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Abstract: Monitoring food processing is mandatory for controlling and ensuring product quality.
Most of the used techniques are destructive, arduous, and time-consuming. Non-destructive analyses
are convenient for rapid and conservative food quality assessment. Color images of apple slices
during the manufacturing of healthy snacks were used for monitoring the drying processing. The
implementation of the image-based analysis was straightforward, feasible, and low-cost. The param-
eters analyzed during imagen acquisition for normalizing were: contrast enhancement, binarization,
and morphologic processing, varying the illumination and reference between the positions of the
camera and object under analysis. Several apple features related to color, texture, and shape were
extracted with computer vision techniques and also analyzed. During image analysis, the entropy
was one of the most relevant computed features according to principal component analysis, and it
was also relevant in terms of physical interpretation. The average percentage of entropy increase
was 19.81% in the green and blue channels, while it was 16.82% in the red channel. Other relevant
visual features were the skewness and kurtosis in the RGB channels; and textural information such as
contrast, correlation, and variance.

Keywords: fruit dehydration; process monitoring; image segmentation; color features; texture
extraction; shape features

1. Introduction

In rural communities of developing countries, the agricultural activities related to
cultivating, harvesting, and handling fruits are usually important for the region’s economy;
however, sometimes, these products become waste when they are not consumed or pro-
cessed. The production of value-added products can represent job opportunities and new
income sources for the population by introducing new feasible practices as an alternative
to traditional work [1]—one of such new feasible practices is manufacturing products from
fresh raw materials. For example, the dehydrated fruits which are a better choice than
fast food or unhealthy and sugary snacks. Additionally, the processing required for its
production does not require acquiring costly infrastructure.

The monitoring of food processing is valuable for product quality and process stand-
ardization-automation [2]. Another issue is that the outcome of food processing depends
on intrinsic (raw material composition) and extrinsic (temperature, slice thickness, time)
parameters [3]. Therefore, computer vision could play a significant role since vision is the
primary sensor in leaving beings and artificial systems during decision-making and process
assessment. Besides the potential use of computer vision for food processing, these systems
are effective and low-cost. Moreover, the sensor of any computer system is a camera, which
is already portable and available on multiple daily devices.

Appl. Sci. 2022, 12, 11269. https://doi.org/10.3390/app122111269 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122111269
https://doi.org/10.3390/app122111269
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8984-4829
https://orcid.org/0000-0001-6118-3347
https://doi.org/10.3390/app122111269
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122111269?type=check_update&version=1


Appl. Sci. 2022, 12, 11269 2 of 13

The use of computer vision during monitoring tasks has been successfully applied
in different fields (health care, vigilance, and environment). For instance, in the analysis
of sequences of medical images to follow the evolution of lesions or [4], and recognition
and tracking of smoke within video signals for detection and monitoring of forest fires
for environmental protection [5], and machine vision to address the quality assessment
of emulsions in the pharmaceutical industry [6]. In addition, computer vision has been
exploited in the food industry to track changes in food properties during processing. For
example, computer vision (CV) has been previously used as a non-destructive method
for monitoring the drying behavior of organic apple cylinders subjected to different an-
tibrowning treatments [7]. Also, drying processing of turmeric slices has been monitored
by imaging features by extracting attributes such as color, morphology, texture, browning,
and shrinkage [8]. Computer vision has also been used during the salting process of ham
to monitor the salt diffusion within lean and fatty tissue areas [9].

