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Abstract: Visual tracking is one of the key research fields in computer vision. Based on the combina-
tion of correlation filter tracking (CFT) model and deep convolutional neural networks (DCNNs),
deep correlation filter tracking (DCFT) has recently become a critical issue in visual tracking because
of CFT’s rapidity and DCNN’s better feature representation. However, DCNNs are often complex in
structure, which most possibly results in the conflict between the rapidity and accuracy of DCFT. To
reduce such conflict, this paper proposes a model mainly including: (1) Based on the pre-pruning
network obtained by feature channel importance, an optimal global tracking pruning rate (GTPR)
is determined in terms of the contribution of filter channels to tracking response. (2) Based on
(GTPR), an alternative convolutional kernel is defined to replace non-important channel kernels,
which leads to the further pruning of the feature network. (3) An online updating pruned feature
network with a structural similarity index is employed to adapt the model to tracking scene changes.
(4) The proposed model was performed on OTB2013; experimental results demonstrate the model can
effectively enhance speed with a 45% increment while guaranteeing tracking accuracy, and improve
tracking accuracy with a 4% increment when tracking scene changes take place.

Keywords: object tracking; correlation filter; deep convolutional neural network; network pruning;
network online updating

1. Introduction

Visual object tracking is an important branch of computer vision, which can be de-
scribed as the process of estimating the motion trajectory of a target in subsequent frames,
provided that the state information (position, size, etc.) of the target is given in the first
frame of the tracking sequence [1–4]. The traditional visual object tracking algorithms
mainly include Mean Shift [5], Lucas Kanade [6], Particle filter [7], etc. In 2010, Bolme [8]
introduced correlation filtering into the field of object tracking and proposed the MOSSE
(Minimum Output Sum of Squared Error) algorithm. The essence of MOSSE is to first con-
struct a correlation filter with the features of the target in the first video frame; then, starting
from the second video frame, the filter correlates the features of the target by Fast Fourier
Transform (FFT), which is the reason why the tracking speed is so fast. The maximum value
of the filter response is the predicted position of the target, and the filter is updated with the
predicted position of the target. Based on MOSSE, many kinds of variant algorithms have
been proposed, such as Circulant Structure of Tracking-by-Detection with Kernels (CSK) [9],
Kernelized Correlation Filters (KCF) [10], Scale Adaptive Multiple Feature (SAMF) [11],
to further enhance the MOSSE’s performance. However, most of these variant algorithms
extract target features by hand, which lacks flexibility, online performance, and accuracy
for feature extraction. Therefore, it is necessary for the tracking based on the correlation
filter to have some ways to obtain target features online with high flexibility and accuracy.

CNNs (convolutional neural networks) have been widely studied in the field of image
recognition since the introduction of a new deep structure and dropout method by Alexnet
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proposed by Hinton et al. [12]. Along with its rapid development, CNN has become one
of the main techniques [13] in the field of feature extraction because of its strong feature
representation ability. Therefore, a deep convolutional neural network combined with
correlation filter tracking [8–11,14] (named Deep Correlation Filter Tracking) is gradually
becoming one of the critical issues in the field of visual object tracking [1–4,15]. Firstly, deep
correlation filter tracking takes a deep convolutional neural network as the feature extractor
to online extract deep features from video frames by making full use of the powerful
feature representation capabilities of CNN; and secondly, the correlation filter is applied
to correlate the target features obtained from CNN to predict target positions with high
rapidity. The general process of the deep correlation filter tracking model is shown in
Figure 1.
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Figure 1. The general process of deep correlation filter tracking model.

Despite many advances in deep correlation filter tracking models and their successful
application in related fields, there are still some challenging problems that need to be
addressed. For example, (1) deep convolutional neural networks have powerful feature
representation capabilities that improve tracking accuracy. However, their large model
size, high computational complexity, and high memory resource requirements increase the
complexity of the model, as well as the computational burden, which makes it difficult
to meet the real-time requirements of object tracking and also hinders its deployment in
embedded mobile devices with limited computational and memory resources [16]. (2) In
the actual tracking process, the deep convolutional neural network obtained by offline
training is difficult to adapt to the changes of environment and target (e.g., changes in
illumination, changes in target scale, rotation, background interference, etc. [17]), which
restrains the accuracy of target feature extraction and may lead to lower tracking accuracy,
thus affecting the tracking performance.

One of the effective ways to solve the above problems is as follows: Firstly, the pruning
algorithm is used to lighten the feature network, to compress the size of the model, reduce
the computational burden, and reduce the time it takes for the feature network to extract
features, to improve the real-time performance of the correlation filter tracking. Secondly,
according to the environment and target changes, the pruned feature network is updated
in real-time so that the feature network can adapt to the corresponding changes to improve
the tracking accuracy.

For online updating of deep convolutional neural networks, common approaches
include: fine-tuning the network using the mask of the previous frame sequence [18];
updating the network in a long-term and short-term fashion [19]; capturing changes in
the appearance of the target by residual learning and updating the network by a fixed
frame interval [20]. Some researchers have also proposed solutions using dynamic net-
works [21,22]. Most of the above methods for the online updating of deep convolutional
neural networks are proposed for specific disturbances and lack good generalizability and
robustness. Therefore, considering the multiple disturbances caused by the environment
and updating the deep convolutional neural networks in real-time to improve the tracking
accuracy is a bottleneck in the implementation of the deep correlation filter tracking model.

Research on convolutional neural network pruning can be divided into fine-grained
pruning and coarse-grained pruning. This paper focuses on the coarse-grained pruning
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task. Coarse-grained pruning is the structured compression of a model at the convolutional
kernel or channel level. The core idea is to first evaluate the importance of the convolutional
kernels or feature channels. Then, based on a pre-defined pruning rate, all convolutional
kernels or feature channels that contribute little to the result are processed using one of
three strategies: eliminating all [23]; setting all to zero [24]; or setting all to zero in a
non-linear progressive manner [2]. The eliminating all strategy [23] permanently removes
the unimportant convolutional kernels in each iteration, which speeds up the training
process to some extent, but leads to a great loss of model accuracy. The setting all to zero
strategy [24] and setting all to zero in a non-linear progressive manner strategy [2] also
prune the convolutional kernels according to their importance. The main difference is
that each pruned convolution kernel is still sent into the next training iteration, reducing
the accuracy loss of the model. However, the setting all to zero strategy [24] did not
consider the association between convolutional kernels and feature maps when measuring
the importance of convolutional kernels. Therefore, the setting all to zero in a non-linear
progressive manner strategy [2] improved the importance measurement strategy to increase
the interpretability of the importance of the convolutional kernels.

