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Abstract: The static bending and free vibration of functionally graded (FG) porous plates were
analyzed by a 2D natural element method (NEM). Recent studies on FG materials considered the
porosity because micropores and porosity were observed during the fabrication of FG materials
owing to the difference in solidification temperatures. However, the mechanical responses of FG
porous plates were not sufficiently revealed, and furthermore most numerical studies relied on the
finite element method. Motivated by this situation, this study intended to investigate the combined
effects of material composition and porosity distributions and plate thickness on the static bending
and free vibration responses of ceramic–metal FG plates using 2D NEM incorporated with the
(3,3,2) hierarchical model. The proposed numerical method is verified from the comparison with the
reference such that the maximum relative difference is 5.336%. Five different porosity distributions
are considered and the central deflection and the fundamental frequency of ceramic–metal FG porous
plates are parametrically investigated with respect to the combination of the porosity parameter, the
ceramic volume fraction index, and the width–thickness (w/t) ratio and to the boundary condition.
The ranges of three parameters were set to 0–0.5 for the porosity, 0–0.6 for the ceramic volume
fraction, and 3–20 for the width–thickness ratio. It was found from the numerical experiments that
the static and free vibration responses of ceramic–metal FG porous plates are significantly affected by
these parameters.

Keywords: functionally graded; ceramic–metal porous composite plates; bending and free vibration;
natural element method (NEM); porosity distribution; volume fraction distribution

1. Introduction

In the mid-1980s, the notion of functionally graded material (FGM) was proposed by
Japanese scientists to develop high-performance heat-resisting composites for the Space
Shuttle in high-temperature environments [1]. Thereafter, FGMs have been applied in
various engineering fields, such as nuclear reactors and chemical plants, where high-
performance heat-resisting materials are required. The heat-resisting composites used in
the early days were lamination-type, which suffers from fatal thermal stress concentration
at the lamina interfaces. This fatal stress concentration was caused by the sharp material
discontinuity across the lamina interfaces and could frequently cause the microcracking and
debonding. Owing to this problem, the conventional lamination-type composites encounter
limitations in their use in high-temperature environments. The main idea of FGM was
to enforce the material continuity across the lamina interfaces, which was achieved by
introducing a graded layer between two homogeneous layers. The particles within the
graded layer are mixed according to the desired volume fraction distribution with the
gradient in a specific spatial direction, while satisfying the overall material continuity.
Functionally graded volume fraction distribution within the graded layer is designed to
maximize the target performance using the numerical optimization technique [2,3]. Due to
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the unlimited potential for being a next-generation advanced material, FGMs have been
spotlighted and have attracted extensive research. A tremendous number of papers on
material characterization and modeling, analysis and design, and fabrication and testing
have been published [4–6].

The most research on FGMs was performed based upon the implicit assumption that
FGMs are perfect without porosity. However, it had been reported that micropores and
porosity may be generated during the fabrication of FGMs owing to the difference in
solidification temperatures of constituent materials [7–9]. Thereafter, a number of attempts
have been made to model porous materials and investigate their mechanical responses. A
simplified mixture rule was proposed to predict the material properties of porous materials
and validated through the experiment of Ji et al. [10], where the predicted effective material
properties were in good agreement with the experiment. Chen et al. [11,12] investigated
static bending, buckling, free, and forced vibration responses of shear deformable FG porous
beams using Timoshenko beam theory. Akbas [13] examined the effect of porosity on the
static bending and free vibration of simply supported FG porous plates using the first-order
shear deformation plate theory (SDPT). Ghadiri and SafarPour [14] investigated the free
vibration of FG porous cylindrical micro shell subjected to thermal load using the first-order
shear deformation shell and modified couple stress theories. Wu et al. [15] numerically
investigated the free and forced vibration responses of FG porous beam-type structures
by the finite element method (FEM) incorporated with Timoshenko and Euler–Bernoulli
beam theories. She et al. [16] analyzed the nonlinear bending and vibration characteristics
of FG porous tubes within the framework of nonlocal strain gradient theory. Gao et al. [17]
proposed an analytical method for primary resonance analysis of FG porous cylindrical
shells including the damping effect. Mirjavadi et al. [18] examined the effect of porosity
on the nonlinear vibration of FG porous nano beams using von Kármán nonlinearity and
the Euler–Bernoulli beam theory. Kim et al. [19] examined the bending, free vibration and
buckling responses of FG porous micro plates using the first-order SDPT. Zhao et al. [20]
investigated the free vibration of FG porous rectangular plates with uniform elastic bound-
ary conditions using an improved Fourier series method. Ramteke et al. [21] examined the
effect of grading pattern and porosity on the eigen characteristics of FG porous structure
using higher-order displacement kinematics. Zenkour [22] presented a higher-order shear
and normal deformation theory for the static analysis of porous thick rectangular plates by
considering the thickness stretching effect. Kaddari et al. [23] proposed a new quasi-3D
hyperbolic SDPT for the bending and free vibration analysis of FG porous plates on elastic
foundation. Keleshteri and Jelovica [24] analyzed the large-amplitude free vibration of
FG porous cylindrical panels considering different shell theories and boundary conditions.
Gao et al. [25] parametrically examined the wave propagation behavior in FG metal porous
plates reinforced with graphene platelets with respect to the distribution of porosity and
graphene. Zghal et al. [26] numerically explored the influence of porosity on static bending
analysis of FG porous beams using a refined mixed FE beam model.

