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Abstract: In arid regions, starchy agricultural products such as wheat and rice provide essential
carbohydrates, minerals, fibers and vitamins. However, drought, desiccation, high salinity, potentially
toxic metals and hydrocarbon accumulation are among the most notable stresses affecting soil
quality and cereal production in arid environments. Certain soil bacteria, referred to as Plant
Growth-Promoting Rhizobacteria (PGPR), colonize the plant root environment, providing beneficial
advantages for both soil and plants. Beyond their ability to improve plant growth under non-
stressed conditions, PGPR can establish symbiotic and non-symbiotic interactions with plants growing
under stress conditions, participating in soil bioremediation, stress alleviation and plant growth
restoration. Moreover, the PGPR ability to fix nitrogen, to solubilize insoluble forms of nutrients
and to produce other metabolites such as siderophores, phytohormones, antibiotics and hydrolytic
enzymes makes them ecofriendly alternatives to the excessive use of unsuitable and cost-effective
chemicals in agriculture. The most remarkable PGPR belong to the genera Arthrobacter, Azospirillum,
Azotobacter, Bacillus, Enterobacter, Klebsiella, Pseudomonas, etc. Therefore, high cereal production in arid
environments can be ensured using PGPR. Herein, the potential role of such bacteria in promoting
wheat and rice production under both normal and derelict soils is reviewed and highlighted.

Keywords: cereals; induced systemic tolerance; rhizosphere; soil bacteria; pollution

1. Introduction

In 2019, the United Nations Organization signaled that demographic growth had
reached eight billion inhabitants on the planet, where most of the population live in arid
and semi-arid environments (Asia: 60% and Africa: 16%). In addition, the global population
is expected to reach 8.5 billion by 2030, 9.7 billion by 2050 and 10.9 billion by 2100 [1]. This
rapidly growing population requires increasing food production, essentially coming from
agriculture. Thus, a doubling of food and feed production is needed in the next forty years
to respond to these new requirements [2].

Arid environments are extremely diverse in terms of landforms, soils, fauna, flora,
water balances and human activities. Thus, no practical definition of arid environments can
be derived, whereas the one binding element to all arid regions is “aridity”. It is important
to underline the fact that arid agriculture receives rising attention because of its related
problems in mostly undeveloped countries; where a third of all human beings live in 41%
of the globe’s surface, getting the larger part of their food from cereals and vegetables [3].

The increase in aridity decreases water availability, crop yield and agricultural produc-
tivity [4]. Several studies have indicated that increased carbon dioxide concentrations in the

Appl. Sci. 2022, 12, 11567. https://doi.org/10.3390/app122211567 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122211567
https://doi.org/10.3390/app122211567
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4707-7139
https://orcid.org/0000-0001-6151-0758
https://orcid.org/0000-0002-3493-6451
https://orcid.org/0000-0003-1630-5039
https://orcid.org/0000-0003-2622-2384
https://orcid.org/0000-0002-5259-2357
https://doi.org/10.3390/app122211567
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122211567?type=check_update&version=3


Appl. Sci. 2022, 12, 11567 2 of 21

atmosphere lead to global warming [5–7]. Consequently, an increase in aridity is predicted
in some model scenarios where drought would persist in some areas of the globe [8–10].
According to Le Houérou [11], there has been an increase of 0.5 ◦C in global temperature
over the past 100 years, which is partially due to excessive urbanization and industrializa-
tion. Otherwise, abiotic stresses such as drought, salinity, extreme temperatures, chemical
toxicity and oxidative stress are serious threats to agriculture and the natural status of arid
environments [12].

In addition, several human activities related to industry, such as the excessive use of
petroleum, but also to other agricultural practices such as the hysterical application of fertil-
izers, pesticides and herbicides, have improved human life quality. However, such activities
have also led to the accumulation of alarming amounts of salts and other toxic chemicals,
leading to environmental degradation and soil deprivation [13]. These phenomena do not
only affect plant growth, but also the soil’s microbial community, including beneficial soil
bacteria. In this context, the results obtained by Maestre et al. [14] suggest that changes in
aridity, following the climate-change models, may reduce microbial abundance and diver-
sity, a response that will likely impact soil fertility and climate regulation. Therefore, several
practices have been adopted over time to remediate soils and to enhance plant growth
under stress conditions. Among these solutions, certain soil bacteria, referred to as Plant
Growth-Promoting Rhizobacteria (PGPR), can colonize the surfaces or inner tissues of plant
roots, providing beneficial advantages for both soils and plants [15]. Beyond their ability
to improve plant growth under non-stressed conditions, some PGPR are able to establish
symbiotic and non-symbiotic interactions with plants growing under stress conditions,
participating in soil bioremediation, stress alleviation and plant growth restoration [16].
The ability of PGPR to fix nitrogen, to solubilize nutrients and to produce metabolites such
as siderophores, phytohormones, antibiotics and hydrolytic enzymes makes them one of
the most ecofriendly alternatives to avoid the excessive use of unsuitable and cost-effective
chemicals in agriculture [17]. In the last few years, PGPR have retained both scientists’ and
farmers’ attention as interesting substitutes for chemicals for their sustainable and healthy
effect on the environment, but also their promising roles in bioremediation [18,19].

