhile, with the BreastEW,
it had a better cost value, running close to 0.95. The characteristic of BGWO is that it always
zig-zagged its curves, as can be seen with Colon, where it started at 0.92 and ended on
the same value, peaking at around 1.0 and dipping to around 0.85. The same algorithm
started at 0.93 and ended at 0.92, with its peak at around 0.94 and trough at 0.86 for the
BreastEW dataset. The BDMO curve was just below 0.70 on the Colon and around 0.93 on
BreastEW. The BPSO and BEOSA curves were around 1.0 with the Colon dataset. Lastly,
the SpectEW dataset had some interesting curves for BIEOSA, BPSO and BEOSA, with
curves starting from 0.62, 0.83, and 0.90, respectively, and then stabilizing at 0.62, 0.83, and
0.89, respectively. BSNDO and BWOA consistently had curves at 0.75 and 0.80, respectively.
BGWO spiked up and down, starting from 0.70 to 0.80 and having a peak at 0.81. BDMO
was just below 0.80.
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The takeaway from these cost function evaluations is that whereas the values ob-
tained varied across datasets, both BPSO and BEOSA always performed well, mostly
yielding curves above those of the other algorithms. This implies that both algorithms
demonstrated superiority compared with the other methods, though in most cases, BEOSA
outperformed BPSO.

The implication of these outcomes is that both the BEOSA and BIEOSA methods are
relevant binary optimization algorithms with great potential for producing very good
performance on heterogeneous datasets with different dimensionalities. The cost function,
which evaluates how far an algorithm moves away from the fitness function value, also
evaluates the robustness of the algorithm in terms of its ability to sustain a good cost
function evaluation; the higher the cost function value, the better the fitness value obtained.
Considering the consistently outstanding performance of both BEOSA and BIEOSA on
the fitness and cost function evaluations with all datasets, we conclude that the algorithm
is very suitable for solving the problem of feature selection with effective minimization
and maximization of fitness and cost values, respectively. In the following subsection, we
compare the number of selected features obtained for all methods and associate this with
the fitness evaluation discussed in this section.

5.2. Comparative Analysis of Selected Features for All Methods

The basis of solving feature selection problems using the binary optimization method
is to reduce the number of features used for classification purposes. This is necessary
to eliminate the bottleneck which is often associated with high-dimensional datasets on
classifiers. Another benefit of reducing the number of features is to ensure that only relevant
ones are used for the classification operation. In this subsection, we evaluate BEOSA and
BIEOSA and compare their performance with that of BWOA, BPSO, BFSO, BGWOA, BDMO
and BSNDO. Table 4 compares the number of features selected for each algorithm across
four different population sizes, namely, 25, 50, 75 and 100.

An interesting performance result was observed when the algorithms were compared
based on their average number of selected features. For example, the BPSO outputs a
value of 1 for the number of selected features for all population sizes and for all datasets
considered during our experiments. While this showed some measure of abnormality in the
process of feature selection in the algorithm, we observed more standard performance for
all the remaining methods. As an example, consider the outcome of some low-dimensional
datasets such as the BreastEW, CongressEW, Exactly and Exactly2. The BEOSA and BIEOSA
yielded similar results to all the other methods. For BWOA, BGWO, BDMO, BSNDO,
BEOSA and BIEOSA, the average numbers of features (on population sizes yielding this
average performance) were 17.0 (25), 16.9 (100), 5.5 (50), 3.0 (25), 7.3 (25) and 5.9 (75),
respectively. The CongressEW showed 8.9 (100), 10.1 (25), 2.4 (50), 2.4 (50), 5.3 (100) and
4.6 (50) for the same BWOA, BGWO, BDMO, BSNDO, BEOSA and BIEOSA methods.
Similarly, the Exactly dataset reported values of 6.2 (50), 8.5 (25), 3.0 (25), 2.2 (25), 4.2 (25)
and 2.5 (75), while Exactly2 gave 7.0 (75), 8.3 (100), 3.5 (100), 2.0 (25), 1.7 (100) and 2.5 (25) on
the same methods, respectively. These results show that in most cases, population sizes of
25–50 were sufficient to produce the desired results. Even population-intensive algorithms
such as BEOSA and BIEOSA demonstrated that their best average feature selection counts
could be obtained using a population size range of 25–75.



Appl. Sci. 2022, 12, 11787 22 of 40

Table 4. Results of the average number of features selected for BWOA, BPSO, BSFO, BGWO, BDMO, BSNDO, BEOSA and BIEOSA on all datasets with population
sizes of 25, 50, 75 and 100.

Dataset

BWOA BPSO BSFO BGWO BDMO BSNDO BEOSA BIEOSA

Number of Features Number of Features Number of Features Number of Features Number of Features Number of Features Number of Features Number of Features

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

BreastEW 17.0 17.1 17.3 18.4 1.0 1.0 1.0 1.0 10.5 10.0 11.0 11.5 20.1 18.9 18.6 16.9 7.1 8.3 5.5 5.6 3.0 3.0 3.0 3.0 7.3 10.3 9.6 8.1 7.7 5.9 10.0 8.1
Lung 1907.2 1840.7 1693.5 1692.5 1.0 1.0 1.0 1.0 NA NA NA NA 2165.4 2180.4 2151.1 2168.9 847.5 820.3 1161.9 971.2 2098.4 2098.4 2098.4 2098.4 443.7 857.4 461.9 403.9 970.4 1189.7 685.3 699.9

CongressEW 9.4 9.8 9.1 8.9 1.0 1.0 1.0 1.0 6.7 6.6 6.0 5.8 10.1 11.2 10.2 10.2 4.7 2.4 2.9 3.2 2.4 2.4 2.4 2.4 5.9 5.7 6.4 5.3 5.7 4.6 5.1 5.9
Exactly 7.1 6.2 7.7 7.6 1.0 1.0 1.0 1.0 0.7 0.7 0.7 0.7 8.5 9.1 9.3 9.4 3.0 3.9 3.3 3.1 2.2 2.2 2.2 2.2 4.2 4.3 4.8 4.9 3.5 3.6 2.5 2.6

Iris 3.0 3.0 3.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 3.0 2.0 2.0 2.0 1.0 1.0 1.0 2.0 1.0 2.0 1.4 1.3 1.7 1.8 2.0 2.0 2.0 2.0
Exactly2 7.3 7.0 8.0 5.7 1.0 1.0 1.0 1.0 4.5 5.0 5.0 4.5 8.8 8.9 8.3 8.3 4.0 3.7 4.8 3.5 2.0 2.0 2.0 2.0 2.0 1.9 1.7 1.7 2.5 3.7 3.6 3.6
HeartEW 7.1 7.5 8.2 7.7 1.0 1.0 1.0 1.0 5.0 5.0 1.0 5.0 8.7 9.5 8.3 7.5 2.8 2.8 3.7 2.9 1.0 1.0 1.0 1.0 4.3 3.1 4.8 2.6 4.3 3.7 2.7 2.8