Although many researchers studied the bending and free vibration responses of FG
porous structures, the effects of porosity on these responses were not sufficiently investi-
gated, particularly with regard to the combination of the material composition distribution,
the porosity distribution, the width–thickness ratio, and boundary condition. Moreover,
the numerical studies on FG porous structures mostly relied on the FEM. Therefore, deeper
numerical investigation of these responses of FG porous structures using a reliable and
effective meshfree method has significance. Motivated by this situation, the current study
intended to deeply investigate the bending and free vibration responses of ceramic–metal
FG porous plates using 2D NEM in the combination of abovementioned three parameters
and to the boundary condition. As an extension of previous work [27,28] on the NEM
hierarchical models for plates and sandwich plates, this study combines 2D NEM, the
(3,3,2) hierarchical model and the cosine-type porosity distributions. As a last introduced
meshfree method, NEM shows high numerical accuracy, even for coarse grids, thanks to
the high smoothness of its Laplace interpolation (L/I) functions. Moreover, it can effec-
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tively analyze 3D FG porous plates when it is incorporated with the hierarchical model, in
which the displacement field is decomposed into the in-plane triple-vector function and 1D
assumed thickness monomial.

In this study, the static bending and free vibration problem is formulated using a third-
order SDPT-like (3,3,2) hierarchical model and approximated by 2D NEM. The thickness-
wise distributions of porosity and constituent materials are expressed by the cosine and
power-law functions, respectively. The numerical method is demonstrated through the
numerical experiment and verified by comparison with the existing reference solutions. As
well, the central deflections and the fundamental frequencies of ceramic–metal FG porous
plates are parametrically investigated for the magnitude and distribution of porosity, the
ceramic gradation index, the width–thickness ratio, and the boundary condition. The
present numerical results are help one understand and design ceramic–metal FG porous
plates by considering the porosity.

2. Functionally Graded Porous Plates

Figure 1a represents a full ceramic–metal FG porous plate with length a, width b and
thickness h, where the plate mid-surface is labeled by v ∈ <2. A Cartesian coordinate
system (O; x, y, z) sits at the upper left corner of v so that the plate top and bottom surfaces
are positioned at z = ±h/2. The composition of ceramic and metal particles varies through
the thickness according to their volume fractions. Letting Vc(z) and Vm(z) be the volume
fractions of ceramic and metal, both fractions satisfy the following constraint, given by

Vc(z) + Vm(z) = 1, −h/2 ≤ z ≤ h/2 (1)
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Figure 1. A ceramic–metal FG plate: (a) geometry and dimensions, (b) thickness-wise distributions
of ceramic volume fraction Vc.

By virtue of this constraint, one can choose only one volume fraction to present two
volume fractions within the plate. In the current study, the ceramic volume fraction Vc(z)
is selected and defined by

Vc(z) = (0.5 + z/h)n, −h/2 ≤ z ≤ h/2 (2)

with n(n ≥ 0) being the ceramic index. Figure 1b represents the thickness-wise ceramic
volume fractions for different values of n, which were plotted using Excel. The plate
becomes ceramic-rich as n approaches zero and metal-rich as n approaches infinity.