No matter which strategy is adopted, the above pruning patterns will determine how
to adjust and optimize the pruning rate, and how to choose a pruning strategy after the
pruning rate is determined to improve the tracking accuracy, while keeping the real-time
performance of the model.

To solve the bottlenecks mentioned above of the deep correlation filter tracking model,
and inspired by the motivation mentioned above and based on our existing research
results [1–4,24], we propose a “correlation filter tracking model based on the deep-pruned
feature network” in this paper.

2. Related Works
2.1. Deep Convolutional Neural Network Pruning

As mentioned above, structured coarse-grained pruning is the structured compression
algorithm, which takes convolutional kernels or channels as the pruning unit to implement
the structured compression of a deep convolutional feature network at the convolutional
kernel or channel level, without introducing additional sparsity into the network. However,
it is inevitable for fine-grained pruning to produce sparsity. It is difficult to train a good
pruning model due to sparsity [24]. In addition, it is necessary for dealing with the sparsity to
have extra hardware support [25] which is an extra workload for network pruning. Therefore,
structured coarse-grained pruning algorithms have gradually become a major research
direction in the field of deep convolutional network pruning research in recent years.

Li et al. [23] proposed a CNN acceleration method based on convolutional kernel
pruning, using the L1 norm of the matrix to measure the importance of each convolutional
kernel and remove the convolutional kernels with low importance, and the corresponding
feature maps as a way to reduce the computational cost of the CNN. Liu et al. [26] used
the scaling factor γ in Batch-Normalization as a parameter to measure channel importance
and added a regular term of γ to the objective function to be able to automatically prune
during the network training process. Ye et al. [27] proposed an OT (Optimal Thresholding)
pruning algorithm, considering the differences between different convolutional layers
and weight distributions. OT algorithm prunes unimportant channels by calculating the
optimal threshold layer by layer, which avoids the problem of over- or under-pruning. In
most of the pruning strategies described above, the mode of “eliminating all” unimportant
convolutional kernels or channels is used, which will inevitably lead to a large loss of
model accuracy. To address this problem, He et al. [24] did not use the “eliminating all”
strategy when pruning unimportant convolutional kernels, but set the kernels that needed
to be pruned in this iteration to zero and continued training these kernels in the next
iteration. The obvious advantage of this is that it considers the global information of a
single convolutional kernel during the training process, rather than relying solely on the
training results of a particular iteration to assess its final degree of importance. The method
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proposed by He et al. [24] improves the accuracy loss due to “eliminating all”, but the
shortcoming is that the importance of the convolutional kernel is measured solely by the
information of the kernel itself, without considering the connection between the kernel and
the feature map. In addition, the “set all to zero” strategy causes each iteration of training
to start from zero, which may affect the computational efficiency of the training process.
Chen et al. [2] improved the algorithm based on [24] and proposed the PCIP (pruning
deep feature networks using channel importance propagation) pruning algorithm. In this
study, we use the “set all to zero in a non-linear progressive manner” strategy to prune
the unimportant convolutional kernels, which not only reduces the accuracy loss caused
by pruning, but also improves the computational efficiency during the pruning training
process. Additionally, the global average pooling of the feature map is used as the basis
for measuring the importance of convolutional kernels, which considers the correlation
between convolutional kernels and the feature map, and improves the interpretability of
the importance of convolutional kernels.

2.2. Online Updating of Feature Network

The feature network of the deep correlation filter tracking model is usually obtained by
offline pre-training, and the pre-trained feature network is not modified during the whole
tracking process. For more stable tracking scenarios, not modifying the feature network
during the tracking process will not have a significant impact on the performance of the
tracker. However, in the practical application of object tracking, the tracking scene often
changes with factors such as illumination and the motion state of the target. Offline pre-
trained feature networks have difficulty adapting to such changes. Similarly, the pruned
network based on the offline pre-trained feature network is also difficult to adapt to such
changes in the tracking environment, and therefore cannot accurately extract target features,
resulting in the performance degradation of the tracker. Therefore, to improve the ability
of the feature network to adapt to complex scene changes, one of the effective ways is to
optimize the parameters of the feature network through an online update.

Nam et al. [19] used two strategies to update the network online. The first was to
action a long-term update of the network after each fixed frame interval. The second was
to action a short-term update of the network when the failure of tracking was detected.
Song et al. [20] proposed the CREST (convolutional residual learning scheme for visual
tracking) algorithm, which captures changes in target appearance in a residual learn-
ing manner and updates the network every fixed frame interval. It effectively improves
the robustness of the network when the appearance of the target significantly changes.
Qiu et al. [28] used “first frame updating”, “interval frame updating”, and “failure updat-
ing” to update the network. That is, using the first frame so the network initially learns the
characteristics of the current target; using the high-score samples of frames with several
intervals to update the network; and using high-score samples to update the network
when the tracking fails, which can improve the characterization ability of the network.
Most of the above methods use fixed intervals to update the network. Although they
can partially solve the network adaptability problem, the algorithm lacks flexibility and
universality, and cannot completely solve the actual adaptability problem in the tracking
process. Unlike fixed-interval updating strategies, Yang et al. [3] used SSIM to determine
the similarity of tracking boxes in two consecutive frames in real-time during the tracking
process, and only updated the feature network when SSIM was below a certain threshold.
This not only considers the disturbing factors that cause the decrease in tracking accuracy
more comprehensively and reduces the calculation workload, but also considers the actual
changes in the tracking process and ensures the robustness of the model.

Although the abovementioned research on network pruning have provided effective
pruning strategies, there is a lack of sufficient research on how to determine the pruning
rate and how to choose the pruning strategy after the pruning rate is determined to improve
the tracking accuracy of the model, while keeping the real-time performance of the model.
To address these issues, based on our existing research results of network online updating
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and channel-importance-propagation-based deep feature network pruning [1–4,24], we
conducted a study on the “correlation filter tracking model based on the deep-pruned
feature network”. The main research is as follows:

(1) Based on our existing research results of channel-importance-propagation-based
deep feature networks Pruning (PCIP), we implement a pre-pruning of the feature
extraction network;

(2) For the pre-pruned tracking feature network, the optimal determination of the global
tracking pruning rate (GTPR) of the deep feature network of the tracking model is
proposed to maximize the tracking speed (which should at least meet the minimum
requirement of 25 FPS for practical applications) under the precondition of satisfying
the tracking accuracy;

(3) Based on the optimally-determined (GTPR), alternative convolutional kernels are
defined, and each alternative convolutional kernel is used to integrate the joint action
of multiple unimportant convolutional kernels. Based on alternative convolutional
kernels, a specific method for the secondary pruning of feature networks is given for
the pre-pruned feature extraction network;

(4) This paper presents an online updating method for the feature network based on SSIM
(structural similarity index measurement) for changes in the tracking environment
and the target;

(5) An integration of the above methods is used to form the “correlation filter tracking
model based on the deep-pruned feature network”;

(6) Based on the OTB2013 dataset [29], the model proposed in this paper is verified.