Ionosphere 18.6 17.2 17.6 17.2 1.0 1.0 1.0 1.0 8.0 14.0 10.0 8.0 21.9 21.8 21.1 21.5 5.0 8.8 8.3 5.5 8.4 8.4 8.4 8.4 7.3 7.1 7.6 8.4 8.0 10.2 10.6 8.2
Prostate 3274.1 3257.7 3255.6 3286.4 1.0 1.0 1.0 1.0 3916 3916 3916 3916 3937.1 3949.7 3929.2 3927.2 2272.8 1506.3 1685.3 1402.8 1478.4 1478.4 1478.4 1478.4 1326.1 941.5 895.3 682.2 1141.5 1389.3 1437.3 1359.3

Lymphography 12.0 10.3 10.1 9.6 1.0 1.0 1.0 1.0 9.0 9.0 9.0 5.0 11.7 12.8 12.2 11.4 3.9 4.7 5.9 3.5 1.0 1.0 1.0 1.0 7.3 6.9 7.1 7.1 4.5 5.9 6.0 5.6
M-of-n 8.2 8.1 8.3 7.3 1.0 1.0 1.0 1.0 1.0 5.0 2.0 6.0 8.6 7.8 8.2 8.4 2.2 1.9 2.9 2.9 0.6 0.6 0.6 0.6 7.1 7.5 7.0 6.1 4.3 4.0 3.2 4.5

Leukemia 1708.3 1719.8 1872.7 1778.9 1.0 1.0 1.0 1.0 NA NA NA NA 2340.6 2334.1 2320.4 2337.8 1025.2 1483.3 999.7 1194.3 928.5 928.5 928.5 928.5 253.6 110.3 121.9 50.3 1202.4 865.7 589.7 876.0
PenglungEW 192.0 190.0 170.0 179.0 1.0 1.0 1.0 1.0 109.0 4.0 85 67 207.0 193.0 212.0 213.0 176.2 103.9 189.4 23.9 142.0 144.0 124.0 170.0 46.0 134.0 35.0 40.0 24.0 122.0 92.0 158.0

Sonar 34.6 34.0 31.6 32.1 1.0 1.0 1.0 1.0 20.0 10.0 9.0 8.0 38.2 38.5 39.6 37.9 7.3 13.0 18.6 11.1 23.0 23.0 23.0 23.0 22.4 23.7 24.3 16.5 18.8 18.5 19.3 13.9
SpectEW 12.2 13.1 12.3 10.2 1.0 1.0 1.0 1.0 3.0 6.0 4.0 9.0 13.4 13.9 15.6 13.6 5.7 10.1 6.3 8.4 3.1 3.1 3.1 3.1 7.7 9.3 7.0 7.5 7.9 5.3 5.9 6.3

Colon 1127.0 1016.1 1066.2 1035.0 1.0 1.0 1.0 1.0 NA NA NA NA 1302.0 1303.2 1306.3 1301.5 546.2 623.6 657.4 727.7 1374.3 1374.3 1374.3 1374.3 338.5 286.8 197.0 157.1 384.3 632.0 472.5 316.5
Tic-tac-toe 4.7 4.7 5.4 4.7 1.0 1.0 1.0 1.0 3.0 3.0 4.0 1.0 5.6 6.3 6.2 6.1 2.3 2.3 1.8 2.1 1.4 1.4 1.4 1.4 5.5 5.6 5.2 6.4 2.5 2.9 3.1 2.7

Vote 8.5 9.2 8.4 7.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 10.8 11.3 11.0 10.2 3.4 4.1 4.3 3.7 7.0 7.0 7.0 7.0 5.1 5.8 5.7 5.1 3.5 4.4 5.0 4.0
Wine 7.4 8.2 8.0 7.3 1.0 1.0 1.0 1.0 3.0 1.0 3.0 5.0 7.7 8.2 8.0 7.3 3.0 3.8 3.1 2.6 2.6 2.6 2.6 2.6 5.0 4.5 4.9 5.4 4.3 3.7 3.8 3.8
Zoo 10.1 8.6 8.8 9.3 1.0 1.0 1.0 1.0 6.0 1.0 4.0 6.0 10.9 10.6 10.0 9.3 2.4 1.8 3.9 3.3 3.0 3.0 3.0 3.0 6.8 7.7 7.3 7.6 5.1 4.6 4.5 5.6

KrVsKpEW 19.0 23.0 21.0 26.0 1.0 1.0 1.0 1.0 10.0 10.0 10.0 10.0 27.0 22.0 27.0 25.0 6.1 2.4 4.2 5.7 2.4 2.4 2.4 2.4 22.6 17.4 20.9 21.1 8.0 10.8 8.8 12.8
WaveformEW 25.8 26.1 27.0 25.7 1.0 1.0 1.0 1.0 NA NA NA NA 27.0 27.0 27.0 25.0 14.0 6.9 1.0 2.1 20.0 20.0 25.0 24.0 25.0 20.0 26.0 14.0 11.0 18.0 4.0 12.8
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High-dimensional datasets like Lung, Prostate, Leukemia and Colon, and moderate-
dimensional datasets like the PenglungEW, showed how superior the BEOSA and BIEOSA
methods were. For instance, the average feature selection numbers in the Lung dataset
were 1692.5 (100), 2151.1 (75), 820.3 (50), 2098.4 (25), 403.9 (100) and 685.3 (75) for BWOA,
BGWO, BDMO, BSNDO, BEOSA and BIEOSA respectively. Clearly, the BEOSA algorithm
yielded the best performance, i.e., 403.9 using 100 as the population size. Additionally,
the results obtained for the Prostate dataset showed that the BDMO, BSNDO, BEOSA and
BIEOSA methods were able to yield average numbers of selected features of 1402.8 (100),
1478.4 (25), 682.2 (100) and 1141.5 (25), while the BEOSA provided the best performance
with a population size of 100. A very impressive result was obtained for BEOSA and
BIEOSA on the Leukemia dataset; the BWOA, BGWO, BDMO, BSNDO, BEOSA and
BIEOSA algorithms yielded 1708.3 (25), 2320.4 (75), 999.7 (75), 928.5 (25), 50.3 (25) and
589.7 (75), respectively, for the average number of selected features. BEOSA produced an
optimal number of 50.3 for selected features with a population size of 25. Moreover, the
BIEOSA variant also yielded 589.7 as the average feature size with a population size of
75. Furthermore, the performance of the BWOA, BPSO, BGWO, BDMO, BSNDO, BEOSA
and BIEOSA algorithms on the PenglungEW dataset showed values of 170.0 (75), 4.0 (50),
193.0 (50), 23.9 (100), 124.0 (100), 35.0 (75) and 24.0 (25), respectively, as the average number
of selected features. Accordingly, BEOSA and BIEOSA performed well using population
sizes of 75 and 25, respectively. The performance on the Colon dataset for the BEOSA and
BIEOSA methods was also very impressive compared with related methods; the BWOA,
BGWO, BDMO, BSNDO, BEOSA and BIEOSA yielded 1016.1 (50), 1301.5 (100), 546.2 (25),
1374.3 (25), 157.1 (75) and 316.5 (100), respectively. We observed that both BEOSA and
BIEOSA yielded a low average number of selected features, with values of 157.1 and 316.5,
respectively, for methods with population sizes of 75 and 100. Note that the population
was not so relevant to the obtained result, since BGWO, which obtained its best average
number of selected features with a population size of 100, yielded a far worse result.