Figure 2 represents four different porosity distributions taken for the current study
in which the porosity density changes in the z−direction only. Uniform and center-biased
distributions are symmetric while lower- and upper-biased distributions are non-symmetric.
In the current study, uniform distribution is called even, center-biased distribution is called
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uneven or sym, and lower- and upper-biased distributions are called unsym-1 and unsym-2,
respectively. First, the porosity ψ(z) in even and uneven distributions is expressed by

Even : ψ(z) = e (3)

Uneven : ψ(z) = e
(

1− 2|z|
h

)
(4)
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Second, referring to a paper by Kim et al. [19], the porosity ψ(z) in sym, unsym-1 and
unsym-2 distributions is expressed by

Sym : ψ(z) = ecos
[
π
( z

h

)]
(5)

Unsym− 1 : ψ(z) = ecos
[π

2

( z
h
− 0.5

)]
(6)

Unsym− 2 : ψ(z) = ecos
[π

2

( z
h
+ 0.5

)]
(7)

using cosine functions. Here, e(0 ≤ e ≤ 1) is the porosity parameter, and all the five
porosity distributions have the same porous volume for a given value of e. According to
the linear rule of mixtures, the equivalent material properties ℘e f f (z) at any point within
the FG porous plate is calculated by

℘e f f (z) = [Vc(z)℘c + (1−Vc(z))℘m](1− ψ(z)) (8)

in terms of two base material properties ℘c and ℘m of ceramic and metal, the volume
fraction Vc(z) and the porosity ψ(z).

The mid-surface surface v ∈ <2 with its boundary ∂v can define a dimension-reduced
2D hierarchical model in which the displacement field u(x, y, z) is decomposed into Θ(x, y) ·
Q(z). Here, Θ(x, y) and Q(z) indicate the in-plane triple vector function and the assumed
thickness monomial, respectively. The classical plate and shell theories and the hierarchical
models [29–31] were developed according to this dimension reduction technique. Referring
to reference [31], the (3,3,2) hierarchical model, which can be considered third-order SDPT,
is expressed by

ux
uy
uz


(x,y)

=


u0

x
u0

y
u0

z


(x,y)

+


u1

x
u1

y
u1

z


(x,y)

×
(

2z
h

)
+


u2

x
u2

y
u2

z


(x,y)

×
(

2z
h

)2
+


u3

x
u3

y
0


(x,y)

×
(

2z
h

)3
(9)

3. Natural Element (NE) Bending and Free Vibration Approximation

In the NE approximation, a uniform NEM grid is constructed on the mid-surface v of
the FG porous plate. Referring to a previous paper [27], the NEM grid consists of a finite
number of grid points called nodes and Delaunay triangles. For the NE approximation
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of the (3,3,2) hierarchical model (9), its actual and virtual displacements uh and vh are
expanded as (α, β = x, y, z)

uh
α(x) =

qα

∑
m=0

(
N

∑
J=1

Um
α,JφJ(x, y)

)
·
(

2z
h

)m
(10)

vh
β(x) =

qβ

∑
`=0

(
N

∑
I=1

V`
β,IφI(x, y)

)
·
(

2z
h

)`

(11)

with qx = qy = 3 and qz = 2. Here, φJ(x, y) are Laplace interpolation (L/I) functions [32,33]
defined on the NEM grid and Um

α,J indicates the nodal values to be determined.
Letting qx = qy = qz = q for the concise expression of mathematical formula, the

virtual linear elastic strain vector ε
(

vh
)

and the actual Cauchy stress vector σ
(

uh
)

are
approximated as

ε
(

vh
)
=

q

∑
`=0

N

∑
I=1

LvφIV`
I ·
(

2z
h

)`

=
q

∑
`=0

N

∑
I=1

B`
IV

`
I ·
(

2z
h

)`

(12)