Recently, some reviews have highlighted the role of PGPR as abiotic stress alleviators
in soil and the prospects of their application to mitigate soil metal contamination [20–22].
However, none was directed to describe their impact on soil bioremediation and cereal
growth enhancement in arid environments. In this paper, we highlight the importance of
using beneficial soil bacteria for both soil quality restoration and plant growth enhancement
in arid environments. We also summarize scientific works revealing the place of such soil
bacteria in improving wheat and rice production under stress circumstances. It is important
to mention that cereals, particularly wheat and rice, are known to be the most important
crops in the world. Together with maize, they constitute more than 50% of all the calories
consumed by human beings over the world [23]. In addition, human diets, especially
in developing countries where aridity is dominant, are essentially based on cereals. For
example, global cereal demand is expected to increase from 585 million to 828 million
tons by 2025, corresponding to an increase of 42% [2]. Furthermore, developing countries’
rice and wheat production is supposed to jump from 4.2 and 3.1 to 4.7 and 3.5 tons/ha,
between the year 2015 and 2030, respectively. Such rising cereal production would seem to
be unsatisfactory to meet the accelerated growth of the human population that is predicted
to reach 8.5 billion by the end of 2030 [1,24].

Accordingly, this review aims to understand the prospective functions of Plant Growth-
Promoting Rhizobacteria (PGPR), which can participate in soil bioremediation, stress
alleviation and plant growth restoration. In fact, the positive effects of PGPR could be
exploited to promote agricultural practices in stressed environments and help specialists to
manage decisions for more ecofriendly practices in agriculture.
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2. Main Aspects of Low Soil Fertility

With industrialization, anthropogenic activities such as crude oil exploitation, mining,
urban development and the excessive use of chemical fertilizers, pesticides and herbicides
have strongly affected soil’s physical, physiological and biochemical properties, but also
its intrinsic heterogeneous microbial diversity [13,25]. Compounds resulting from such
activities are known to be hardly biodegradable and contain high amounts of potentially
toxic elements (hereafter: PTE) and other pollutants, hence persisting in nature and affecting
vegetal development [19]. In addition, the microbial communities in these contaminated
soils are disturbed, which affects their important roles in organic matter recycling, plant
disease control, vegetal growth enhancement and the detoxification of the deleterious
chemicals in the soil [26,27]. Among PTEs, lead (Pb), chromium (Cr), arsenic (As), zinc
(Zn), cadmium (Cd), copper (Cu), mercury (Hg) and nickel (Ni) are the most encountered.
Unlike other pollutants, soil is the main tank of such PTE. At high concentrations, these
compounds are highly toxic for both plants and microorganisms [28]. Moreover, global
warming, together with water scarcity, has led to excessive irrigation and chemical fertilizer
application to meet global food requirements, which has resulted in salt accumulation in
soil. High concentrations of salt ions in soil, mainly Na+ and Cl−, but also other ions such
as (K+, Ca2+, (CO3)2−, etc.), reduce water acquisition by plant roots, disturb soil microflora
and accentuate phytopathogen virulence [29–31]. Recently, using certain soil bacteria for
soil health maintaining and plant growth restauration under abiotic stresses attracts both
farmers and scientists as a potential alternative to chemicals. Table 1 summarizes the most
recent scientific advances in using beneficial soil bacteria for bioremediation and crop
growth restoration.

Table 1. Recent advances in soil remediation and plant growth restoration using beneficial soil bacteria.

Bacterial Genera Soil-Related Problem Targeted Crops Reference

Bacillus Toxic metals (Cr) Triticum durum Mazhar et al., 2020 [32]

Pseudomonas
Bacillus Toxic metals (As) Oryza sativa Xiao et al., 2020 [33]

Enterobacter
Citrobacter Toxic metals (Cd, Ni and Pb) Triticum aestivum Ajmal et al., 2022 [34]

Pseudomonas
Bacillus Toxic metals (Cd, Pb, Zn) Spinacea oleracea L. Shilev et al., 2020 [35]

Klebsiella
Pantoea Toxic metals (Cd, Zn) Pennisetum purpurenum Sumranwanich et al., 2022 [36]

Sinorhizobium
Agrobacterium Toxic metals (Cu, Zn) Medicago lupulina Jian et al., 2019 [37]

Bacillus
Azotobacter Toxic metals Pisum sativum Singh et al., 2019 [38]

Pseudomonas
Serratia Salt stress Triticum durum Sohaib et al., 2020 [39]

Kocuria
Cronobacter Salt stress Triticum durum Afridi et al., 2019 [40]

Pseudomonas Salt stress Triticum durum Albdaiwi et al., 2019 [41]
Boumaaza, 2020 [42]

Bacillus Salt stress Oryza sativa Shultana et al., 2021 [43]

Bacillus Salt stress Oryza sativa Chauhan et al., 2019 [44]

Glutamicibacter Salt stress Oryza sativa Ji et al., 2020 [45]

Pseudomonas
Trichoderma (fungus) Drought Oryza sativa Singh et al., 2020 [46]

Enterobacter
Achromobacter Drought Oryza sativa Danish et al., 2019 [47]

Danish et al., 2020 [48]
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Table 1. Cont.