Besides human vision, other sensory properties such as the auditory, tactile, olfactory,
and gustatory senses have also been artificially implemented to convert, for instance,
deterioration reactions into electrical signals processed by a neural network. The design
of electronic tongues and noses combines materials’ physical and chemical properties
as sensors for monitoring specific characteristic compounds of aroma and taste present
in the gaseous, liquid, and solid materials in food processing and control quality. An
electronic nose was a successful method to detect and recognize fresh and moldy apples
and the different molds used for their inoculation [10]. Quality assessment of delicious
royal apple fresh and contaminated using bacterial cultures was determined using an
in-line electronic nose system. This study’s principal component analysis and Ward’s
analyses showed a correlation for differentiation of fresh, half, and total contaminated
apples [11]. Baietto et al. (2015) have reported the use of electronic nose devices (gas
sensors) for the identification of fruit volatile organic compounds for identifying the type
of fruit, ripeness, and quality [12]. Applying different data-recognition algorithms to
signals detected from metal oxide semiconductor (MOS) sensors was a non-invasive and
rapid method to identify apple pesticide residues [13]. Effects of four drying methods (air
drying, freeze drying, freeze drying plus microwave vacuum, air drying, and explosion
puffing drying) on the color, texture, sensory quality, microstructure, bacterial viability, and
storage stability of probiotic-enriched apple snacks were assessed. Twenty trained panelists
described the texture, flavor, color, taste, and overall acceptability of the samples based
on the 10-point hedonic scale [14]. Fruit samples were dried by convective, microwave-
vacuum, and a combined method. Apple slices were previously dehydrated with (1) two
hours of erythritol, xylitol, and sucrose; (2) thirty minutes of ultrasound. The aim was
to characterize the impact of osmotic dehydration, sonication pre-treatment, and drying
method on the physicochemical properties of the dried apples [15].

In the current study, apple characteristics during the drying processing were monitored
using computer vision techniques as no invasive and fast methods for food control quality.
Various existing image techniques were used in this research. How these techniques are
combined and integrated depends on the problem to solve. That is why the image-based
methodology reported in this work was specifically planned to monitor the drying. The
objective of this study was to use simple and easy-to-use devices such as a digital scale
and a mobile phone to monitor weight and capture images during the apple slices drying
process that could be further analyzed using computer vision techniques as an alternative
non-invasive and fast method for food quality control in rural communities.

2. Materials and Methods
2.1. Apple Snacks Preparation

The apples were washed, soaked in ionic silver solution (0.00014%) for disinfection
for 10 min, and cut into slices (4–5 m) using an electric slicer (Chefman RJ49, Mahwah, NJ,
USA). Afterward, the slices were dehydrated using an air dryer for 14 h at 68 ◦C. Dried
samples were let cool until room temperature, weighed (25 g), and sealed in pouch bags.
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2.2. Computer Vision Measurements

During the drying time interval, eight apple slices from different positions (on the
dryer trays) were sampled nine-time instances. The change in weight using a digital balance
(OHAUS Scout, Parsippany, NJ, USA) and images for further computer vision analysis
were taken during drying. The images were captured with an iPhone XR (Cupertino, CA,
USA), where the resolution of each image is 3024 × 4032 pixels and processed in MATLAB
2071a (Mathworks, Natick, MA, USA) (Figure 1). The visual features extracted by computer
vision during the dehydration process were color, texture, and shape.
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Figure 1. General overview of the computer vision methodology.

For this, the image is partitioned into multiple regions (Figure 2 image segmentation).
A grayscale image is represented as a function on the two-dimensional space I (r, c), where
r and c specify the row and column, and I is the intensity pixel value at that spatial position.
A color image is obtained by mixing three-color channels: red IR(r, c), green IG(r, c), and
blue IB(r, c), called RGB, and it is the standard method for the generation of color images
on screens, such as computer monitors.

Panels A to E in Figure 2 show the steps for segmentation of one apple slice after 1 h
and 48 min of dehydration. Panels F to J (Figure 2) show the segmentation process for the
same apple slice after 9 h and 32 min. Contrast enhancement was used to adjust the range
of gray intensity so that all the available intensity values (from 0 to 255) could be used, as
observed in panels B and G (Figure 2), which show the result of converting a color image
into a grayscale image followed by contrast enhancement.