3. Methods

In view of the problems faced by visual object tracking based on the correlation filter
proposed in Section 1 and potential solutions to these problems, this paper proposes a
“correlation filter tracking model based on the deep-pruned feature network”, which mainly
includes the following: (1) PCIP-based pre-pruning of deep feature network; (2) optimal
determination of global tracking pruning rate based on tracking response contribution;
(3) definition and initialization of alternative convolutional kernels based on global tracking
pruning rate, and a secondary pruning of the deep feature extraction network; (4) correla-
tion filter tracking model based on the deep-pruned feature network; (5) online updating
of deep-pruned feature network (including alternative kernels). A detailed description of
each part will be given in the following sections.

3.1. PCIP-Based Pre-Pruning of Deep Feature Network

It is assumed that the feature extraction network in the tracking model has CL con-
volutional layers, the ith(i ∈ (1, 2, . . . , CL)) convolutional layer has CKNi convolutional
kernels, and the size of the convolutional kernels is cki × cki [30]. Following design policy,
the feature network is pre-trained offline to provide effective deep features of the target for
the downstream correlation filter tracking task. As shown in Figure 2, offline pre-training is
accompanied by a pre-pruning of the feature network using the PCIP pruning algorithm [2];
then, the pre-pruned feature network is obtained.
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Figure 2. PCIP-based pre-pruning of the deep convolutional feature network.

Using Fi,j to denote the feature map corresponding to the jth convolutional kernel in
the ith convolutional layer, of which the size is Ri,j × Ci,j, then the importance score Scorei,j
of the jth convolutional kernel in the ith convolutional layer can be derived from Equation
(1) [2].

Scorei,j = So f tmax
(
Gi,j
)
=

e
Gi,j

T

∑ e
Gi,j

T

(1)

where Gi,j =
1

Ri,j×Ci,j
∑

Ri,j
r=1 ∑

Ci,j
c=1 Fi,j(r, c) and T is the temperature parameter in the Softmax

function. Based on the result of Equation (1), the convolutional kernels in layer i are re-
ordered according to Scorei,j, pi,j denotes the reordered order of the jth(j = 1, 2, . . . ., CKNi)
convolutional kernel in layer i. Assuming that the pruning rate in the pre-training stage
is defined as PR, the convolutional kernels in layer i after reordering are divided into
CKNi ∗ PR, significant convolutional kernels, and CKNi ∗ (1− PR), unimportant convolu-
tional kernels.

Set the jth convolutional kernel in layer i to be Kernelij(k) at the kth iteration; it is then
iteratively updated according to Equations (2)–(4) [2]:

Kernelij(k + 1) = Kernelij(k) + η∇Kernelij Loss (2)

Kernelij(k + 1) ∗ βij → Kernelij(k + 1) (3)

βij =
1

1 + eα∗(pi,j−CKNi∗PR)
(4)

where βij denotes the penalty coefficient, which is used to moderately penalize the unimpor-
tant convolutional kernels, while the important convolutional kernels remain unchanged; α
is used to regulate the trend of βij. When α is smaller, the trend of change is smoother, and
vice versa, and steeper; Loss denotes the loss function of the whole model. ∇Kernelij Loss is
the gradient of the loss function in Kernelij(k).

The deep feature network is pruned while training offline and iteratively updated
using Equations (1)–(4). After offline pre-training and pre-pruning, the pre-pruned fea-
ture network is obtained with CL convolutional layers. Each convolutional layer has
PPCKNi = CKNi ∗ PR convolutional kernels, all of which have the same size cki × cki.
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3.2. Optimal Determination of Global Tracking Pruning Rate Based on Tracking
Response Contribution

As shown in Figure 3, the deep feature network is initially pruned to obtain a pre-
pruned feature network with PPCKNCL convolutional kernels and corresponding PPCKNCL
feature maps FCL,l (or feature channels), where l = 1, 2, . . . , PPCKNCL. The correlation track-
ing filter (which has PPCKNCL filter channels) is applied to PPCKNCL feature maps FCL,l
and outputs PPCKNCL responses gl of size M× N. The PPCKNCL responses are linearly
overlapped to form the total response of the tracking model and the total response is ap-
proximated as a two-dimensional gaussian response [3]. The peak of the total response is
the predicted position of the tracked target. Since the statistical distribution of each filter
channel response and its peak point are different, the contribution of different filter channel
responses to the total response of the tracked target is not the same.
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Figure 3. Optimal determination of global tracking pruning rate based on tracking response contri-
bution. (#i indicates the ith picture in the video sequence).

It is assumed that (x, y) denotes the peak point of the total 2-D gaussian response,
i.e., the mean of the 2-D gaussian response, and σx and σy are the variances of the 2-D
gaussian response. According to the properties of the 2-D gaussian distribution function,
about 95.5% of the data are concentrated in a rectangular box centered at (x, y) with a
length of 2× 2.58σx, and a width of 2× 2.58σy [3,31]. Since the total output response is
a superposition of the responses of all single filter channels, the larger the proportion of
single filter channel responses that fall within this rectangle, the greater the contribution of
the filter channel to the total response is considered. The contribution CRl of a single filter
channel gl can be obtained from Equations (5)–(7) [3]:

CRl =
rectanlebox

l

Wholesize
l (5)

rectanlebox
l = ∑

i
∑

j

F−1(gl(i, j))

iε(x− 2.58σx, x + 2.58σx), jε
(
y− 2.58σy, y + 2.58σy

)
 (6)

Wholesize
l =

M

∑
i=1

N

∑
j=1

F−1(gl(i, j)) (7)

where M ≥ 2σx, N ≥ 2σy; F−1 is the inverse Fourier transform; rectanlebox
l is the sum of

the sample values of the output response of the filter channel gl that fall into the rectangular
box, and Wholesize

l is the sum of all the sample values of the output response of the filter
channel gl , l = 1, 2, . . . . . . , PPCKNCL.
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Based on CRl , the PPCKNCL filter channels of the filter are sorted according to CRl .
For the sorted filter channels, a contribution ratio threshold (CRTH) is defined under the
precondition that the tracking accuracy is satisfied. When CRl ≥ CRTH, the corresponding
filter channel is retained (the number of retained filter channels is denoted by RFCNCL
(remain feature channel number)). When CRl < CRTH, the corresponding filter channel is
removed (the number of removed filter channels is PPCKNCL − RFCNCL) to maximize the
tracking speed.