σ
(

uh
)
= Eε

(
uh
)
= E

q

∑
m=0

N

∑
J=1

Bm
J Um

J ·
(

2z
h

)m
(13)

in which the gradient-like matrix Lv and the partial differential matrix Bm
J are respectively

defined by

Lv =

∂,x 0 0 ∂,y 0 m/z
0 ∂,y 0 ∂,x m/z 0
0 0 m/z 0 ∂,y ∂,x

T

(14)

Bm
J = LvφJ

=

 φJ,x 0 0 φJ,y 0 mφJ/z
0 φJ,y 0 φJ,x mφJ/z 0
0 0 mφJ/z 0 φJ,y φJ,x

T
(15)

with ∂,x = ∂/∂x and φJ,x = ∂φJ/∂x. E denotes the (6× 6) matrix of the elastic modulus E
and the Poisson’s ratio ν.

Introducing Equations (12) and (13) into the weak form of static equilibrium [27] of
FG porous plates leads to

[K]`m
I J {U}

`
J = {F}

m
I (16)

with the stiffness matrix [K] and the load vector {F} defined by

[K]`m
I J =

∫ h/2

−h/2

[∫
v

{(
BT

I E1BJ

)
FI
+
(

BT
I E2BJ

)
RI

}
dv

]
·
(

2z
h

)`+m
dz (17)

{F}m
I =

∫
∂ΩN

t̃αφIds · (2z∗/h)mdA (18)

Here, t̃ indicates the external force acting on the natural boundary ∂ΩN located at the
vertical position z∗. The subscripts FI and RI in Equation (17) denote the full numerical
integration using 7 Gauss points and the reduced integration using only 1 Gauss point. The
reduced integration is used to overcome shear locking [34,35] for the bending-prevailed
thin elastic structures, for which the material constant matrix E is divided into

[E] =
[

E1 0
0 E2

]
, [E1] =

C1 C2 C2
C2 C1 C2
C2 C2 C1

 (19)
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with [E2] = diag[G, G′, G′], in which C1 = (1− ν)E/[(1− 2ν)(1 + ν)], C2 = νE1,
G = E/2(1 + ν) and G′ = G/κ with the shear correction factor κ = 6/5.

For the free vibration u(x; t) =
¯
u(x) · ejωt of FG porous plate, the mass matrix [M] is

defined by

[M]`m
αβ,I J =

∫ h/2

−h/2

[∫
v

ρ(z)(φII)
(
φJI
)

dv

]
·
(

2z
h

)`+m
dz (20)

with the (3× 3) identity matrix [I] and the density ρ(z). Then, the weak form of dynamic
equilibrium of the FG porous plate leads to

[
K−ω2M

]`m

I J

{
¯
U
}`

J
= 0 (21)

to compute the natural frequencies {ω}`J and the natural modes
{

¯
U
}`

J
.

4. Numerical Results

Figure 3a presents a metal–ceramic FG square plate under the action of uniform
vertical distributed load q0 = 1.0 N/m2, where the side length a is 0.1 m and the thickness
h are variables for the parametric investigation. The elastic modulus E, Poisson’s ratio ν and
the density ρ are 70 GPa, 0.3 and 2707 kg/m3 for metal and 380 GPa, 0.3 and 3800 kg/m3

for ceramic. The simply supported condition is enforced as follows: U0
z = 0 for all the

four sides, U0
x = · · · = U3

x = 0 for two sides 1© and 3©, and U0
y = · · · = U3

y = 0 for the
other sides 2© and 4©. The full in-plane integration on the mid-surface for the stiffness
and mass matrices and the load vector was performed using 7 Gauss points, while the
thickness-wise integration was made using the trapezoidal rule by dividing the thickness
into 50 uniform segments. The solutions of linear matrix Equation (16) were obtained by
the frontal solver. The evaluation points and the calibrated deflection and stresses used in
this study are defined by

w =
10Ech3

q0a4 w(0, 0, 0), σx =
h

q0a
σx(0, 0, z∗), τxz =

h
q0a

τxz

(
− a

2
, 0, z∗

)
(22)

where, z∗ is the vertical position where the stresses show their maximum absolute values.
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First, the variation in w and σx was examined with respect to the NEM grid density,
which is illustrated in Figure 3b. The width–thickness ratio a/h was 10 and the ceramic
index n and the porosity parameter e were set by zero. The numerical results are presented
in Table 1, where the values within the parentheses are the relative differences to the values
obtained using the 19× 19 NEM grid. It is seen that two calibrated quantities converge to
the reference values proportional to the grid density and a 15× 15 uniform grid shows the
relative differences less than 1.0%, so according to this convergence test, a 15× 15 uniform
grid was chosen for the remaining numerical experiments, unless stated otherwise.