Afterward, an image was segmented by assigning one binary value to each pixel
depending on a threshold. If a pixel value is below a threshold, I(r, c)<T, then the output
binary image is assigned 0 at that position; otherwise, it is assigned 1. This segmentation
method is called image thresholding, where the threshold was computed by using the
image histogram and Otsu’s method. Panels C and H (Figure 2) show the result of image
thresholding applied to a grayscale image. The image histogram is a function that specifies
the distribution of pixel intensity values according to P(I)= n(I)

N ; where n(I) is the number
of pixels with the intensity I and N is the total number of pixels within the image. Otsu’s
method is a statistical algorithm that determines the optimal threshold to classify pixels
into foreground or background by examining the image histogram.
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components (D,I), slice detection (E,J).

After thresholding, a segmented image contained undesired regions such as crumbs
and noise. The eight largest regions, corresponding to apple slices, were kept. In contrast,
the others were suppressed, as it is shown in panels D and I (Figure 2). Extraction of
connected components was used to label each apple slice within the binarized images
shown in panels C and H (Figure 2). Finally, each slice was detected, as shown in panels E
and J (Figure 2). Features were extracted from each detected slice.

2.3. Feature Extraction

To obtain color features, three histograms {PR, PG, PB} were generated. One his-
togram was obtained from each RGB channel. Five statistical attributes were computed
for each channel: the average value µ = ∑255

I=0 P(I) I, variance σ2 = ∑255
I=0 P(I) (I − µ)2,

skewness m3 = ∑255
I=0 P(I) (I − µ)3, kurtosis m4 = ∑255

I=0 P(I) (I − µ)4, and entropy
H = −∑255

I=0 P(I) log2P(I). Figure 3 shows the three RGB channels of an apple slice and the
corresponding histograms.

For texture analysis, the color image was transformed into a grayscale image us-
ing the luminosity model, which consists of a weighted average of the RGB channels:
I = 0.21R + 0.72G + 0.07B. According to the luminosity model, the green channel is the
one that contributes the most, which agrees with the fact that green is the dominant color
in apples. Textural features convey statistical information about the relative positions of
the pixel intensity values within the region of interest. Textural features are obtained from
the gray level co-occurrence matrix (GLCM), which specifies the distribution of pairs of
pixel intensities according to the distance between these two pixels and the angle of the
line segment that joins them. There are four possible angles: 0◦ (horizontal), 45◦ (diagonal),
90◦ (vertical), and 135◦ (anti-diagonal). The GLCM of a pair of pixel intensities (Im, In) at
distance d and angle ϕ is defined as

P(Im, In, d, ϕ)=
Number o f pairs (Im, In) at distance d and angle ϕ

Total number o f possible pairs

where m, n=1, 2, . . ., N, and N is the number of pixel intensities. Seven textural features were
computed from the GLCM: (1) the angular second moment ASM= ∑N

m=1 ∑N
n=1 P(Im, In, d, ϕ)2,

(2) the contrast C= ∑N
l=1 l2

[
∑N

m=1 ∑N
n=1, |m−n|<l P(Im, In)

]
, (3) the inverse difference moment

IDF= ∑N
m=1 ∑N

n=1
P(Im, In, d, ϕ)

1+(Im−In)
2 , (4) the correlation Corr= ∑m ∑n Im In P(Im, In)−µ2

σ2 , (5) the co-occurrence
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matrix variance Var= ∑N
m=1 ∑N

n=1(Im−µ)2(In−µ)2 P(Im, In), (6) the difference average
DA= ∑N

m=1 ∑N
l=1 Im P(Im, Im±l), (7) the entropy H = ∑N

m=1 ∑N
n=1 P(Im, In) logP(Im, In) [16–19].
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Shape length features were extracted from apple slices. First, the boundary contour of
an apple slice was detected to obtain a sequence of straight-line segments. A straight-line
segment joins two adjacent boundary pixels, and it is assigned a code number depending
on its direction, as in Figure 4, where eight straight line segments are shown along with
their code numbers {0, 1, 2, 3, 4, 5, 6, 7}. The sequence of segment codes obtained from
the boundary contour is called chain code [20,21]. Next, an eight-entry histogram was
generated from the chain code, where each entry is the number of times a code number
occurs, within the chain code, divided by the chain length. This histogram contributes eight
shape features, also known as direction length descriptors. Shape curvature is another
shape descriptor [21], which is the frequency of occurrence of groups of external concave
angles (smaller than 180◦) and groups of external convex angles (larger than 180◦). An
external angle was formed between two adjacent straight-line segments, which were part
of the boundary contour of an apple slice, scanned in the clockwise direction. Two groups
of convex angles and two groups of concave angles are shown in Figure 5.
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Figure 5. The first row contains six concave angles, and the bottom row contains six convex angles.
At each row, the first three angles are characterized by the first code being zero. The last three angles
are characterized by the first code being one.