Since the number of channels in the filter is equal to the number of channels in the
last layer of the feature network, this also means that the number of channels that should
be retained in the last layer of the feature network is represented by RFCNCL, while the
number of channels that should be removed is PPCKNCL − RFCNCL. Therefore, we define
the global pruning rate of the feature network during the tracking process as (GTPR),
which is expressed in Equation (8) as:

GTPR =
RFCNCL

PPCKNCL
(8)

Then, for all the convolutional layers of the feature network, except the first layer,
a secondary pruning is performed with the global tracking pruning rate, which further
lightens the feature network and further improves the tracking speed.

3.3. Secondary Pruning of Feature Extraction Network Based on Alternative Convolutional Kernels

The pre-pruned feature network obtained by pre-pruning is used as a feature extraction
network for object tracking, which can achieve a certain degree of improvement in tracking
speed while ensuring that the loss of accuracy does not affect the overall performance of the
model. However, for the tracking system, there is a higher requirement for tracking speed
enhancement. To accommodate this requirement, we consider a secondary pruning of the
pre-pruned feature network before the start of the tracking process to further improve the
tracking speed.

To further improve the tracking speed, we performed a secondary pruning on the
feature network obtained from the pre-pruning in Section 3.1, based on the global track-
ing pruning rate (GTPR). If the pruning strategy of retaining KNi = PPCKNi × GTPR
important convolutional kernels and removing PPCKNi × 1− GTPR non-important con-
volutional kernels in each layer are directly adopted, the number of convolutional kernels
in each layer and the complexity of the feature network can be reduced and improve the
tracking speed. However, it is also very likely that removing too many convolutional
kernels causes too significant a loss of accuracy in the feature network, which makes it diffi-
cult to accurately characterize the target and significantly degrades the tracking accuracy.
To compensate for this deficiency, we introduce an alternative convolutional kernel that
integrates the joint action of PPCKNi × 1− GTPR unimportant convolutional kernels to
each layer (except for the first layer, where the unimportant feature maps corresponding to
the unimportant convolutional kernels in the first layer are used as the initial values for
the iterative solutions of the alternative convolutional kernels in the subsequent layers)
of the pre-pruned feature network, while retaining KNi = PPCKNi × GTPR important
convolutional kernels. The alternative convolutional kernel is used to compensate for the
loss of accuracy of the feature network caused by the removal of the PPCKNi× (1−GTPR)
unimportant convolutional kernels, which improves the feature network’s ability to char-
acterize the tracked target, as shown in Figure 4. The iterative solution process for the
alternative convolutional kernel in each layer is as follows.
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Figure 4. Definition and initialization of alternative convolutional kernels, and secondary pruning of
deep feature extraction network. (#i indicates the ith picture in the video sequence).

The pre-pruned feature network is applied to the first frame of the tracking video sequence,
as shown in Figure 5. kernel∆i is used to denote the operator of the combined action of PPCKNi−
KNi unimportant convolutional kernels (kerneli,(KNi+1), kerneli,(KNi+2), . . . , kerneli,PPCKNi) in the
ith convolutional layer, and it is called the alternative convolutional kernel of these PPCKNi −
KNi unimportant convolutional kernels. Let the feature maps corresponding to these PPCKNi−
KNi unimportant convolutional kernels be Fi,KNi+1, Fi,KNi+2, . . . , Fi,PPCKNi , then the global pool-
ing Fi

GAP corresponding to these PPCKNi − KNi unimportant feature maps can be obtained
from Equation (9).

Fi
GAP = GAP

(
∑Fi,j

)
j ∈ (KNi + 1, KNi + 2, . . . , PPCKNi)

 (9)
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Figure 5. Initialization of the alternative kernels by applying the pre-pruned feature network to the
first frame of the tracking video sequence. (#i indicates the ith picture in the video sequence).

Let the feature map corresponding to the alternative kernel kernel∆i of the ith convolu-
tional layer (i 6= 1) be F∆i, then:

PPKCNi−1

∑
j=1

Kernel∆i ? F(i−1),j = F∆i (10)

where “?” denotes the convolution operation. Let F∆i = Fi
GAP, then the alternative convo-

lutional kernel kernel∆i is initialized as:
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kernel∆i = F−1

 F
(

Fi
GAP

)
F
(

∑
PPKCNi−1
j=1 F(i−1),j

)
 (11)

where “F” denotes the Fourier transform and “F−1” denotes the inverse Fourier transform.
After the secondary pruning operation and introducing the alternative kernel kernel∆i

derived from Equations (10) and (11) into the pre-pruned feature network, the deep-pruned
feature network with alternative kernels is obtained. The deep-pruned feature network
with alternative kernels still has CL convolutional layers, but each layer has KNi important
convolutional kernels and one alternative kernel kernel∆i. By using the deep-pruned feature
network with alternative kernels as the feature network in the tracking system, on the
one hand, the alternative kernel kernel∆i can effectively replace the multiple convolutional
kernels removed in the secondary pruning process and compensate for the accuracy loss of
the feature network caused by pruning; on the other hand, compared with the pre-pruned
feature network, it further reduces the number of channels, decreases the computation, and
improves the real-time performance of the tracking model.

3.4. Correlation Filter Tracking Model Based on the Deep-Pruned Feature Network

A deep-pruned convolutional neural network was obtained after a secondary pruning
operation based on alternative kernels to maximize the tracking speed (at least the min-
imum requirement for practical applications, i.e., 25 FPS). The correlation filter tracking
model based on the deep-pruned feature network is formed by cascading the deep-pruned
feature network and the correlation filter. It mainly includes feature extraction, correlation
filter initialization, target location prediction, correlation filter updating, and deep-pruned
feature network updating, as shown in Figure 6. The details are described as follows.
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Figure 6. Correlation filter tracking model based on the deep-pruned feature network and online
updating process of the deep-pruned feature network (including alternative kernels). (#i indicates
the ith picture in the video sequence).
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3.4.1. Feature Extraction

The deep-pruned feature network is applied to the second frame of the tracking video
sequence, as shown in Figure 7.