The performance of BEOSA and BIEOSA regarding the average number of selected
features showed that the proposed method is suitable for selecting the optimal set of
features required to achieve improved classification accuracy. An interesting finding
revealed by this performance analysis was that BEOSA and BIEOSA are very suitable
methods for high-dimensional datasets with a larger number of features to start with. The
result also showed that both BEOSA and BIEOSA were very competitive approaches, even
when dealing with low-dimensional datasets. In the following subsection, we evaluate
and compare the classification accuracy of the selected features by each of the methods
discussed in this section.

5.3. Comparative Analysis of the Classification Accuracy of All Methods

The average number of selected features influences the classification accuracy, with a
lower number of features being desirable so that classification operation is not bottlenecked.
In this subsection, we evaluate the performance of BIEOSA and BEOSA and compare
these approaches to related methods. Moreover, a comparative analysis is done in a
manner that considers the influence of the population size on performance. Similar to the
previous subsection, population sizes of 25, 50, 75, and 100 were compared for each binary
optimizer algorithm.

Table 5 shows the performance of the BreastEW, Exactly2, HeartEW and Ionosphere
datasets in relation to BWOA, BPSO, BSFO, BGWO, BDMO, BSNDO, BEOSA and BIEOSA.
For the BreastEW datasets, values of 0.9351, 0.9535, 0.9272, 0.8921, 0.6930, 0.9430 and 0.9149
were obtained for BWOA, BPSO, BSFO, BGWO, BDMO, BSNDO, BEOSA and BIEOSA,
respectively. Interestingly, the BEOSA algorithm with a population size 100 yielded the best
overall performance. The best overall performance obtained with the Exactly2, HeartEW
and Ionosphere datasets was 0.7660, 0.8074 and 0.9286 using BPSO, BEOSA and BPSO,
respectively. The breakdown results on the Exactly2 dataset showed classification ac-
curacies of 0.7345, 0.7660, 0.7350, 0.7175, 0.6875, 0.5900, 0.7625 and 0.7495 when using
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BWOA, BPSO, BSFO, BGWO, BDMO, BSNDO, BEOSA and BIEOSA, respectively. Val-
ues of 0.6963, 0.8019, 0.7222, 0.6963, 0.5722, 0.4815, 0.8074 and 0.6870, and 0.8500, 0.9286,
0.9000, 0.8457, 0.8143, 0.7286, 0.9143 and 0.8729 were obtained for the BWOA, BPSO, BSFO,
BGWO, BDMO, BSNDO, BEOSA and BIEOSA when using the HeartEW and Ionosphere
datasets, respectively.

Similarly, the performance of the Tic-tac-toe, Vote, Wine and Zoo datasets with BWOA,
BPSO, BSFO, BGWO, BDMO, BSNDO, BEOSA and BIEOSA was observed. The results
showed with Tic-tac-toe, BEOSA was superior, with a classification accuracy of 0.7964. In
contrast, the worst performance on this dataset was observed with the BDMO method,
which yielded a value of 0.6219. The BEOSA method showed a classification accuracy
of 0.9583 with the Vote dataset, a demonstration of superiority above all other methods;
BPSO yielded 0.9450 and BDMO yielded 0.8333. The Wine and Zoo datasets yielded
0.9556 and 0.9400 classification accuracy with the BEOSA method for the two datasets. We
note that in most cases where BEOSA outperformed the other methods, the population
sizes were 75 and 100, which supports the attainment of optimal performance in the high
dimensional datasets.

UPTOHERE The performance summary for all the methods showed that the BWOA
algorithm operated with optimal classification accuracy on 10 datasets with 100 population
size, while population sizes 25, 50 and 75 showed 0, 9 and 1 optimal classifications, re-
spectively. The BPSO method demonstrated that using the population size of 100 resulted
in 10 datasets performing very well. In contrast, the population sizes 25, 50 and 75 were
only able to obtain the best performances, 2, 3 and 5, respectively. Similarly, we observed
that the BSFO, BGWO, BDMO, and BSNDO obtained their best classification accuracy
using the population sizes of 50, 75, 75, and 100 on 6, 9, 6, and 19 datasets, respectively.
The BEOSA and BIEOSA methods obtained their best classification accuracy when the
population sizes of 100 and 50 were used such that they both gave such best on 9 and 7
datasets, respectively. Meanwhile, BEOSA showed that using a population size of 25 and
50 will impair the performance, indicating that increased population size supports the
improvement of the performance of the algorithm.

The classification accuracy curves for the Zoo, Vote, Wine, Sonar, Tic-tac-toe, M-of-n,
Ionosphere, Exactly, Exactly2, HeatEW, CongressEW, Lymphography, Colon, BreastEW,
and SpectEW datasets on the BWOA, BPSO, BSFO, BGWO, BDMO, BSNDO, BEOSA,
and BIEOSA are analyzed for further understanding of performance differences. The
plots for classification curve analysis are presented in Figure 7. The curves of all the
methods on the Zoo dataset showed that BEOSA and BIEOSA performed better than any
of the other methods. Similarly, we observed that the BEOSA method performed well on
Vote, Wine, Sonar, Tic-tac-toe, HeartEW, CongressEW, BreastEW and SpectEW datasets.
Using the M-of-n, Ionosphere, Exactly, and Exactly2 datasets, the BEOSA and BIEOSA
methods demonstrated strong competition with the BPSO method while outperforming
the remaining methods.
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Table 5. Comparative analysis of classification accuracy obtained for BWOA, BPSO, BSFO, BGWO, BDMO, BSNDO, BEOSA and BIEOSA on all datasets using
population sizes of 25, 50, 75, and 100.

Dataset

BWOA BPSO BSFO BGWO BDMO BSNDO BEOSA BIEOSA

Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

BreastEW 0.9175 0.9351 0.9184 0.9219 0.9368 0.9439 0.9535 0.9421 0.8070 0.9035 0.7456 0.8596 0.9272 0.9123 0.9132 0.9140 0.8921 0.8526 0.7544 0.7912 0.6930 0.6930 0.6930 0.6930 0.9430 0.9456 0.9377 0.9430 0.8974 0.8807 0.9149 0.9026
Lung 0.9512 0.9659 0.9512 0.9610 0.9829 0.9805 0.9780 0.9902 NA NA NA NA 0.9512 0.9390 0.9537 0.9512 0.9098 0.9073 0.9049 0.9268 0.9268 0.9268 0.9268 0.9268 0.9829 0.9854 0.9854 0.9829 0.9537 0.9415 0.9463 0.9439

CongressEW 0.9126 0.9333 0.9310 0.9046 0.9540 0.9678 0.9609 0.9621 0.5517 0.8736 0.8276 0.8276 0.9264 0.9195 0.9391 0.9333 0.8149 0.6793 0.7483 0.7713 0.8276 0.8276 0.8276 0.8276 0.9621 0.9563 0.9644 0.9667 0.8989 0.9103 0.8862 0.9034
Exactly 0.6575 0.6715 0.6645 0.6490 0.7180 0.7610 0.8285 0.7600 0.6900 0.6150 0.6900 0.6900 0.6730 0.6605 0.6960 0.6740 0.5545 0.5910 0.5655 0.5685 0.6250 0.6250 0.6250 0.6250 0.6995 0.7130 0.7110 0.7475 0.6240 0.6565 0.6435 0.6860