Bacterial Genera Soil-Related Problem Targeted Crops Reference

Bacillus
Enterobacter Drought Triticum aestivum

Zea mays Jochum et al., 2019 [49]

Bacillus Drought Glycyrrhiza uralensis Zhang et al., 2019 [50]

Agrobacterium Leclercia
Pseudomonas
Bacillus

Drought Triticum aestivum
Danish and
Zafar-ul-Hye, 2019 [51]
Zafar-ul-Hye et al., 2019 [52]

Pseudomonas Heat Triticum Ashraf et al., 2019 [53]

Bacillus Fungicidal toxicity and
soil-borne diseases Oryza sativa Shen et al., 2019 [54]

Bacillus Fungicidal toxicity and
soil-borne diseases Arachis hypogaea Ahmad et al., 2019 [55]

Nostoc
Anabaena

Fungicidal toxicity and
soil-borne diseases Oryza sativa Zhou et al., 2020 [56]

3. Plant Growth-Promoting Rhizobacteria, A Potential Approach for Bioremediation

One of the safer tools to alleviate environmental deterioration is the application of
ecofriendly living agents such as bacteria, fungi, algae and higher plants to eliminate the
toxic chemicals, oil spills and toxic metals present in the altered sites, which is known
as “bioremediation” [57]. To discriminate between the use of these biological agents for
polluted sites’ decontamination and their use in biorecycling processes designed to reduce
the emission of toxins at source, bioremediation is defined as “a biological response to
environmental abuse” [58,59].

Apart from their implications as plant growth enhancers, PGPR are also known to
have a primordial role in practically all bioremediation aspects of contaminated soils (PTE,
fungicides, organic pollutants, etc.) [60–62]. For example, some PGPR can interact with
the soil’s toxic metals by binding them to their cell surfaces or incorporating them in some
metabolic functions after captivation. Some microorganisms can reduce metal ions such
as Hg2+ and Ag+ to Hg0 and Ag0 and provide a perfect model for total metal removal
from the soil [63]. It has been experimentally demonstrated that some rhizobacteria pro-
duce extracellular enzymes such as peroxidases, reductases, Cytochome P450, lacases and
glutathione-S-transferase, having important roles in polycyclic aromatic hydrocarbon degra-
dation, molecules present in crude oil and known for their toxicity and carcinogenicity [64].
Meliani [65] produced a detailed review about PGPR application in soil decontamination,
focusing on the genus Pseudomonas, and some of the most important strategies used by
PGPR in bioremediation such as the production of biosurfactants, biofilms, toxic metal
solubilization and siderophore production.

Plant Growth-Promoting Rhizobacteria utilize a wide range of mechanisms to improve
plant growth and soil quality under stress conditions. Under ionic stress, mostly related to
high salinity, drought and desiccation, certain bacteria can provide compatible solutes (pro-
line, glycine betaine, sugars and derivatives, etc.) for root cells to avoid ion accumulation
in the cytoplasm and, thus, water deficiency. Others can synthesize exopolysaccharides
(EPS) in the rhizosphere. Bacterial EPS enhance water and ion (K+, Ca+, Na+) uptake.
They also play a major role in soil structure stabilization and aggregation under high ion
concentrations. Certain PGPR express ion antiporters in their membranes (Na+ (K+)/H+)
to maintain their water balance in the cytoplasm under ionic stress. They also produce
stress mitigation enzymes such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase
(see Section 5.2) and antioxidant enzymes such as peroxidase (POD), catalase (CAT) and
superoxide dismutase (SOD) to eliminate the high amounts of reactive oxygen species
(ROS) produced under abiotic stresses. In addition, PGPR phytohormones such as auxins,
gibberellins, abscisic acid and cytokines (see Section 5.4) are inevitable for the stabilization
of plants’ physiology under water stresses [66]. In PTE bioremediation, several mechanisms
are used by beneficial soil bacteria to adsorb, transform and uptake toxic elements in the



Appl. Sci. 2022, 12, 11567 5 of 21

soil. In this context, the toxic species is either passively adsorbed (biosorption) to the cell
surface or internalized (bioaccumulation) to its interior through “metabolic independent
mechanisms”. Inside the cytoplasm, toxic metal behavior follows more complex and, often,
“metabolic dependent mechanisms” that may include: (1) metal compartmentation within
specific organelles, (2) enzymatic detoxification (methylation, oxidation, dealkylation, re-
duction, etc.), and (3) efflux pumps that transport the modified and harmless toxic metal
forms outside the cytoplasm (Figure 1) [67].
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Figure 1. Principal mechanisms of bacterial bioremediation and plant growth regulation under
abiotic stresses. * (IST): see Section 3.

At a cellular level, microbial populations permanently communicate between them-
selves, but at the same time with their surrounding root systems. In addition, some positive
PGPR effects are controlled by small diffusible signaling molecules, mainly N-acyl ho-
moserine lactone molecules (AHLs), that regulate gene expression in response to bacterial
population density and interactions with plants, particularly under stress conditions [68,69].
For example, the N-3-oxo-hexanoyl homoserine lactone (3OC6-HSL) was found to be
highly effective in restoring wheat root length, shoot length and fresh weight under salt
stress conditions. In fact, 3OC6-HSL upregulated salt-responsive gene expressions such as
(1) Abscisic Acid (ABA)-dependent osmotic stress genes: COR15a, RD22, ADH and P5CS1,
(2) ABA-independent gene: ERD1, and (3) ion-homeostasis regulation genes: SOS1, SOS2
and SOS3 in Arabidopsis under salt stress conditions [70]. Moreover, Sheng et al. [71] car-
ried out impressive work on the role of quorum sensing systems during microbial biofilm
formation while degrading the pollutant 1,2,4-trichlorobenzene (1,2,4-TCB). For them,



Appl. Sci. 2022, 12, 11567 6 of 21

there was no doubt about the positive correlation between the 1,2,4-TCB mineralization,
microbial biofilm abundance and AHL (3-oxo-C12:1-HSL; 3-oxo-C10:1-HSL, 3-oxo-C14:1-HSL;
OH-C14:1-HSL, etc.) production.