Appl. Sci. 2022, 12, 11490 11 of 21 
 

3.4.1. Feature Extraction 

The deep-pruned feature network is applied to the second frame of the tracking video 

sequence, as shown in Figure 7. 

 

Figure 7. The deep-pruned feature network is applied to the second frame of the tracking video 

sequence for feature extraction. (#𝑖 indicates the 𝑖𝑡ℎ picture in the video sequence). 

From Figure 7, the first layer of the feature network has 𝑃𝑃𝐶𝐾𝑁1 important convo-

lutional kernels 𝑘𝑒𝑟𝑛𝑒𝑙11,1, 𝑘𝑒𝑟𝑛𝑒𝑙1,2, … , 𝑘𝑒𝑟𝑛𝑒𝑙1,𝑃𝑃𝐶𝐾𝑁1
, and the corresponding feature 

maps are 𝐹1,1, 𝐹1,2, … , 𝐹1,𝐾𝑁1
𝐹1,𝐾𝑁1+1, 𝐹1,𝐾𝑁1+2, … , 𝐹1,𝑃𝑃𝐶𝐾𝑁1

. Then, according to Equation (9), 

the global pooling 𝐹𝐺𝐴𝑃
1  corresponding to 𝑃𝑃𝐶𝐾𝑁1 − 𝐾𝑁1 unimportant feature maps in 

the first layer can be obtained as: 

𝐹𝐺𝐴𝑃
1 = 𝐺𝐴𝑃 (∑ 𝐹1,𝑗) , 𝑗 ∈ ((𝐾𝑁1 + 1, 𝐾𝑁1 + 2, … , 𝑃𝑃𝐶𝐾𝑁1) (12) 

Taking 𝐹𝐺𝐴𝑃
1 = 𝐹∆1, then 𝐹𝑖,𝑗  (where 𝑖 > 1 and 𝑗 ∈ (1,2, … , 𝐾𝑁𝑖)) and 𝐹∆𝑖  can be ob-

tained from Equations (13) and (14): 

∑ 𝐾𝑒𝑟𝑛𝑒𝑙𝑖,𝑗

𝐾𝑁𝑖−1

𝑙=1

⋆ 𝐹(𝑖−1),𝑙 + 𝐾𝑒𝑟𝑛𝑒𝑙𝑖,𝑗 ⋆ 𝐹∆(𝑖−1) = 𝐹𝑖,𝑗

𝑖 ∈ (2, … , 𝐶𝐿), 𝑗 ∈ (1,2, … , 𝐾𝑁𝑖) 

} (13) 

∑ 𝐾𝑒𝑟𝑛𝑒𝑙∆𝑖

𝐾𝑁𝑖−1

𝑙=1

⋆ 𝐹(𝑖−1),𝑙 + 𝐾𝑒𝑟𝑛𝑒𝑙∆𝑖 ⋆ 𝐹∆(𝑖−1) = 𝐹∆𝑖

𝑖 ∈ (2, … , 𝐶𝐿)

} (14) 

From Equations (13) and (14), the output feature map of the last layer of the deep-

pruned feature network is 𝐹𝐶𝐿,1, 𝐹𝐶𝐿,2, … , 𝐹𝐶𝐿,𝐾𝑁𝐶𝐿
, which is the input of the correlation 

tracking filter. 

3.4.2. Correlation Filter Initialization 

Given an initial target box T in the second frame of the tracking video sequence, the 

corresponding ideal gaussian response 𝐺 is constructed based on the initial target box, 

and the peak point of the response corresponds to the position of the tracked target. The 

output feature maps of the last layer of the deep-pruned feature network are 

𝐹CL,1, 𝐹𝐶𝐿,2, … , 𝐹𝐶𝐿,𝐾𝑁𝐶𝐿
, and the size of each feature map is M × N. Each feature map corre-

sponds to one correlation filter channel. According to the literature [14,30,32–34], the cor-

relation filter channel 𝑊𝑙 can be initialized by Equation (15) as: 

# 2

1,1Kernel

2,1Kernel

1,1 KNKernel

1,2Kernel

2,2Kernel

2,2 KNKernel

2Kernel

1,CLKernel

2,CLKernel

CLKNCLKernel ,

CLKernel

1,1F

2,1F

1,1 KNF

1,1 1+KNF

1,1 PPCKNF

1,1F

2,1F

1,1 KNF

1

GAPF

1,2F

2,2F

2,2 KNF

2

GAPF

1,1−CLF

2,1−CLF

1,1 −− CLKNCLF

1−CL

GAPF

1,CLF

2,CLF

CLKNCLF ,

CL

GAPF

1,1 1+KNKernel

1,1 PPCKNKernel

Figure 7. The deep-pruned feature network is applied to the second frame of the tracking video
sequence for feature extraction. (#i indicates the ith picture in the video sequence).

From Figure 7, the first layer of the feature network has PPCKN1 important convolu-
tional kernels kernel11,1, kernel1,2, . . . , kernel1,PPCKN1 , and the corresponding feature maps
are F1,1, F1,2, . . . , F1,KN1 F1,KN1+1, F1,KN1+2, . . . , F1,PPCKN1 . Then, according to Equation (9),
the global pooling F1

GAP corresponding to PPCKN1 − KN1 unimportant feature maps in
the first layer can be obtained as:

F1
GAP = GAP

(
∑F1,j

)
, j ∈ ((KN1 + 1, KN1 + 2, . . . , PPCKN1) (12)

Taking F1
GAP = F∆1, then Fi,j (where i > 1 and j ∈ (1, 2, . . . , KNi)) and F∆i can be

obtained from Equations (13) and (14):
KNi−1

∑
l=1

Kerneli,j ? F(i−1),l + Kerneli,j ? F∆(i−1) = Fi,j

i ∈ (2, . . . , CL), j ∈ (1, 2, . . . , KNi)

 (13)

KNi−1

∑
l=1

Kernel∆i ? F(i−1),l + Kernel∆i ? F∆(i−1) = F∆i

i ∈ (2, . . . , CL)

 (14)

From Equations (13) and (14), the output feature map of the last layer of the deep-
pruned feature network is FCL,1, FCL,2, . . . , FCL,KNCL , which is the input of the correlation
tracking filter.