Iris 0.9333 1.0000 0.9333 0.9000 0.9667 0.9333 1.0000 1.0000 0.9667 0.966667 0.9667 0.9667 0.7333 1.0000 0.9333 1.0000 0.9667 0.8333 0.4000 0.5667 NA NA NA NA 1.0000 1.0000 1.0000 0.9667 0.7333 0.9333 0.8333 0.8000
Exactly2 0.7070 0.7275 0.7210 0.7345 0.7610 0.7620 0.7610 0.7660 0.6250 0.7350 0.7300 0.7300 0.7175 0.7120 0.7115 0.7150 0.6640 0.6365 0.6875 0.6260 0.5900 0.5900 0.5900 0.5900 0.7620 0.7625 0.7625 0.7610 0.7495 0.7435 0.7375 0.7325
HeartEW 0.6537 0.6296 0.6667 0.6963 0.7833 0.8019 0.7852 0.8019 0.7037 0.6111 0.5185 0.7222 0.6833 0.6556 0.6241 0.6963 0.5481 0.5722 0.5556 0.5315 0.4815 0.4815 0.4815 0.4815 0.7741 0.7759 0.8074 0.8074 0.6907 0.6593 0.6870 0.6685

Ionosphere 0.8400 0.8157 0.8486 0.8500 0.9086 0.9286 0.9057 0.9286 0.9000 0.8429 0.8143 0.8286 0.8071 0.8386 0.8457 0.8400 0.7900 0.8129 0.8143 0.7614 0.7286 0.7286 0.7286 0.7286 0.8943 0.9143 0.8957 0.9143 0.8429 0.8729 0.8443 0.8157
Prostate 0.9333 0.9286 0.9476 0.9762 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1 1.0000 0.9571 0.9810 0.9429 0.9095 0.7857 0.7524 0.7714 0.7476 0.9048 0.9048 0.9048 0.9048 0.9905 1.0000 0.9952 1.0000 0.9095 0.8857 0.8857 0.8286

Lymphography 0.8000 0.8000 0.7667 0.6667 0.8533 0.8733 0.8800 0.8700 0.6667 0.7333 0.7667 0.6333 0.7500 0.7300 0.7333 0.7633 0.5633 0.5567 0.6267 0.5233 1.0000 0.9333 1.0000 0.9667 0.8233 0.8567 0.8500 0.8400 0.6567 0.6800 0.6933 0.6900
M-of-n 0.7425 0.7905 0.7585 0.7765 0.8765 0.8705 0.8755 0.8705 0.6300 0.6900 0.6600 0.7400 0.7950 0.7895 0.8305 0.7905 0.5895 0.6050 0.6035 0.6385 0.6200 0.6200 0.6200 0.6200 0.8320 0.8485 0.8080 0.7995 0.6980 0.6855 0.6360 0.7375

Leukemia 0.9600 0.9467 0.9533 0.9667 0.9867 0.9933 0.9867 1.0000 NA NA NA NA 0.9800 0.9667 0.9867 0.9800 0.9133 0.9200 0.8933 0.9000 0.8667 0.8667 0.8667 0.8667 1.0000 0.9933 0.9800 0.9933 0.9133 0.9600 0.9600 0.9800
PenglungEW 0.8667 0.8000 0.8000 0.8667 0.8667 0.8000 0.8000 1.0000 0.8000 0.4000 0.9333 0.6667 0.8000 0.8000 0.8667 0.8667 0.7333 0.7333 0.6667 0.4667 0.6667 0.8000 0.7333 0.9333 0.9333 0.8000 0.8667 0.8667 0.7333 1.0000 0.8000 0.6667

Sonar 0.7952 0.8095 0.7714 0.7690 0.8738 0.8881 0.8619 0.8857 0.7143 0.7857 0.6429 0.6905 0.7500 0.8190 0.7929 0.7881 0.6286 0.6833 0.7190 0.6429 0.7619 0.7619 0.7619 0.7619 0.8643 0.8690 0.8786 0.8571 0.8167 0.8095 0.8286 0.7810
SpectEW 0.7759 0.8037 0.8037 0.8167 0.8370 0.8463 0.8333 0.8463 0.7963 0.7963 0.7963 0.7593 0.7963 0.8148 0.7852 0.8111 0.6963 0.7278 0.7296 0.7352 0.7407 0.7407 0.7407 0.7407 0.8500 0.8444 0.8259 0.8444 0.7833 0.8130 0.7870 0.8037

Colon 0.9538 0.9923 0.9077 0.9077 1.0000 1.0000 1.0000 1.0000 NA NA NA NA 0.9385 0.9769 0.9846 0.9154 0.7538 0.7231 0.6846 0.7154 0.8462 0.8462 0.8462 0.8462 1.0000 1.0000 1.0000 1.0000 0.8308 0.8769 0.8692 0.8923
Tic-tac-toe 0.6818 0.6844 0.7005 0.6870 0.7318 0.7198 0.7474 0.7385 0.6198 0.5417 0.6979 0.6510 0.6828 0.6948 0.7255 0.7078 0.5776 0.6219 0.5922 0.6042 0.6458 0.6458 0.6458 0.6458 0.7396 0.7797 0.7448 0.7964 0.6307 0.6698 0.6401 0.6479

Vote 0.8750 0.8833 0.8917 0.8917 0.9350 0.9283 0.9450 0.9450 0.8500 0.8500 0.8167 0.8500 0.8600 0.8967 0.8850 0.8933 0.7733 0.8067 0.8333 0.8300 0.9333 0.9333 0.9333 0.9333 0.9417 0.9467 0.9583 0.9550 0.8417 0.8333 0.8783 0.8200
Wine 0.7306 0.7083 0.7472 0.7639 0.9111 0.9028 0.9278 0.8889 0.8889 0.6111 0.6667 0.7222 0.7722 0.7389 0.7833 0.7639 0.6361 0.6528 0.6444 0.6583 0.7222 0.7222 0.7222 0.7222 0.9389 0.9194 0.9361 0.9556 0.8250 0.7278 0.8111 0.8028
Zoo 0.8750 0.8700 0.8300 0.8300 0.9100 0.9350 0.9250 0.8800 0.9000 0.4000 0.6000 0.9000 0.8950 0.8450 0.8950 0.8550 0.5850 0.5750 0.6700 0.6150 0.6500 0.6500 0.6500 0.6500 0.9200 0.9400 0.9050 0.9050 0.7500 0.7950 0.7500 0.7850

KrVsKpEW 0.8513 0.8482 0.9468 0.9703 0.9703 0.9656 0.960876 0.9671 0.6166 0.6964 0.6416 0.7230 0.9218 0.7418 0.8451 0.9437 0.5604 0.5133 0.5351 0.5535 0.6729 0.6729 0.6729 0.6729 0.8919 0.8568 0.9103 0.8865 0.6501 0.6962 0.6851 0.7351
WaveformEW 0.7509 0.7769 0.7912 0.7639 0.8154 0.8241 0.8295 0.8021 NA NA NA NA 0.7743 0.7582 0.7788 0.7913 0.3550 0.4640 0.4680 0.6060 NA NA NA NA 0.8065 0.7973 0.7919 0.7900 0.7038 0.6119 0.6025 0.6222