Among other PGPR, a Pseudomonas aeruginosa PS1 significantly promoted root and
shoot nitrogen, root and shoot phosphorus and the seed yield of greengram (Vigna radiata)
plants at all tested concentrations of tebuconazole, a fungicide belonging to the triazole
group and largely used in agriculture. At high concentrations, tebuconazole may be
accumulated in soils and plants, becoming toxic, damaging plant tissues and affecting crop
yield [60]. Bensidhoum et al. [72] studied the effect of a Pseudomonas protegens S5LiBe on
barley growth restoration under toxic metal contamination. The results showed an increase
in germination rate, shoot and root fresh weight, shoot and root dry weight and shoot
length. Moreover, the two siderophore producers, Alcaligenes feacalis RZS2 and Pseudomonas
aeruginosa RZS3, showed a high ability to promote wheat growth when seeds were sown in
PTE-contaminated soil; their bioremediation potential was higher than other metal chelators
such as EDTA or citric acid [73]. Muratova et al. [74] realized a pot experiment in a growth
chamber, proving the ability of Azospirillum lipoferum strain 5 to enhance the development
of wheat root systems growing in crude oil-contaminated soil. In addition, a greenhouse
experiment was conducted by Gomaa et al. [75] on the wheat growth stimulation potential
of the two bacteria Azospirillum lipoferum and Rhizobium leguminosarum under different
concentrations of Zn and Cd. The treatments: Azospirillum; Azospirillum + Rhizobium;
Rhizobium + 200 ppm Zn; Azospirillum + Rhizobium + 300-ppm Cd; Rhizobium + 300 ppm
Zn and Azospirillum + 300 ppm Zn resulted in an increase in wheat growth parameters
compared to controls without bacterial inoculation. Similarly, a Pseudomonas sp. strain,
isolated from hydrocarbon-contaminated soil, showed an important effect in stimulating
rice’s root and shoot elongation and enhanced its final yield in hydrocarbon and toxic
metal-contaminated soils [76].

4. Plant Growth-Promoting Rhizobacteria Implication in Induced Systemic Tolerance
and Induced Systemic Resistance

Currently, modern agriculture is facing extremely dangerous biotic and abiotic prob-
lems. Some of these constraints are the result of the human populations’ growth explosion
in some regions of the planet. Others are the direct consequence of environmental degra-
dation due to drought, salinity, oxidative stress, toxic metals, nutrient deficiency and
pathogens, loss of biodiversity and global climate changes [77–82]. In addition, the biggest
part of the agricultural loss is due to abiotic factors. For example, the average yield of
wheat is about 1500 kg/ha, while crop damage was estimated at 2000 and 14,500 kg/ha
due to biotic and abiotic stresses, respectively [83].

Several works have highlighted the role of some PGPR as inducers of plant tolerance
to abiotic stress by provoking physiological and biochemical changes in their tissues, which
result in enhancing their tolerance to environmental stresses such as drought, salinity and
toxic metals. Such complex interactions between plants and bacteria are known under the
term “Induced Systemic Tolerance” (IST) [80,84–87]. Among other bacteria, Arthrobacter,
Azospirillum, Azotobacter, Klebsiella and Pseudomonas are known for their ability to promote
wheat and rice growth under high salinity conditions. [84,88–101].

Other works have described PGPR’s effect on drought stress mitigation in wheat
(Burkholderia, Bacillus, Paenibacillus, Azospirillum and Azotobacter) and rice (Pseudomonas,
Bacillus, Arthrobacter, Azospirillum) [102–110]. Recently, PGPR conferring plant tolerance
to toxic metals (Cd, Zn, etc.) have increasingly attracted researchers’ attention. Thus, a
Pseudomonas sp. SNA5 was efficiently used by Verma et al. [111] to promote wheat growth
under high concentrations of cadmium, which is associated with high phosphate fertiliza-
tion. Islam et al. [112] found that a P. aeruginosa was an ideal candidate for wheat growth
enhancement against Zn-induced oxidative stress by improving the necessary nutrients’
availability, as well as by lowering Zn metal uptake. In addition, ref [113] used PGPR to
stimulate wheat growth under high Cr concentrations. Moreover, Gontia-Mishra et al. [114]
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found that Enterobacter ludwigii (HG 2) and Klebsiella pneumoniae (HG 3) could significantly
promote wheat seedling growth under mercury stress. Furthermore, the two bacteria
Ochrobactrum sp. and Bacillus spp. revealed a high potential for rice growth promotion
under toxic metal-contaminated soil [115].