Table 1. Variation in w and σx with respect to the grid density (a/h = 10, (3,3,2) hierarchic model).

Items
Grid Density

5×5 7×7 11×11 15×15 19×19

w 0.41165
(−14.631%)

0.45044
(−6.586%)

0.47284
(−1.941%)

0.47943
(−0.574%)

0.48220
(Ref.)

σx
(
×10−1) 1.7186

(−54.557%)
2.9076

(−13.118%)
3.6306

(−4.001%)
3.7449

(−0.978%)
3.7819
(Ref.)

The calibrated central deflection w was computed for various combinations of a/h,
n and e and compared with those of Demirhan and Taskin [36] as given in Table 2. The
reference solutions were analytically solved using a four-variable refined plate theory. It is
seen that the present results coincide well with the reference solutions such that the peak
relative difference is 5.336% at the combination of a/h = 20, n = 0.5 and e = 0.2 for the
uneven porosity distribution.

Table 2. The calibrated central deflections w of simply supported square FG porous plate.

a/h n e
Even Uneven

Present Ref. [36] Present Ref. [36]

10

0.5
0.0 0.71929 0.71361 0.71929 0.71361
0.2 0.89159 0.88950 0.77523 0.81751
0.4 1.18520 1.18947 0.97001 0.95489

1.0
0.0 0.93275 0.92873 0.93275 0.92873
0.2 1.28790 1.29241 1.14190 1.13392
0.4 2.23613 2.29216 1.55447 1.58372

20

0.5
0.0 0.68489 0.69209 0.68489 0.69209
0.2 0.84938 0.86177 0.74850 0.79069
0.4 1.13005 1.15510 0.92341 0.92626

1.0
0.0 0.88691 0.89968 0.88691 0.89968
0.2 1.22532 1.25611 1.09321 1.09915
0.4 2.12631 2.24360 1.45637 1.44418

In addition, the free vibration of the simply supported FG porous plate was performed
using Lanczos transformation and Jacobi iteration methods. The lowest 10 natural frequen-
cies for the previous combinations of a/h, n and e were computed using the 15× 15 uniform
NEM grid. In Table 3, the calibrated fundamental frequencies ω(1,1) = ω(1,1)h

√
ρm/Em are

compared with those in reference [36]. It is seen that the calibrated fundamental frequencies
predicted by the present method coincide well with those of reference [36]. The detailed
numerical values informs that the maximum relative difference is 3.954% at the combina-
tion of a/h = 20, n = 1.0 and e = 0.4 for the even porosity distribution. Hence, it has been
justified that the present (3,3,2) hierarchical model is reliable for the free vibration analysis
of FG porous plates. Thus, the present numerical method using the (3,3,2) hierarchical
model has been verified such that thepeak relative difference between the present method
and the reference is 5.336%.
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Table 3. The calibrated fundamental frequencies ω(1,1) of simply supported square FG porous plate.

a/h n e
Even Uneven

Present Ref. [36] Present Ref. [36]

10

0.5
0.0 0.09702 0.09763 0.09702 0.09763
0.2 0.09682 0.09719 0.09896 0.10013
0.4 0.09598 0.09592 0.10120 0.10216

1.0
0.0 0.08767 0.08796 0.08767 0.08796
0.2 0.08350 0.08324 0.08863 0.08859
0.4 0.07331 0.07194 0.08893 0.08991

20

0.5
0.0 0.02503 0.02475 0.02503 0.02476
0.2 0.02497 0.02463 0.02555 0.02542
0.4 0.02475 0.02429 0.02615 0.02606

1.0
0.0 0.02262 0.02230 0.02262 0.02230
0.2 0.02154 0.02110 0.02282 0.02271
0.4 0.01893 0.01821 0.02299 0.02288