Summary 0 9 1 10 2 3 5 10 2 6 2 5 2 3 9 5 5 5 6 5 0 0 1 19 3 3 6 9 5 7 5 5
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Figure 7. Graph-based comparative analysis of the classification accuracy performance for all bi-
nary optimization methods on (a) Zoo; (b) Vote; (c) Wine; (d) Sonar; (e) Tic-tac-toe; (f) M-of-n;
(g) Ionosphere; (h) Exactly; (i) Exactly2; (j) HeatEW; (k) CongressEW; (l) Lymphography; (m) Colon,
(n) BreastEW; and (o) SpectEW datasets.
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The classification accuracy for the Zoo dataset on each of the algorithms shows that
the BDMO curve runs from 0.59 and ends at 0.61 with a peak at 0.66. BSNDO had a straight
curve on 0.65. BIEOSA started from 0.75, peaked at 0.79 and ended at 0.78, BWOA started
from 0.87, deep at 078 and ended at the same 0.78, BGWO started from 0.90 peaked and
dipped at 0.85 and 0.89 respectively, and ended at 0.86. BPSO and BEOSA top the plots
with their curves starting from 0.91 and 0.92 and ending at 0.88 and 0.91, respectively. For
the Vote dataset, BDMO rose from 0.775 to 0.825, and BIEOSA started from 0.840, peaked at
0.875 and ended below 0.825. BGWO rose from above 0.850 and terminated above 0.875,
while BWOA started from 0.875 and rose slightly to 0.880. BPSO and BSNDO both started
just above 0.925 and ended at 0.935 and 0.925, respectively. BEOSA tops the graph by
peaking just above 0.950. The performance of Wine and Sonar are similar, with the BDMO
method running at the bottom of the graphs of the two datasets starting from an average
accuracy value of 0.65 and ending at around 0.66, although the curve peaked above 0.70 for
the Sonar dataset. BGWO started from around 0.75 for both Wine and Sonar, and ended
just below 0.75 and 0.78 respectively. BSNDO curves in both datasets run between 0.75,
and BIEOSA similarly started just above 0.80 and ended just below 0.80 in both cases. As
a characteristic of BPSO and BEOSA, both algorithms peaked the graphs for Wine and
Sonar by starting from 0.88 and 0.94 on Wine, 0.83 and 0.82 on Sonar, then ending at
0.93 and 0.95 on Wine, and 0.88 and 0.86 on Sonar. The Tic-tac-toe dataset has BDMO at
the bottom and BEOSA at the top, starting from 0.61 and 0.74 and ending at 0.60 and 0.79,
respectively. BSNDO and BIEOSA ended their curves at around 0.64 but started at 0.63 and
0.65, respectively, while BWOA and BGWO started at the same point of 0.68 but ended at
0.66 and 0.69, respectively. The performance for BPSO showed that it peaked when the
population size of 75 was used to obtain an accuracy value of 0.75.

Experimental results for M-of-n, Ionosphere and Exactly are consistent for BPSO which
tops the graphs of the three datasets by showing the lowest performance with population
size 25 in all cases, but reported the best accuracies at 75, 50 and 75 population sizes
each at 0.87, 0.925, and 0.84 accordingly for three datasets. BDMO lies at the lowest in
M-of-n and Exactly but ranked second lowest in Ionosphere by obtaining its peaks at
0.61 for 75 population size, 0.810 for 75 population size, and 0.64 at 50 population size
for M-of-n, Ionosphere and Exactly, respectively. The BSNDO reported straight curves in
the three datasets. BIEOSA curves showed its peak classification accuracies at 0.74 using
100 population size, around 0.875 using 50 population size, 0.67 using 100 population size
for M-of-n, Ionosphere and Exactly. The BWOA and BGWO algorithms showed average
performances in the three datasets by obtaining their peak classification accuracy values of
0.79 and 0.80 at 50 and 75 population size with M-of-n, 0.845 and 0.835 both at 75 population
size with Ionosphere, and 0.67 and 0.69 at 50 and 75 population size with Exactly. BEOSA
obtain its best accuracy at 0.85 using 50 population size, 0.910 using 50 population size, and
0.74 using 100 population size for M-of-n, Ionosphere and Exactly datasets, respectively.
The Exactly2 and HeartEW datasets showed that BSNDO results in the same classification
accuracy for all population sizes at around 0.580 and 0.480, respectively. This is followed
by BDMO, which obtained the best classification accuracies at 0.685 and 0.57 using 75 and
50 population sizes. The BWOA, BPSO and BIEOSA algorithms are seen to overlap in
performances on the two datasets, with each reporting peak accuracy at 0.725, 0.710, and
0.750 using 50, 25 and 25 population sizes on the Exactly2 dataset. Similarly, BWOA,
BPSO and BIEOSA showed their peak accuracies at 0.69 using 100, 100 and 25 population
sizes. BPSO and BEOSA demonstrate a strong competitive performance by having their
peak accuracy values at around 0.750 in Exactly2 and 0.80 in HeartEW, in both cases at
100 population size.

Results obtained for CongressEW, Lymphography and BreastEW datasets showed
that the BSNDO algorithm performances are almost similar for all population sizes at 0.63,
0.45, and 0.69, respectively. This is followed by the BDMO algorithm, which has its peak
accuracies at 0.82, 0.63, and 0.89 using population sizes 50, 75, and 25 on the three datasets.
The BIEOSA obtained its best classification accuracies at 0.90 using 100 population size,
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0.69 using population size, and 0.91 using 75 population size for CongressEW Lymphog-
raphy and BreastEW, respectively. BWOA and BGWO competed in performance as seen
on their curves in CongressEW Lymphography and BreastEW where BWOA had its best
accuracies at 0.93, 0.77, and 0.93 using 75, 50 and 50 population sizes. Similarly, BPSO and
BEOSA both peaked in performance by obtaining 0.95, between [0.8–0.9], and around 0.95,
all using 75 population size in the three datasets. We observed the curves on the Colon
and SpectEW datasets for all algorithms. In both cases, BDMO curves rank lowest at the
bottom of the graphs having its peak performances as 0.75 and 0.735, using 25 and 100
population sizes. BSNDO shows close flat curves in both datasets, and peak performances
averaged at 0.85 and 0.74 for Colon and SpectEW, respectively. In the SpectEW dataset,
BWOA, BIEOSA and BGWO all reported their peak performances at around 0.80 and using
100, 50, and 50 population sizes, while the same algorithms had different curve patterns on
Colon. For instance, BIEOSA peak accuracy is at 0.88 and 0.81 using 100 and 50 population
size, BWOA peak accuracy is at 0.98 and close to 0.82 using 50 and 100 population sizes,
and BGWO peak accuracy is at 0.98 and 0.81 using 75 and 50 population size.

The summary of the results obtained for the classification accuracies on each algorithm
with respect to all datasets is consistent with the performance reported for cost function
evaluation. BPSO and BEOSA algorithms are seen to perform very well compared with
other methods, but in most cases, the proposed BEOSA algorithm yields better performance
than BPSO. These consistent performances of BEOSA with regard to fitness function
evaluation, cost function evaluation, and classification accuracy for the selected feature
sizes confirm the relevance of the algorithm in solving the feature selection problem.