3.4.2. Correlation Filter Initialization

Given an initial target box T in the second frame of the tracking video sequence,
the corresponding ideal gaussian response G is constructed based on the initial target
box, and the peak point of the response corresponds to the position of the tracked tar-
get. The output feature maps of the last layer of the deep-pruned feature network are
FCL,1, FCL,2, . . . , FCL,KNCL , and the size of each feature map is M × N. Each feature map
corresponds to one correlation filter channel. According to the literature [14,30,32–34], the
correlation filter channel W l can be initialized by Equation (15) as:
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W l =
ˆFCL,l(T)� Ĝ∗

∑KNCL
k=1

ˆFCL,k(T)� ( ˆFCL,k(T))
∗
+ λ

(l = 1, 2, . . . KNCL) (15)

where � refers to the Hadamard product, ∗ represents the complex conjugate, ∧ represents
the Fourier transform, W l represents the correlation filter channel corresponding to the lth
feature map channel, λ is the regularization coefficient, and λ ≥ 0.

3.4.3. Target Location Prediction

During the tracking process, a search box S of the same size as the initial target box
T is constructed with the target location as the center. The deep-pruned feature network
is used to extract the features of the area in which search box S is located and to record
them as FCL,l(S) (l = 1, 2, . . . , KNCL). Then the response

(
ri,j
)

M×N can be obtained from
Equations (16) and (17) [30]:

gl =
(

Ŵ l
)∗
� FCL,l(S) (l = 1, 2, . . . KNCL) (16)

(
ri,j
)

M×N = F−1

KNCL

∑
l=1

gl

 (17)

where, gl represents the frequency output response of the lth tracking filter, F−1 represents
the inverse Fourier transform, ri,j ∈ RM×N represents the total output response of all
channels. Based on Equations (16) and (17), the coordinates (x, y) of the predicted position
of the target can be obtained as:

(x, y) = max
RM×N

(
ri,j
)

M×N (18)

3.4.4. Updating of Correlation Filter

In the tracking process, the position of the target in frame t is predicted to be (xt, yt)
based on the feature map Ft−1

CL,l(S)(l = 1, 2, . . . , KNCL) of the target in frame t − 1 using
Equations (16)–(18). In frame t, a search box St of the same size as the initial target box T
is constructed centered on (xt, yt), and the ideal gaussian response corresponding to this
tracking box is Gt ∈ RM×N . The features of the region where St is located are extracted
using the deep-pruned feature network noted as Ft

CL,l(St). The filter W l
t is updated online

by Equation (19) [30].

W l
t =

F̂t
CL,l(St)�

(
Ĝt
)∗

∑KNCL
k=1 F̂l

CL,k(St)� (F̂t
CL,k(St))

∗
+ λ

(l = 1, 2, . . . KNCL) (19)

Here, F̂t
CL,l(St) represents the Fourier transform of the lth feature channel, and

(
Ĝt
)∗

represents the complex conjugate of the Fourier transform of the ideal gaussian response Gt.

3.5. Online Updating of Deep-Pruned Feature Network with Alternative Kernels

In the actual tracking process, interference factors such as occlusion, illumination
changes, target scaling, and background switching can affect the ability of the deep-pruned
feature network to accurately characterize the tracked target features. This leads to target
drift and tracking accuracy degradation. In severe cases, it can lead to tracking failure.
To solve this problem, first, the adaptive capacity of the feature network is monitored in
real-time during the tracking process. When the adaptive ability of the feature network is
detected to decline, the feature network is updated online to improve its adaptive capacity
to changes in the tracking scene.

SSIM [35] (structural similarity index) is a metric that measures the structural similarity
of two images. It considers the blurred variation of structural information of images in
human perception and measures the similarity of images in terms of brightness, contrast,
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and structure, respectively. SSIM has global statistical distribution characteristics, which
are suitable for a wide range of interference factors and are also consistent with human
visual habits. Therefore, we use SSIM as a measure to discriminate whether the adaptive
ability of the feature network decreases during the tracking process.

To discriminate the adaptive ability of the feature network in the tracking process, the
position of the target in frame t− 1 is assumed to be (xt−1, yt−1), and the predicted position
of the target in frame t is (xt, yt). The rectangular boxes St−1 and St of the same size are
the initial target boxes centered at (xt−1, yt−1) and (xt, yt) constructed in frame t− 1 and
frame t, respectively. The SSIM of St−1 and St is calculated using Equation (20) [35] as:

SSIM(St−1, St) =

(
2µSt−1 µSt + C1

)(
σSt−1St + C2

)(
µ2

St−1
+ µ2

St
+ C1

)(
σ2

St−1
+ σ2

St
+ C2

) (20)

where µSt−1 and µSt represent the means of St−1 and St, respectively. σSt−1 and σSt represent
the standard deviations of St−1 and St, respectively. σSt−1St represents the covariances of
St−1 and St. C1, C2 are constants.

The similarity between St−1 and St is judged based on the result of Equation (20) and
the pre-defined target frame similarity threshold TFSTH. When SSIM is larger than TFSTH,
St−1 and St are considered similar, and the feature network has strong adaptability and does
not need to be updated; when SSIM is less than TFSTH, it is considered that St−1 and St
are low in similarity, the adaptive capacity of the feature network decreases, and the feature
network needs to be updated. The updating process of the feature network is as follows.

Step 1. The desired gaussian response map, denoted as DGRM, is constructed by centering
on the target location of the frame tth predicted by frame t− 1th, and the DGRM is
used as Ground Truth.

Step 2. The convolutional kernel parameters of the pre-pruned feature network are used as the ini-
tial values of the updating process, denoted as Kerneli,j(t− 1), (j = 1, 2, . . . ., PPCKNi).

Step 3. Using the tth frame as input, feature extraction is performed with the pre-pruned
feature network, and the output features are correlated with the filter to generate
the output response; i.e., Response. The error between Response and DGRM is
calculated by the loss function defined in Equation (21), and the convolutional kernel
parameters are updated once based on Equations (1)–(4). The jth convolutional
kernel in layer i of the updated pre-pruned feature network is denoted as Kernelij(t).

Loss = ‖Response− DGRM‖2 (21)

Step 4. The tth frame sequence is used as the input of the updated pre-pruned feature
network, and the GTPR is redetermined using Equations (5)–(8).

Step 5. Based on the redetermined GTPR, the updated deep-pruned feature network with
alternative kernels is obtained by updating the alternative convolutional kernels
kernel∆i using Equations (9)–(11).

Step 6. The updated deep-pruned feature network with alternative kernels is used as
the new feature extraction network to continue tracking from the t + 1th frame
sequence.