Next, the static bending and the free vibration of FG porous plates were parametrically
examined for the major parameters. Figure 4a shows the variation of calibrated central
deflection to the porosity parameter e for the even and uneven porosity distributions when
the w/t ratio a/h is 20. It is seen that the central deflection of even porosity distribution
is larger than that of uneven porosity distribution, because not only the total amount of
porosity is larger at the even porosity distribution but also the mid-surface-biased uneven
porosity distribution provides the higher plate bending stiffness than the even porosity
distribution. Meanwhile, the calibrated central deflection increases in proportion either
to the ceramic index n or to the porosity parameter e. Thisis because the plate bending
stiffness becomes lower as either of the two indices becomes larger. This increase trend in w
with increasing the porosity parameter e is less apparent at the uneven porosity distribution,
because the porosity is biased towards the mid-surface while the ceramic having the higher
elastic modulus becomes more concentrated near the top surface proportional to the ceramic
index. Figure 4b shows the variation in w to the porosity parameter for different w/t ratios
a/h, where the w uniformly decreases in proportion to a/h because the central deflection is
calibrated with the thickness, as given in Equation (22). Meanwhile, the relative difference
in w between two porosity distributions is not shown to be affected by the value of a/h
because the thickness-wise distributions of metal and ceramic are not changed, even when
the value of a/h is changed.

Figure 5a represents the variation of w to the porosity parameter e for different bound-
ary conditions when the values of a/h and n are 20 and 0.3. C, S and F stand for clamped,
simply supported and free, and the combined four charac-ters indicate a set of boundary
conditions specific to the sides 1©, 2©, 3© and 4© of the FG porous plate shown in Figure 3a.
It is observed that the lowest central deflection occurs at CCCC and the highest one is
seen at SFSF. The second and third in the magni-tude of w are SSSS and SCSC, because
the stronger the boundary condition is, the higher the plate bending stiffness is. Mean-
while, the relative difference in w between two porosity distributions is not seen to be
affected by the boundary condition type. Figure 5b compares the variations of w between
three cosine-type porosity distributions, where the sym shows the lowest level and the
unsym 2 shows a lower level than the unsym 1, respectively. The FG plate with the sym
porosity distribution is stiffer than the FG plates with unsym 1 and 2 porosity distributions
because the porosity in the sym distribution is concentrated at the mid-surface. Meanwhile,
the bending stiffness of FG plates having the unsym 2 porosity distribution is higher than
that of FG plates with the unsym 1 porosity distribution. This is because the porosity in
the former distribution is biased towards the top surface, but the ceramic with the higher
elastic modulus is concentrated at the bottom surface when the ceramic index n is 0.3.
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Figure 5. Dependence of the calibrated central deflection on the porosity parameter (a/h = 20, n = 0.3)
(a) for different boundary conditions, (b) for different cosine-type porosity distributions.

Figure 6a compares the variation in σx to the porosity parameter e for different porosity
distributions. The peak value of σx occurs at the top of plate for all the three distributions
and the unsym 1 distribution shows the highest level. The σx of unsym 2 distribution is
lower than one of sym distribution, and furthermore it decreases in proportion to the poros-
ity parameter e. This is because the elastic modulus at the top for the unsym 2 distribution
is lower than one for the sym, and its decrease with increasing the value of e is larger
than the increase of w proportional to e. Figure 6b compares the variations of τxz to the
value of e for three different porosity distributions. The peak of τxz appears near the
neutral surface regardless of the porosity distribution, and the highest level occurs at
the unsym 1 distribution. The calibrated shear stresses of unsym 2 and sym distributions
decrease proportionally to e because the decrease inshear modulus with increasing e is
larger than the increase in w with the value of e.
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Figure 7a compares the variations of calibrated fundamental frequency ω(1,1) to the
porosity parameter e between the even and uneven porosity distributions, where the
fundamental frequency is calibrated by ω(1,1) = ω(1,1)a2