The performance superiority demonstrated by the BEOSA and BIEOSA methods in
this comparative analysis for this subsection reinforced the argument that the proposed
method is suitable for solving the feature selection problem. This finding is supported by
the fact the minimal and optimal number of features selected by the BEOSA and BIEOSA
methods were sufficient and determinant enough to yield the best classification accuracy.
In the following subsection, we investigate the impact of varying the choice of a classifier
and whether this choice influences the performance of the binary optimizer method.

5.4. Performance Evaluation of State-of-the-Art Classifiers on Methods

The classification accuracy analysis applied for the comparative analysis discussed in
the previous subsection uses the KNN method. This subsection presents our investigation
regarding whether using a different classifier from the list of existing state-of-the-art
classifiers would improve the classification accuracy of the optimizers. Table 6 lists the
comparative analysis of the influence of different classifiers is presented using the M-of-n
dataset as a sample solution. The KNN, random forest (RF), MLP, decision tree (DTree),
SVM, and Gaussian naïve Bayes (GNB) classifiers were compared using the accuracy,
precision, recall, F1-score and area under curve (AUC) metrics.

The classification accuracy for KNN, RF, MLP, DTree, SVM, and GNB classifiers for
BEOSA and BIEOSA were 0.815, 0.835, 0.84, 0.795, 0.845, and 0.83, 0.935, 0.665, 0.67, 0.67,
0.67, and 0.67 respectively. Results showed that the SVM and KNN worked well for the
BEOSA and BIEOSA by obtaining classification accuracy of 0.845 and 0.935 for the SVM
and KNN respectively. The most competing method, the BPSO algorithm, showed that
the MLP and SVM classifiers are more suitable for obtaining better classification accuracy
when compared with other classifiers. For precision-recall, F1-score and AUC, the values
of 0.875, 1, 0.933333, and 0.993132 were obtained for the BEOSA, while the values of 1,
0.866667, 0.928571, and 1 were obtained for BIEOSA using the SVM and KNN classifiers
respectively. This result confirms that when a classifier produces a good classification result
on a binary optimizer, that classifier has a tendency to improve the results of the precision,
recall, F1-score and area under curve (AUC) metrics as well.
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Table 6. The classification accuracy, precision, recall, F1-score and area under curve (AUC) report for
the M-of-n datasets using KNN, random forest (RF), MLP, Decision Tree (DTree), SVM, and Gaussian
naïve Bayes (GNB) classifiers on the BWOA, BPSO, BSFO, BGWO, BDMO, BSNDO, BEOSA and
BIEOSA algorithms.

Algorithm Classifier Accuracy Precision Recall F1-Score AUC

BWOA

KNN 0.665 0.7 0.785714 0.733333 0.770667
RF 0.71 0.714286 0.666667 0.666667 0.805333

MLP 0.685 0.666667 0.8 0.727273 0.821333
DTree 0.72 0.8 0.533333 0.64 0.766667
SVM 0.71 0.777778 0.6 0.642857 0.826667
GNB 0.72 0.714286 0.666667 0.689655 0.832

BPSO

KNN 0.905 0.846154 0.866667 0.785714 0.90522
RF 0.99 0.923077 0.866667 0.857143 0.976648

MLP 1 1 1 1 1
DTree 0.79 0.818182 0.666667 0.714286 0.741333
SVM 1 1 1 1 1
GNB 0.955 1 0.8 0.888889 1

BSFO

KNN 0.69 0.529412 0.6 0.5625 0.741333
RF 0.725 0.666667 0.6 0.56 0.704

MLP 0.725 0.857143 0.533333 0.551724 0.74
DTree 0.74 0.916667 0.733333 0.814815 0.898667
SVM 0.74 0.916667 0.733333 0.814815 0.850667
GNB 0.74 0.916667 0.733333 0.814815 0.882667

BGWO

KNN 0.675 0.8 0.571429 0.666667 0.826923
RF 0.71 0.7 0.666667 0.666667 0.834667

MLP 0.705 0.727273 0.533333 0.615385 0.805333
DTree 0.755 0.857143 0.6 0.642857 0.8
SVM 0.755 0.857143 0.733333 0.758621 0.806667
GNB 0.755 0.777778 0.666667 0.689655 0.846154

BDMO

KNN 0.6 0.692308 0.866667 0.684211 0.821333
RF 0.725 0.705882 0.866667 0.75 0.889333

MLP 0.725 0.705882 0.8 0.75 0.881333
DTree 0.725 0.75 0.533333 0.615385 0.817333
SVM 0.725 0.75 0.533333 0.615385 0.897333
GNB 0.725 0.75 0.866667 0.774194 0.865333

BSNDO

KNN 1 0.909091 0.866667 0.866667 0.970667
RF 1 1 1 1 1

MLP 1 1 1 1 1
DTree 0.775 1 0.533333 0.666667 0.805333
SVM 1 1 1 1 1
GNB 0.96 1 1 1 1

BEOSA

KNN 0.815 0.866667 0.928571 0.896552 0.98489
RF 0.835 1 0.928571 0.896552 0.95467

MLP 0.84 0.9 0.928571 0.896552 0.971154
DTree 0.795 0.9 0.714286 0.769231 0.896978
SVM 0.845 0.875 1 0.933333 0.993132
GNB 0.83 0.928571 0.928571 0.928571 0.995879

BIEOSA

KNN 0.935 1 0.866667 0.928571 1
RF 0.665 0.538462 0.5 0.518519 0.748626

MLP 0.67 0.583333 0.466667 0.482759 0.712912
DTree 0.67 0.545455 0.533333 0.5 0.717033
SVM 0.67 0.7 0.533333 0.583333 0.843407
GNB 0.67 1 0.666667 0.571429 0.769231

To provide a broader view of the performance of the KNN, RF, MLP, DT, SVM and
GNB classifiers with population sizes of 25, 50, 75 and 100, we plotted graphs to show
how the BWOA, BPSO, BSFO, BGWO, BDMO, BSNDO, BEOSA and BIEOSA algorithms
performed. Figure 8 shows the results of the comparisons carried out using the CongressEW
dataset as a sample. The BWOA algorithm performed well with SVM, BPSO performed
well with KNN, BFSO performed well with MLP, BGWO performed well with RF, BDMO
performed well with GNB, BSNDO performed well with GNB, SVM, MLP and RF, BEOSA
performed well with KNN and BIEOSA performed well with SVM. These performance
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differences are a strong indication that research on the use of a binary optimizer to solve
feature selection must not be limited to the performance of the optimizer alone, but rather,
that efforts must be made to select a fitting classifier as well. Interestingly, we found that
KNN and SVM, which are known to work well with most classification tasks, showed good
performance with the proposed BEOSA and BIEOSA methods.