It is largely recognized that many PGPR are implicated in plant defense stimulation
against phytopathogens (viruses, bacteria, fungi and insects), which is designated “In-
duced Systemic Resistance” (ISR) [80,84–87]. Bacteria such as Acinetobacter, Alcaligenes,
Bacillus, Burkholderia, Enterobacter, Pantoea, Pseudomonas and Staphylococcus have exhibited
high antagonistic activities against Alternaria alternata, Botrytis cinerea, Fusarium culmorum,
F. oxysporum, F. solani, Gaeumanomyces graminis var. tritici, Phytophthora cryptogea, Pythium
and promoted wheat growth and defenses against these same phytopathogens [87,116–118].
Also, Rice inoculation with a combination of three PGP-Pseudomonas fluorescens (Pf1, TDK1
and PY15) increased chitinase accumulation and enhanced disease resistance in rice plants
against sheath rot disease provoked by Sarocladium oryzae [119]. Elsewhere, PGPR such as
Bacillus, Pseudomonas, Rhizobium and Serratia were used as biocontrol agents against rice
pathogens (Burkholderia glumae, Cnaphalocrocis medinalis, Cochliobolus myiabeanus, Hirschman-
niella oryzae, Magnaporthe oryzae, Meloidogyne graminicola, Meloidogyne javanica, Pyricularia
grisea, Rhizoctonia solani and Xanthomonas oryzae pv. oryzae) [80,116,120,121].

5. Plant Growth-Promoting Metabolites for Soil Remediation and Crop Improvement

The ability of PGPR to fix nitrogen, solubilize nutrients and to produce other metabo-
lites such as siderophores, phytohormones, antibiotics and hydrolytic enzymes makes
them ecofriendly alternatives for avoiding the excessive use of unsuitable and cost-effective
chemicals in agriculture (Figure 2).
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5.1. Bacterial Siderophores in Soil

Iron is a key compound in almost all the electron transfer enzymes. In soil, Fe3+ is the
most found form (clays, oxides, hydroxides, etc.). The extremely insoluble nature of such
forms constitutes a limiting factor for both plant and microorganism development [86].
Most soil bacteria and fungi, but also some plants, can produce chelators with a high affinity
to iron. When iron is limited in soil, these chelators, namely siderophores, are secreted
to collect it from various sources and deliver it to the producer, but also to some of the
other cohabitating organisms [122]. Some siderophores producing PGPR can competitively
participate in phytopathogen inhibition, especially when iron is limited in soil [123]. In
addition, siderophores are also implicated in vegetal growth enhancement by providing
accessible iron to plants [124]. Otherwise, some microorganisms produce siderophores
with a high affinity to toxic metals, providing them with the ability to adsorb the metal in
their biomass on metal-induced outer membrane protein or by bioprecipitation [125–127].

Two siderophore-producing and toxic metal-resistant bacteria, namely, Enterobacter ludwigii
(HG 2) and Klebsiella pneumoniae (HG 3), were efficiently used by Gontia-Mishra et al. [114]
to alleviate Hg toxicity in wheat (Triticum durum), suggesting their utility as potential
candidates for Hg stress alleviation and wheat growth improvement. [115] studied the role
of toxic metal-resistant and siderophore-producing Ochrobactrum sp. (CdSP9) and Bacillus
spp. (AsSP9) strains in stimulating rice growth and remediating contaminated soils. The
two strains reduced metal toxicity and enhanced overall rice biomass and root/shoot ratio.

In a work realized by Islam et al. [112], Zn-stressed wheat plants showed more green
color intensity on their leaves and more iron availability when inoculated with a PGP-
Pseudomonas, which was attributed to siderophore production by the bacteria. The bac-
terium also promoted wheat growth under greenhouse conditions, where shoot and root
dry biomass was enhanced by 23% and 45%, respectively; they attributed this, in part, to its
ability to produce high amounts of siderophores. Moreover, Rana et al. [128] attributed the
significant role of a Providencia strain in the enhancement of wheat biomass, grain yield and
macro- (NPK) and micronutrient contents to its ability to exhibit siderophore production,
antifungal activity and synergistic interactions with other bacteria in wheat rhizosphere.
A Pseudomonas fluorescens WCS374r was found to be implicated in the ISR of rice against
Magnaporthe oryzae, which is based on pseudobactin (siderophore)-mediated priming for
a salicylic acid-repressible multifaceted defense response [129]. Another P. fluorescens,
together with its siderophore iron complex, was found to enhance phenol content and
phenol-oxidizing enzyme content in rice plants, hence inducing systemic resistance in rice
against the phytopathogen Pyricularia oryzae [130]. In addition, a complex of siderophore-
producing PGPR consortia was used by Naureen et al. [131] to enhance rice growth and
induce its systemic resistance to the phytopathogen fungus Rhizoctonia solani.

5.2. Plant Ethylene Balancing via Bacterial ACC Deaminase

Salinity affects approximately 6% of the land surface worldwide and about 20% of
irrigated areas, posing a major threat to agriculture [15]. It affects plant growth and yield,
but also provokes an imbalance of microorganism distribution in the rhizosphere and
increases, in some cases, pathogen virulence [31]. Salinity also affects nutrient availability
for crops. For example, phosphate (P) tends to precipitate with calcium in saline soils, which
makes it difficult to be captured by plants [132], although some PGPR can be responsible
for physical and chemical changes in plant tissues, participating in stress mitigation and
plant growth restoration. The bacterial enzyme “1-amino cyclopropane-1-carboxylate
(AAC) deaminase” plays an important role in regulating ethylene levels in plant tissues by
degrading its precursor (ACC). Ethylene is a plant hormone that regulates several aspects
of plant growth. However, its synthesis is accelerated under high salinity, and then it acts
as a negative plant growth regulator as its concentration exceeds the required level [133].