√
ρm/Em/h. Similarly to the

calibrated central deflection shown in Figure 4a, the ω(1,1) increases in proportion to e,
except for the even distribution with n = 0.6. This is because the decrease in density
with increasing e gives a higher effect on the free vibration than the decrease inelastic
modulus proportional to e and vice versa for the exceptional case. Meanwhile, the uneven
distribution provides the higher values of ω(1,1) than the even distribution when the
ceramic index n is ≥0.3 since the porosity in the uneven distribution is biased near the mid-
surface, while the ceramic with the higher elastic modulus becomes more concentrated at
the bottom proportional to n. Figure 7b represents the variation in ω(1,1) to the porosity for
different w/t ratios a/h, where the ω(1,1) uniformly increases in proportion to a/h owing to
the calibration. According to this calibration, it is seen that the relative difference in ω(1,1)
between even and uneven porosity distributions uniformly increases in proportion to a/h.
The uneven porosity distribution provides higher fundamental frequencies than the even
porosity distribution when the a/h equals to and larger than 5.0. The relative difference
in ω(1,1) between even and uneven porosity distributions uniformly increases with the
ceramic index and the w/t ratio. This is because the difference in thickness-wise material
composition distributions between even and uneven porosity distributions becomes more
apparent in proportion to these two factors.

Figure 8a compares the variations in ω(1,1) to the porosity parameter for different
boundary conditions, where the highest frequency appears at CCCC and the second and
third and lowest ones are shown at SCSC, SSSS and SFSF, respectively. This order of
the magnitude of ω(1,1) is completely contrary to that of w shown in Figure 5a, which
is consistent with the fact that the stronger the constraint is, the higher the fundamental
frequency is. Figure 8b shows the variation in ω(1,1) to the porosity parameter for three
different porosity distributions, where the order of the magnitude of ω(1,1) is completely
contrary to that of w shown in Figure 5b. This is because the natural frequency and
the central deflection show opposite variations to each other in their magnitudes to the
structure stiffness. The unsym 1 distribution shows the lowest level and a decreasing trend
for the porosity parameter, because both the porosity and the ceramic with the higher
elastic modulus are simultaneously biased towards the bottom. And, the decrease in the
elastic modulus with increasing the value of e gives a higher effect on the free vibration
than the decrease in the density along with the value of e.
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5. Conclusions

The static bending and free vibration of FG porous plates were numerically analyzed
by making use of the (3,3,2) hierarchical model and 2D NEM. The power-law function
was adopted to express the thickness-wise metal and ceramic volume fractions, and five
different porosity distributions were considered. The proposed numerical method was
demonstrated and verified through the benchmark experiment. Moreover, the central
deflection and the fundamental frequency were parametrically investigated with respect to
the combination of the material composition distribution, the porosity distribution and the
w/t ratio, and to the boundary condition. From the numerical results, the following main
observations are drawn:

• The maximum relative difference in the calibrated central deflections and fundamental
frequencies between the present numerical method and the reference is 5.336%.

• The calibrated central deflection increases with the porosity parameter, and the cali-
brated fundamental frequency also increases with the porosity parameter, except for
the even distribution with n = 0.6.
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• The even porosity distribution leads to higher central deflection than the uneven
porosity distribution, and this relative difference between two porosity distributions
uniformly increases with the porosity parameter and the ceramic index, but it is not
affected by the plate width–thickness ratio.

• The relative order in the magnitude of calibrated fundamental frequency is dependent
on the ceramic index and the width–thickness ratio. The relative difference between
even and uneven porosity distributions uniformly increases with the ceramic index
and the width–thickness ratio.

• The order in the magnitude of calibrated central deflection among four boundary
conditions is SFSF > SSSS > SCSC > CCCC, but this relative order becomes completely
reversed for the calibrated fundamental frequency.

• Regarding cosine-type porosity distributions, the unsym-1 provides the highest cali-
brated central deflection while the sym leads to the lowest level, but this relative order
becomes completely reversed for the calibrated fundamental frequency.

• The order in the peak axial stress is unsym-1 > sym > unsym-2 and the order in the
peak shear stress is unsym-1 > unsym-2 > sym, respectively.

The current work dealt with metal–ceramic functionally graded plates. Thus, the ex-
tension of current work to more advanced materials, such as carbon nanotubes (CNTs) and
CNT-reinforced composites, would be worthwhile, and represents a topic for future work.
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