The experimental results for the five classifiers using the CongressEW dataset with the
BWOA algorithm showed that the classification accuracies of GNB and KNN were around
0.90 for a population size of 25, rising to a peak at 0.94 and 0.93 with a population size of 75.
RF and SVM yielded the same value, i.e., 0.93, with a population size of 25 but peaked at
around 0.96 with a population size of 75. In the middle of the curves is MLP curve, which
has its peak classification value at 0.94 with a population size of 75; its lowest reported
value was 0.84, with a population size of 50. With BFSO and BGWO, KNN, RF, MLP, DT,
SVM and GNB achieved classification accuracies of 0.86, 0.92, 0.94, 0.86, 0.89, and 0.88
with a population size 50, and 0.935, 0.968, 0.949, 0.956, 0.962 and 0.953 with a population
size of 50. In contrast, KNN achieved the best performance with a population size of 75.
The graph plots for BDMO and BIEOSA demonstrate another interesting aspect of their
performance, i.e., all classifiers in each case peaked and deepened with a population size
of 50. For instance, for BDMO, all the classifiers peaked with a population size of 75 with
classification accuracies 0.781, 0.80, 0.801, 0.822 and 0.82 for KNN, RF, MLP, DT, SVM and
GNB, resprectively. BIEOSA yielded the best classification accuracies for all classifiers
with a population size of 25, showing values just above 0.925 for KNN, around 0.950 for
MLP, DT and SVM, and around 0.975 for RF and GNB. BSNDO obtained curves running
consistently at 0.805 for RF, MLP, DT, SVM and GNB, but obtained approximately 0.76
for all population sizes using the KNN classifier. With BPSO and BEOSA, KNN peaked
with a population size of 100 and 75 at 0.989 and 0.0650 accuracies, while GNB peaked at
0.95 and around 0.9540 with a population size of 50 for BPSO and BEOSA. SVM obtained
its peak performance at values of 0.959 and 0.9575 on BPSO and BEOSA with population
sizes of 100 and 50. With BPSO and BEOSA, MLP peaked with population sizes of 100 and
75 at 0.96 and around 0.9525, while RF peaked at 0.959 and 0.9575 with population sizes
of 50 and 75 for BPSO and BEOSA. DT peaked with a similar accuracy to that reported
for GNB.

Figure 9 shows the performance of the BWOA, BPSO, BSFO, BGWO, BDMO, BSNDO,
BEOSA and BIEOSA algorithms with the SpectEW dataset, providing the classification
accuracies of the KNN, RF, MLP, DT, SVM, and GNB classifiers. From the plots shown in the
figure, it can be seen that the best classification accuracies were obtained with population
sizes of 25, 50, 75, and 100 for BWOA, BPSO, BSFO, BGWO, BDMO, BSNDO, BEOSA
and BIEOSA using SVM, KNN, SVM (also DT and KNN), MLP, RF, KNN, KNN and RF.
The result also showed that for BPSO, BSFO and BIEOSA, the best performance of their
respective classifiers was obtained with a population size of 100. In contrast, BSFO, BDMO,
BSNDO and BEOSA obtained their best classification accuracy with a population size of
25 using their respective classifiers. We note that BSFO and BGWO also performed well
with a population size of 75, while BWOA did well with a population size of 50.
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The performance of BWOA with the SpectEW dataset showed that most classifiers
achieved their peak accuracies with a population size of 50, except for GNB, which obtained
its best output with a population size of 100, albeit at a much lower value of 0.64. Meanwhile,
KNN, RF, MLP, DT and SVM obtained values of 0.87, 0.84, 0.84, 0.79 and 0.89, respectively.
BPSO showed an interesting result when a population size of 50 was used, with all classifiers
converging at a classification accuracy of 0.79 as their lowest values. Interestingly, their
best accuracies also occurred with a population size of 100, with KNN yielding 0.89, RF
0.83, MLP 0.84, DT 0.80, SVM0.79 and GNB 0.73. The BSFO algorithm is unique, as it
showed reccurring overlap with most of the classifiers, as can be seen with GNB and DT,
whose maximum accuracy values were 0.75 with a population size of 75, while others also
peaked at that point but with a classification accuracy of 0.8. Meanwhile, differentiated
classification accuracies were observed for all classifiers when using the BGWO algorithm.
The RF and GNB classifiers obtained their best performance with a population size of 50,
i.e., 0.83 and 0.7. SVM, KNN, DT and MLP obtained their best accuracies, i.e., 0.82, 0.81,
0.79 and 0.88, with a population size of 75. For BDMO and BSNDO, KNN, RF, MLP, DT,
SVM and GNB achieved their best performance as follows: 0.71 with a population size of
75; 0.82 with a population size of 25; 0.8 with a population size of 50; 0.86 with a population
size of 25; and 0.53 with a population size of 75. The other algorithms yielded 0.83 with a
population size of 75, 0.85 with a population size of 25 and 0.80 with a population size of
50 for KNN, RF, MLP, DT, SVM and GNB. We compared BEOSA and BIEOSA and found
a large degree of variance. For instance, whereas KNN obtained its best value, i.e., 0.83,
with a population size of 75 with BEOSA, for BIEOSA, the same classifier yielded a value
of 0.98 with a population size of 25. Additionally, RF peaked at 0.85 with a population
size of 100 and 0.89 with a population size of 25 in BEOSA and BIEOSA. MLP obtained
its best values, i.e., 0.85 and 0.89, with a population size of 25 on BEOSA and BIEOSA,
respectively. DT dipped in BIEOSA at an accuracy value of 0.78 with a population size
of 100, but peaked in BEOSA with an accuracy of 0.85 with a population size of 25. SVM
showed a good performance with BIEOSA, achieving an accuracy of 0.89 with a population
size of 25, whereas with BEOSA, it achieved its best value, i.e., 0.80, with all population
sizes. GNB performed better on BEOSA, with an accuracy of 0.85 with a population size of
25, but obtained 0.79 on BIEOSA with a population size of 100.

A comparative analysis of the plots of the CongressEW and SpectEW datasets showed
that the performance of BEOSA on all of the classifiers was outstanding, standing shoulder-
to-shoulder with BPSO and significantly outperforming BWOA, BSFO, BGWO, BSNDO,
and BDMO. We note that the proposed method proved itself to be well-rounded and
robust. Moreover, the good classification performance, derived from the number of features
selected by the BEOSA, further confirms the applicability of the method to find the best
number of required features, even in real-life problems. Additionally, the fitness function
and cost function values were impressive for BEOSA and its variant BIEOSA.

The experiment using different classifiers in this study has shown that the choice of a
classifier with a binary optimizer must be made carefully based on empirical investigation
when such hybrid models are being deployed to address real-life problems. Having
compared the performance of BEOSA with other related methods using the values obtained
for fitness and cost functions, the average number of selected features and classification
accuracy, in the following subsection, we compare the computational runtime required for
each of the algorithms.

5.5. Computational Time Analysis

Computational resources, especially computational time, often play a pivotal role
in the choice of an algorithm in time constrained applications. However, in cases where
computational time is not a constraint, the selection of an algorithm is often based purely
on performance. This subsection compares the computational time obtained for the binary
optimizers considered in this study. Table 7 outlines the performance of all the algorithms
with respect to each of the applied benchmark datasets.
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Table 7. Comparative analysis of the computational times of BWOA, BPSO, BSFO, BGWO, BDMO,
BSNDO, BEOSA, and BIEOSA.