The use of ACC deaminase-producing bacteria has been widely adopted in agriculture,
especially for crop enhancement under different stresses [134]. Thus, Govindasamy et al. [135]
reported the effect of ACC-deaminase-producing rhizobacteria on wheat growth promotion
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under cadmium stress. The tested isolates significantly enhanced root elongation and
minimized ethylene synthesis in wheat seedlings under such stressed conditions. Indeed,
the most efficient strains, among others, in promoting wheat growth (Pseudomonas sp.
PS 2–3 and Pseudomonas fluorescens PS 7–12) showed the presence of acdS gene coding
for ACC deaminase. Abbas et al. [136] obtained better yield and chlorophyll content
with rice inoculated with ACC deaminase-producing bacteria under salt stress. The ACC
deaminase-producing Pseudomonas putida CEN7 and Pseudomonas fluorescens CEN8 showed
a significant increase in the root length and root colonization of rice plants [137]. In
addition, the bacterium Rhizobium leguminosarum (SN10) promoted the biomass, root
branching and N content of four different rice varieties. Not only this, but the bacterium also
displayed a strong chemotaxis response towards the rice seed and its root exudates [138].
Many other works have reported the role of ACC deaminase-producing PGPR in the
enhancement of rice growth under different stresses such as salinity, flooding and toxic
metals [137,139,140]. Moreover, similar results were found with wheat inoculated by ACC
deaminase-producing bacteria such as Pseudomonas, Serratia, Burkholderia under salt and
drought stress conditions [92,141–145].

5.3. Phosphate Solubilization

Phosphorus is one of the most important elements for plant nutrition. In agriculture,
it is generally compensated through the addition of chemical fertilizers to soil. However,
phosphorus coming from such fertilizers is rapidly immobilized, becoming useless for
plants [146]. In addition, the high release of contaminants into the main product, gas steam
and by-products, but also toxic metal accumulation in both the soil and crop due to the
repetitive use of phosphoric fertilizers, has obliged producers to look for better tools to
reduce the use of such chemical fertilizers [147,148]. Among these alternatives, the use of
phosphate-solubilizing bacteria (PSB) is one of the most ecofriendly options to avoid or to
minimize the exaggerated use of chemicals [149].

Ahemad [150] reviewed the role of metal phytoremediation in association with PSB
and reported that such associations considerably overcome the practical drawbacks im-
posed by metal stress on plants. Furthermore, Paul and Sinha [151] isolated and selected
a group of PSB with a high ability to tolerate toxic metal stress. They suggested that
using toxic metal PSB in metal-contaminated areas might be exploited for bioremediation
studies. Otherwise, Kaur and Reddy [152] found that inoculation with the two phosphate-
solubilizing bacteria Pantoea cypripedii (PSB-3) and Pseudomonas plecoglossicida (PSB-5),
together with rock phosphate fertilization, increased shoot height, shoot and root dry
biomass, grain yield and total phosphorus uptake in both maize and wheat as compared to
the control. The application of phosphate-solubilizing Azotobacter strains, alone or together
with chemical fertilizers, improved the yield and root biomass of three wheat varieties
under greenhouse conditions [153].

Several works have shown the efficiency of PSB such as Pantoea, Azotobacter, Rhi-
zobium, Pseudomonas and Serratia in nitrogen uptake and wheat growth enhancement
under different stress conditions [152,154–157]. The in vitro experiment, conducted by
Panhwar et al. [158], to study the influence of two phosphate-solubilizing Bacillus spp.
(PSB9 and PSB16), together with triple supper phosphate on aerobic rice growth, showed
that the coupled “bacteria-triple supper phosphate” increased phosphate uptake, available
soil phosphate and rice growth. The two phosphate-solubilizing bacteria PSB 12 identified
as Gluconacetobacter sp. (MTCC 8368) and PSB 73 identified as Burkholderia sp. (MTCC
8369) were examined for their potential ability to enhance rice growth. They revealed high
growth promotion ability under pot culture assays and were presumed to be of potential
to develop as biofertilizers [159]. Vahed et al. [160] and Panhwar et al. [158] have also
discussed the role of some PSB in improving phosphate uptake, soluble soil phosphate and
rice growth.
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5.4. Bacterial Phytohormones

Phytohormones are natural organic substances that influence plant development and
regulate, at low concentrations, their physiology. The name auxin was given by Charles
Darwin to the first discovered phytohormone, referring to “αυξειν”, a Greek word that
means grow or increase. Later, gibberellins, ethylene, cytokinin and abscisic acid joined
auxins to be regarded as “the classical five phytohormones” [161,162]. Phytohormones
affect several aspects of plant growth, nutrition, biotic and abiotic stress response and phys-
iology. Their actions are in complex and continued interaction with each other, with plants,
but also with the surrounding environment. Recently, phytohormones were classified,
based on their physiological functions and structure, into different classes: abscisic acids
(ABAs), auxins, cytokinins (CTKs), gibberellins (GAs), strigolactones, brassinosteroids,
Jasmonic acid (JA), salicylic acid (SA) and ethylene [163]. While the hormonal classes are
often associated with various characteristics and biological effects, increasing evidence
suggests that multiple phytohormones often mediate the same biological processes by
additive, synergistic or antagonistic actions, forming intricate signaling networks [164].