4. Experiment
4.1. Experiment Environment

To verify the effectiveness of the correlation filter tracking model based on the deep-
pruned feature network proposed in this paper, the hardware and software experimental
environment were designed and constructed. The hardware environment consisted of a
terminal (AMD Ryzen 5 4600H), a server (X10DRG-Q), and a GTX 1080Ti graphics card
(with a memory size of 12 GB). The software environment was as follows: Ubuntu 20.04
was selected as the operating system; Python was used for programming; and Pytorch
based on deep learning was used as the development platform.
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In this paper, we used the official VID dataset provided by the ILSVRC (ImageNet
Large Scale Visual Recognition Challenge) competition 2015 [36] for feature network train-
ing and pre-pruning, and the OTB2013 [29] dataset for performance testing of the tracking
model (including global pruning rate determination, secondary pruning, feature network
updating, etc.).

4.2. Evaluation Metrics

In this paper, the OTB2013 dataset was used as the tracking dataset, so the curve
evaluation method OPE (One-Pass Evaluation), which is common to the OTB dataset, was
used in measuring the tracking performance of the model. OPE refers to initializing the
first frame with the target location annotated in the dataset and then running the tracking
algorithm to obtain the average accuracy and success rate. The OPE contains the average
pixel error (APE) and the average overlap rate (AOR), which are the average of the precision
rate and the success rate, respectively. Where the precision rate is the percentage of video
frames where the distance between the center of the target box estimated by the tracking
algorithm and the center of the target box manually labeled is less than a given threshold;
the success rate is the percentage of video frames where the overlap rate (OR) between
the predicted target box and the manually labeled target box obtained by the tracking
algorithm is greater than a given threshold.

4.3. Experiment Design

To verify the effectiveness of the pruning strategy for improving tracking speed, and
to verify whether the online updating algorithm can improve the model accuracy (APE and
AOR), special experiments are designed, mainly including: (1) comparison experiments
on tracking accuracy and speed of tracking models with or without pruning during the
training process; (2) comparison experiments on accuracy and speed of tracking models
of secondary pruned feature network and pre-pruned feature network; (3) comparison
experiments on accuracy and speed of tracking models with or without adding alternative
kernels; (4) comparison experiments on accuracy and speed of tracking models with or
without online updating of feature network during tracking.

4.4. Experimental Results Analysis
4.4.1. Comparative Study on Tracking Accuracy and Speed of Pre-Trained Feature
Network before and after Pruning

In this paper, we designed the feature extraction network based on the DCFNet [30]
tracking model. To simplify the design process and to illustrate our proposed pruning
algorithm, the feature extraction network constructed in this paper has three convolutional
layers, each layer with 32 convolutional kernels and a convolutional kernel size of 3 × 3.
The constructed feature network is used as an un-pruned pre-trained feature network
(non-pre-pruned feature network). The VID dataset is used as the pre-training dataset,
the error sum of squares of the feature network output response and the desired gaussian
response as the loss function. After 50 epochs of training, the non-pre-pruned feature
network is obtained.

The same dataset and loss function are used, and the PCIP [2] algorithm is used
to pre-train and prune the feature extraction network. In this pre-training process, the
Temperature parameter T is set to 0.8 and the parameter α, which determines the trend
of the penalty coefficient, is set to 10. After 50 epochs of pre-training and pruning, the
pre-pruned feature network with three convolutional layers is obtained. Each convolutional
layer has 26 convolutional kernels of size 3 × 3.

To verify the effectiveness of pre-pruning in improving the computational efficiency of
the model, the tracking speed and tracking accuracy of the pre-trained feature network with
pre-pruning are compared with those of the pre-trained feature network without pruning in
the actual tracking process. Object tracking of video sequences in the OTB2013 dataset is
performed using Formulas (15)–(19), and the results are shown in Figure 8 and Table 1.
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Figure 8. Success and precision plots on OTB2013 dataset with pre-pruned feature network or
non-pre-pruned feature network.

Table 1. AOR and APE, as well as speed of pre-pruned feature network or non-pre-pruned feature
network, on the OTB2013 dataset.

Training Option Non-Pre-Pruned Pre-Pruned

AOR 52.50 52.42

APE 0.70 0.69

Speed 68.50 76.30

As shown in Figure 8 and Table 1, analyzing the tracking speed (FPS), tracking
accuracy (average pixel error (APE)), and tracking success rate (average overlap rate
(AOR)) can be seen. During the tracking process, although the APE of the pre-pruned
feature network decreases by 0.01 and the AOR decreases by 0.08 compared to the non-pre-
pruned feature network, the tracking speed increases by about 8 FPS. In practical object
tracking applications, the relationship between tracking speed and tracking accuracy is
contradictory, so it is common to increase the tracking speed as much as possible while
ensuring tracking accuracy. Therefore, we use the PCIP algorithm to prune the feature
network, which leads to a decrease in the tracking accuracy of the pre-pruned feature
network, but still maintains 99% of the original model tracking accuracy level, and the
improvement in tracking speed is of great significance for tasks such as object tracking that
require high real-time performance.

4.4.2. Comparative Study on Tracking Accuracy and Speed of Pre-Pruned Feature Network
and Deep-Pruned Feature Network

The global pruning rate GTPR is determined using the Formulas (5)–(8) before each
video sequence in the OTB2013 dataset is tracked. The deep-pruned feature network is
obtained by further pruning the pre-pruned feature network based on the global pruning
rate GTPR, and its model size is further simplified. To evaluate the performance difference,
based on Equations (15)–(19) and using the pre-pruned feature network and the deep-
pruned feature network for object tracking of each video sequence in the OTB2013 dataset,
respectively, the tracking results of both are shown in Figure 9 and Table 2.

From the tracking results shown in Figure 9 and Table 2, it can be seen that the APE of
the tracker decreased by 0.01 and the AOR decreased by 0.47 for the deep-pruned feature
network compared to the pre-pruned feature network, and the tracking speed improved
by about 23 FPS. The performance difference mentioned above is due to the fact that the
secondary pruning further compresses the network structure based on the initial pruning,
which weakens the target characterization ability of the feature network and results in a
decrease in the accuracy of the tracker. However, the advantage of the deep-pruned feature
network is that it further reduces the computational load of the model and improves the
speed of the tracker. Therefore, secondary pruning of the pre-pruned network results in
a loss of accuracy of about 0.01, but in exchange for a speedup of almost 23 FPS. Thus,
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secondary pruning has a significant effect on further reducing the model size and increasing
the tracking speed.
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Figure 9. Success and precision plots on OTB2013 dataset with pre-pruned feature network or
deep-pruned feature network.