Dataset BWOA BPSO BSFO BGWO BDMO BSNDO BEOSA BIEOSA

BreastEW 2863.07 5716.95 15,231.68 3284.61 4693.94 0.05 7755.12 7143.08
Lung 10,836.27 6407.44 NA 13,519.02 21,901.97 0.06 27,005.21 27,469.88

CongressEW 2494.41 3293.75 21,216.45 2911.41 3167.04 0.05 3681.29 3439.88
Exactly 4238.07 5576.70 37,823.17 4967.03 5139.55 0.05 6135.80 5239.17

Iris 1539.72 1569.79 0.0300 1248.06 2454.02 0.05 3638.87 4367.40
Exactly2 4894.75 5460.21 84,742.30 5886.60 5831.48 0.05 5629.12 5949.60
HeartEW 5991.47 6180.32 11,961.87 6103.14 4953.76 0.05 8289.17 7775.06

Ionosphere 2425.15 5192.26 26,648.48 2711.81 4576.30 0.06 6795.18 5838.63
Prostate 13,996.86 23,715.34 0.0500 19,962.22 18,691.10 0.05 14,753.88 14,729.31

Lymphography 7088.64 4101.17 15,660.77 3363.44 4113.92 24,995.09 6342.72 6345.36
M-of-n 3377.35 4705.02 56,589.18 4243.87 4042.42 0.05 5927.31 4770.37

Leukemia 12,557.96 15,367.75 NA 15,879.91 14,626.92 0.05 10,973.17 13,082.37
PenglungEW 972.86 1186.14 7022.13 1027.13 1057.12 1613.04 1570.83 1238.32

Sonar 2478.74 3265.90 23,013.84 2694.13 4308.82 0.06 4640.60 4789.33
SpectEW 2809.20 3386.75 15,919.29 3107.25 3314.52 0.04 4389.90 4118.12

Colon 9003.78 10,541.57 NA 11,003.80 10,026.80 0.06 8971.40 9562.65
Tic-tac-toe 7769.29 9578.16 54,646.60 8591.51 7463.63 0.05 13,032.30 10,677.70

Vote 2430.62 2837.52 24,196.79 2561.77 2947.24 0.05 4046.51 4197.18
Wine 2774.64 4566.93 19,463.48 3309.42 5377.52 0.05 7005.92 8468.67
Zoo 2013.56 2427.55 8370.56 2118.25 2465.75 0.05 3384.51 3437.60

KrVsKpEW 8482.48 17,028.06 173,356.6 12,685.90 20,658.05 0.07 25,079.98 18,698.16
WaveformEW 17,449.58 32,664.62 NA 21,421.47 22,591.37 NA 26,812.95 27,680.63

The computational time of BSNDO was abnormally distributed. However, we found
that BWOA showed reduced computational time for the BreastEW, CongressEW, Exactly,
Iris, Exactly2, Ionosphere, Sonar, SpectEW, Tic-tac-toe, Vote, Wine, Zoo and KrVsKpEW
datasets. BSPO performed best on the Lymphography dataset, while BDMO reported a rea-
sonable computational time with the HeartEW and M-of-n datasets. The proposed method,
BEOSA, demonstrated minimal computational time with the Leukemia and Colon datasets.

Figure 10 shows a graphical illustration of the distribution of the computational
time for each dataset with respect to all of the tested binary optimization methods. The
figure shows that with most binary optimizer algorithms, BSFO often demanded the
most computation time, followed by BDMO and then BIEOSA. BSNDO and BGWO were
shown to require less computation runtime. The implication of this is that the proposed
BEOSA algorithm achieved outstanding performance with an average computational time
compared with those of the other binary optimizers.

5.6. Discussion of Findings

As corroborated by the obtained results and discussed in detail in previous sub-
sections, this study may conclude that the proposed BEOSA method demonstrated very
promising performance on all benchmark datasets. We have shown that this method
produced the optimal average number of selected features on each of the tested datasets.
Furthermore, we discovered that the popular classifiers KNN, MLP, SVM, GNB and RF
were relevant in terms of supporting the performance of binary optimizers. This motivates
designers of binary optimizers to investigate which state-of-the-art classifier is suitable for
supporting particular wrapper-based feature selection and classification tasks. Moreover,
when a classifier impedes the performance of a binary optimizer, it diminishes the impor-
tance of using the algorithm for optimization purposes. Hence, deploying such binary
optimizers to real problems must be accompanied by the selection of an appropriate classi-
fier. The average numbers of feature selected for all datasets using the proposed BEOSA
demonstrated that the algorithm is suitable for maximizing the cost function and minimiz-
ing the fitness function. Our findings also confirm that the novel method used for applying
the S-functions and V-functions enhanced the performance of the proposed method.
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Research on the optimization of the number of selected features for classification
operations is aimed at obtaining the best optimizer. It is expected that such an optimizer will
advance research in the field by ensuring that while classification accuracy is maximized,
the number of features must be as low as possible. This demonstrates the increasing
need for new algorithms which are capable of solving this multi-objective function. The
algorithm proposed in this study satisfies this condition, since the two objectives were
achieved. Moreover, we noted that BEOSA also improved the fitness and cost function
values; these functions are pivotal when justifying the relevance of a binary optimizer in
terms of selecting the optimal number of features required to obtain the best classification
result. Furthermore, this study provides a wealth of experimental results, i.e., comparisons
of the performance of different classifiers with several binary optimizers. We found this to
be very rare in the literature and, as such, we hope that our work will benefit the community
of researchers in the field.

6. Conclusions

This study presents the design of binary variants of the EOSA and IEOSA algorithms,
referred to as the BEOSA and BIEOSA optimizers. Using models to represent the binary
search space and an optimization process to change from a continuous to a discrete search
space, the study shows that the new methods are suitable. Furthermore, we investigated the
performance impact of using different transfer functions in the exploitation and exploration
of two S-functions and two V-functions. Exhaustive experimentation was carried out
using over 20 datasets with a wide range of heterogeneous features, and a comparative
analysis was made with the BDMO, BSNDO, BPSO, BWOA, BSFO and BGWO methods.
The performance outcomes showed that both BEOSA and BIEOSA performed reasonably
well with most of the datasets and demonstrated competitive results with the others. This
evaluation was shown using the values obtained for the fitness and cost function and the
number of selected features. Furthermore, the study examined the impact of the choice of
classifier used for feature classification purposes with respect to the optimizer. The findings
showed that KNN and SVM performed the feature classification tasks exceptionally well.
Meanwhile, a comparative analysis of the runtime and a statistical analysis of the methods
were also reported. The results showed that significant performance improvements could
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be achieved when the transfer functions were skillfully formulated and applied. This
finding was supported by the fact that the separation of applicability of the S-function from
the V-function in the exploration and exploitation phases enhanced the performance of the
algorithm. This study advances research in this domain through a novel demonstration,
i.e., using different transfer functions in the search process involving the exploration and
intensification phase. Moreover, the formulation of new transfer functions adds to the
novelty of the proposed binary methods. One limitation with the study is associated with
the performance of the immunity-based method, IEOSA, whose binary variant was unable
to compete with other methods, in contrast with BEOSA, which yielded similar results to
other state-of-the-art classifiers. This limitation will require further fine-tuning to enhance
the algorithm. In future, we propose investigating the use of competing optimization
algorithms as a hybrid solution with the BEOSA and BIEOSA methods. This is motivated
by the need to capitalize upon the advantages of other methods in order to reduce the
limitations of the base EOSA method. Future research opportunities with respect to the
proposed method may be centred on using deep learning-based feature extraction and
classification procedures. This could possibly result in an outstanding hybrid model, which,
to date, no study has considered. Another future work is to investigate the possibility of
swapping the usage of the S-function and V-function and to compare the performance with
that described in this study.
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