a. Auxins

Indole 3-Acetic Acid (IAA) is the most studied auxin. Its importance in promoting
plant growth makes it an important line to select efficient PGPR [165–167]. Thus, the
bacterial strains (Pseudomonas putida, P. fluorescens and Azospirillum lipoferum) were used
by Sharma et al. [168] to enhance rice growth. The three bacteria showed a high ability to
produce IAA and helped inoculated plants to express higher photosynthetic capacity and
chlorophyll content, but also increased their root/shoot dry mass. Another Pseudomonas
putida (BHUJY23) was found to produce high amounts of IAA and to be helpful for rice
production and as an antagonistic agent against phytopathogens [169]. Hasan et al. [170]
confirmed the beneficial effects of two IAA-producing bacteria, belonging to the genera Rhi-
zobium and Azospirillum, on rice growth and yield. Bacteria belonging to the genera Bacillus
and Citrobacter showed a significant improvement of root/shoot growth in inoculated rice
plants. The results were attributed to IAA production by the studied isolates [171,172].
Torres-Rubio et al. [173], Tsavkelova et al. [174], Jha and Kumar [175], Soltani et al. [176] and
Kumar et al. [177] reported that bacteria such as Flavobacterium, Pseudomonas, Achromobacter
and Azotobacter can produce large quantities of IAA and promote wheat plant growth.

b. Gibberellins

The first gibberellin (gibberellic acid GA) was discovered in 1962 with the fungus
Fusarium moniliforme (Gibberella fujikuroi in its sexual form), while the first report of bacterial
gibberellins was in 1988 with the species Rhizobium meliloti [178,179]. Bacterial gibberellin
synthesis starts with geranylgeranyl-PP conversion into ent-kaurene, which is then con-
verted to GA12-aldehyde. After that, GA12-aldehyde is oxidized to GA12 and metabolized
to another GA [180]. Hasan et al. [170] studied the capacity of some PGPR strains (Enterobac-
ter spp., Azospirillum spp.) to enhance rice growth under controlled conditions, alone and in
combination with Azospirillum or rhizobium. Their results revealed a significant increase in
gibberellic acid content in both the shoots and roots of the inoculated plants. Similar results
have been reported by Caba et al. [181]. Moreover, Inoculation by the gibberellin-producing
Azospirillum sp. and bacillus sp. resulted in increasing nitrogen uptake by wheat roots [182].
Furthermore, the water stress alleviation in wheat by PGPR was partially attributed to bac-
terial gibberellin production [183,184]. Many other reports have mentioned the beneficial
effect of gibberellins on wheat and/or rice growth [185–190].

c. Cytokinins

Cytokinins are an important trait to search for in PGPR selection. They play a crucial
role in the control of plant cell division, cell cycle, leaf senescence and nutrient mobilization,
shoot apical meristem formation, seed dormancy and germination, floral development, etc.
Chemically, cytokinins are N6-substituted aminopurines or adenine compounds with an
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isoprene, modified isoprene, aromatic side chain attached to the N6-amino group or zeatin
and trans-zeatin [86,179,191].

Bacteria such as Azospirillum [192], Agrobacterium [193], Azotobacter [194], Pseudomonas [193],
Paenibacillus [195], Achromobacter [196], Enterobacter [197], Bacillus [198] and Klebsiella [192]
are known for their implication in plant growth regulation via cytokinin production.
Zahir et al. [199] conducted an interesting experiment to study the effect of kinetin (a
synthetic cytokinin) and its physiological precursors (adenine + isopentyl alcohol) on rice
growth. The results showed that the precursor was more effective than kinetin on yield
improvement. It significantly enhanced plant height, tiller and panicle number, paddy
yield and (NPK) content, hence suggesting that the precursor of kinetin was converted
to cytokinin by rhizospheric microorganisms before absorption or transformed into cy-
tokinins inside plant tissues. Otherwise, Kudoyarova et al. [200] studied the separate effect
of the synthetic cytokinin trans-zeatin, Bacillus subtilis IB-22 (able to produce zeatin-type
cytokinin) or Bacillus subtilis IB-21 (unable to produce cytokinins) on amino acid release
from wheat roots in a split-root system. This system allowed the spatial separation of
the zeatin or rhizobacterial application to one compartment and analyses of amino acid
rhizodeposition into the other compartment. The application of B. subtilis IB-22 or trans-
zeatin greatly enhanced amino acid liberation in the soil solution compared to B. subtilis
IB-21 or the untreated plants, suggesting that the ability of cytokinin-producing B. subtilis
IB-22 to enhance rhizodeposition may constitute an important process in improving the
rhizobacterial colonization of the wheat rhizosphere.

d. Abscisic acid

Abscisic acid (ABA) is the most important hormone produced by plants in response to
abiotic stresses. However, ABA is also synthesized by bacteria, fungi, algae and animals.
The prokaryotic pathway for synthesizing this fifteen-carbon sesquiterpene originates from
isoprene, known as isopentenyl pyrophosphate, which is synthesized from the mevalonate
pathway [201,202].