Table 2. AOR and APE, as well as speed of pre-pruned feature network or deep-pruned feature
network, on the OTB2013 dataset.

Training Option Pre-Pruned Deep-Pruned

AOR 52.42 51.95

APE 0.69 0.68

Speed 76.30 99.50

4.4.3. Comparative Study on Tracking Accuracy and Speed of Feature Network with or
without Alternative Kernels

Considering that the target information and background information carried in dif-
ferent tracking video sequences may have large differences. To adapt the feature network
to such differences, improve the robustness, and compensate for the accuracy loss of
the feature network due to secondary pruning, based on Equations (9)–(11), we replace
the multiple convolutional kernels with lower contributions that are removed from the
corresponding convolutional layers with an alternative kernel in the secondary pruning
process to obtain the deep-pruned feature network with alternative kernels. To measure
the improvement of the feature network after the introduction of alternative kernels, based
on Equations (15)–(19) and using the deep-pruned feature network with alternative kernels
and deep-pruned feature network for object tracking of each video sequence in the OTB2013
dataset, respectively. The tracking results of both are shown in Figure 10 and Table 3.
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Table 3. AOR and APE, as well as speed of deep-pruned feature network or deep-pruned feature
network with alternative kernels, on the OTB2013 dataset.

Training Option Deep-Pruned Deep-Pruned with Alternative Kernels

AOR 51.95 52.82

APE 0.68 0.70

Speed 99.50 97.60

From the tracking results shown in Figures 9 and 10, and Tables 2 and 3, it can be seen
that the introduction of alternative kernels to the feature network leads to a decrease in
tracking speed of about 2 FPS, which is about 21 FPS higher than that of the pre-pruned
feature network, and about 29 FPS higher than that of the non-pre-pruned feature network.
As for the tracking accuracy, the deep-pruned feature network with alternative kernels has
a 0.02 improvement compared with the deep-pruned feature network, and can basically
keep the same accuracy level as the non-pre-pruned feature network. Therefore, it can be
concluded that the introduction of the alternative kernels can, on the one hand, maintain
the performance improvement of the pruned feature network in terms of tracking speed;
and on the other hand, it can improve the robustness of the feature network and effectively
improve the accuracy loss caused by pruning.

4.4.4. Comparative Study on Tracking Accuracy and Speed of Feature Network with or
without Online Updating

In the actual tracking process, to monitor whether a large scene change has occurred
in the current video sequence, we start from the second frame of the video sequence and
use Equation (20) to calculate the SSIM of the current frame and the previous frame, and set
the threshold value to 0.5. When SSIM is greater than the threshold value, it is considered
that the current tracking scene has not significantly changed and there is no need to update
the feature network; when SSIM is less than the threshold value, it is considered that at this
time there has been a change in the scene that the feature network cannot adapt to, and it is
necessary to update the feature network online using Equations (2), (5)–(11) and (21). Then
use the updated feature network to continue the tracking process.

To verify whether online updating can improve the adaptability of the feature network
to scene changes, the online updating operation was used as a control variable to measure
the tracking performance of the deep-pruned feature network with alternative kernels, and
the results are shown in Figure 11 and Table 4.
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Table 4. AOR and APE, as well as speed of online-updating or non-online-updating, on the
OTB2013 dataset.

Training Option Non-Online-Updating Online-Updating

AOR 52.82 55.82

APE 0.70 0.73

Speed 97.60 84.80

As can be seen from the tracking results shown in Figure 11 and Table 4, the online
updating for the feature network causes the speed of the tracker to be around 85 FPS,
which is about 13 FPS lower compared to the non-online-updating strategy, but still about
16 FPS higher compared to the non-pre-pruned feature network. In terms of tracking
accuracy, the tracking accuracy of the online updated feature network is 0.73, which is 0.03
higher than that of the non-pre-pruned feature network. The above results show that when
the adaptability of the feature network to scene changes decreases, online updating can
effectively improve its adaptability to scene changes while maintaining the improvement
of tracking speed, thus improving the overall tracking performance of the tracker.

5. Discussion

To analyze the effectiveness of the pruning algorithm, the alternative convolution
kernel, and the online updating algorithm more intuitively, the above experimental results
are integrated as shown in Table 5.

Table 5. Comparison of all experimental results.

Training Option Non-Pre-Pruned Pre-Pruned Deep-Pruned Deep-Pruned with Alternative Kernels Online-Updating

AOR 52.50 52.42 51.95 52.82 55.82

APE 0.70 0.69 0.68 0.70 0.73

Speed 68.50 76.30 99.50 97.60 84.80

According to the results shown in the table, the tracking speed of the feature network
without pruning operation is 68.5 FPS, while that of the feature network with deep pruning
is 99.5 FPS, which is a 45% increase in speed. In terms of the tracking accuracy, the APE
reaches 0.70 when alternative kernels are introduced into the feature network, which is the
same level as the feature network before pruning. After further introducing the feature
network online updating algorithm, the APE reaches 0.73, which is 4% higher than that
of the deep-pruned feature network. Based on the above experimental results, the feature
network pruning algorithm can simplify the network structure and effectively improve the
tracking speed. The online updating algorithm can improve the adaptability of the feature
network and increase the tracking accuracy when the tracking scene changes.

6. Conclusions

This paper proposes a correlation filter tracking model based on the deep-pruned feature
network, which reduces the model complexity of the feature network and improves the
tracking speed of the tracker while maintaining the object representation capability of the
deep convolutional neural network and ensuring the tracking accuracy of the tracker when
environment changes take place. Firstly, based on the pre-pruning network obtained by PCIP,
an optimal global tracking pruning rate (GTPR) is determined in terms of the contribution of
filter channels to tracking response. Secondly, based on (GTPR), an alternative convolutional
kernel is defined to replace non-important channel kernels and maximally compensates for the
accuracy loss of the feature network, which leads to the further pruning of the feature network.
Thirdly, when large changes in the tracking scene are detected using the SSIM criterion during
the actual tracking process, we adopt a strategy of online updating of the feature network,
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which effectively improves the adaptability of the feature network to changes in the tracking
scene, and thus improves the tracking accuracy of the tracker. The experimental results based
on the OTB2013 dataset illustrate the effectiveness of the proposed method in this paper. This
paper provides an effective method for applying the deep correlation filter tracking model
to real-world applications and deploying it to embedded and mobile devices with limited
computational and memory resources. The implementation of this method on embedded
mobile devices is the future major research work.
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