Travaglia et al. [203] investigated the influence of abscisic acid on wheat physiology
and yield under field conditions with limited amounts of water during anthesis and postan-
thesis. Abscisic acid application significantly enhanced leaf area, chlorophyll and carotenoid
content in flag leaf and soluble carbohydrates in shoots at anthesis. Yang et al. [204] found
that the application of exogenous abscisic acid significantly promoted proline accumulation
(as a response to water stress and/or dark-induced senescence) in the detached rice leaf
when investigated in both dark and light conditions. Moreover, Azuma et al. [205] studied
the promotive effect of abscisic acid on floating rice growing at a low relative humidity and
its interactive role together with ethylene and gibberellin in internodal elongation. Their
results revealed that the separate application of the abscisic acid had no promoting effect on
the internodal elongation of the stem sections. However, the simultaneous application of
abscisic acid, gibberellin and ethylene efficiently enhanced the internodal elongation of the
stem sections, suggesting that abscisic acid could be a good enhancer of the ethylene- and
gibberellin-induced internodal elongation at low humidity, hence preventing the reduction
of water potential via apoplast transpiration.

5.5. Bacterial Nitogen Recycling for Soil Maintenance and Crop Improvement

Nitrogen makes up 78% of the atmospheric volume and constitutes a major limiting
factor for many physiological processes in soil. Molecular nitrogen cannot be assimilated
by photosynthesizing plants or the majority of microorganisms [206]. The inter-conversion
between nitrogen forms (nitrogen fixation, mineralization, nitrification and denitrification)
represents the biogeochemical cycle of nitrogen, mainly made of biological processes in
which microorganisms play a predominant role. Metabolically, microorganisms preferen-
tially uptake ammonium while plants and some microorganisms assimilate nitrate [207].

Nitrogen fixation is the first step in the process of making nitrogen usable by plants,
where nitrogen-fixing bacteria play a crucial role in changing dinitrogen into ammonium
via nitrogenase activity. After that, the produced ammonium needs to be converted into
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nitrates before assimilation by plants. This nitrification process, in which bacteria play
an important role, allows nitrogen assimilation by plant roots to be used in amino acids,
nucleic acids and chlorophyll composition. When a plant or animal dies, decomposers such
as fungi and bacteria turn nitrogen back into ammonium so it can reenter the nitrogen cycle
through denitrification [208].

Unfortunately, the excessive use of fertilizers to supply nitrogen in soil and nitrous
oxide emission in the atmosphere due to other human activities results in the unbalancing
of the nitrogen cycle in both the atmosphere and soil [209]. To avoid such exaggerated
application of chemical nitrogen to soil, N-fixing bacteria such as Azospirillum [210–215],
Pseudomonas [210,211,216,217], Bacillus [218], Herbaspirillum [215,219], Azotobacter [210,220],
Rhizobium and Enterobacter [221], Klebsiella [222] and Burkholderia [223,224] have proved their
efficiency in reducing or replacing chemical fertilizers for wheat and rice crop enhancement.

In addition to nitrogen fixation, the presence of a positive correlation between bacterial
denitrification and the rhizosphere colonization potential has permitted researchers to
consider denitrification as an important trait in isolating and selecting efficient PGPR. In
this context, a fluorescent PGP-pseudomonas associated with rice was isolated and selected
by Kumar et al. [177], considering the denitrification potential as an important trait in
selecting competitive PGPR. Moreover, Muriel et al. [225], considered denitrification in
the PGP-Pseudomonas fluorescens F113 as an important character. The NO produced by the
PGP-Azospirillum brasilense Sp245 via denitrification could be a major signal implicated in
wheat root branching stimulation when the dissimilatory nitrite reductase gene (nirK) is
upregulated [226].

6. Conclusions

In the last few decades, soil salinization and contamination with petroleum, hydro-
carbons and toxic metals have seemed to be directly linked to some environmentally
uncontrolled anthropogenic activities and population expansion. In arid environments,
such alarming problems have become a major threat to global cereal production. In ad-
dition, applying physicochemical techniques to maintain soil health and ensure enough
food production is often disruptive, labor intensive and relatively expensive. Recently,
PGPR application for soil bioremediation and cereal growth improvement has received
considerable attention for its ecofriendly, efficient and cost-effective advantages. Thus,
bacteria such as Arthrobacter, Azotobacter, Bacillus, Enterobacter, Pseudomonas, etc., have
proved their efficiency as plant growth promoters and soil quality remediators in arid
environments. However, most of the reported experiments have been realized in lab- or
greenhouse-controlled conditions, and we still lack information about their interactions
with plants and other microorganisms once in the field, certainly a more complex en-
vironment. Progressively, and with increasing knowledge about the interactive aspects
between plants, bacteria and soil, but also the understanding of the key signal molecules
implicated in such interactions, PGPR’s place in modern agriculture is now undeniable
as biocontrol, biofertilization and bioremediation agents. However, more investigations
are needed for a better understanding of some problems related to bacterial long-term
stability and efficiency in the field, their large-scale production once selected, their storage,
transportation and delivery conditions, but also their long-term effects on the innoculated
environment. Moreover, incorporating more data about the impact of aridity expansion
on soil composition, and both microbial and plant diversity, is crucial to direct the already
obtained results for better PGPR applications.
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