The first half of the upper row is a group of three concave angles where the first code
is 0. The second half of the upper row is a show of three concave angles where the first
code is 1. The first half of the bottom row is a group of three convex angles where the first
code is 0 while the second part is a group of three convex angles where the first code is
1. There are eight possibilities for the first code in an angle so that there are eight groups
consisting of three concave angles and eight groups consisting of three convex angles.
Thus, a sixteen-entry histogram was generated, where each entry is defined the number
of times that members, within a group, occur. This histogram contributed with sixteen
curvature descriptors.

2.4. Selection of Features

For those cases where the number of features is high, and there is an interest in
determining the most relevant features, Principal Component Analysis (PCA) is used. PCA
is a linear transformation where a set of extracted features

{
x1, x2, . . . , xp

}
is transformed
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into a set of new features
{

y1, y2, . . . , yp

}
, known as scores. Scores are defined in a p-

dimensional space y ∈
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p, these scores are not correlated, and their variance determines
the relevance of the scores.

The relationship between the original features (xj; j=1, 2, . . . , p) and the scores (yi;
i=1, 2, . . . , p) is given by the set of linear combinations: yi = ∑

p
j=1 ϕi,j xj for i=1, 2, . . . , p.

The coefficient ϕi,j is called loading, and it specifies the quantitative contribution of feature
xj to score yi. The variance/relevance of a score is specified by its corresponding eigenvalue.
The higher the eigenvalue λi, the higher the relevance of the corresponding score yi. Each
entry is defined as the number of times members occur within a group. This histogram
contributed sixteen curvature descriptors.

3. Results
Apple Snacks Characterization

Moisture content of raw apples was 83.5%, and after dehydration process the final
values were around 16.5%, determined by weight differences before and after drying the
samples (Table 1). Figure 6 shows the number assigned to each apple slice.

Table 1. Measurements of moisture attributes for the first apple slice during the dehydration process
at nine instances of time.

t (Hours) Weight (Grams) Solid Weight (Grams)

0 17.58 2.9
1.68 11.84 2.9
4.15 4.6 2.9
6.02 3.23 2.9
8.40 3.12 2.9
9.53 3.1 2.9
10.7 3.08 2.9
11.52 3.08 2.9
12.95 3.07 2.9
14.32 3.06 2.9
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Figure 6. Number assigned to each apple slice. The assignation was based on its position in the oven.

It is observed that the main loss of water occurred after the first four hours, and the
water removal decreased sharply after 10 h of drying. Besides weight and moisture, visual
features were measured by analyzing color images in MATLAB 2071a. The images were
captured with an iPhone XR (Cupertino, CA, USA), where the resolution of each image is
3024 × 4032 pixels. Initially, the apple slices were visually smooth in color and texture, and
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rounded in shape. Because of moisture reduction, visual features changed from uniform to
irregular. Four visual features were extracted from each apple slice: fifteen color features
(five features from each RGB plane), seven texture features, eight shape length features, and
sixteen curvature shape features. The 46 visual features were ranked in terms of relevance
by using Principal Component Analysis. The twelve most relevant visual features are
(1) entropy of the green channel, (2) entropy of the red channel, (3) skewness of the blue
channel, (4) skewness of the green channel, (5) skewness of the red channel,(6) kurtosis of
the blue channel, (7) entropy of the blue channel, (8) variance of the co-occurrence matrix,
(9) contrast, (10) kurtosis of the green channel, (11) angular second moment, (12) correlation
of the co-occurrence matrix. The occurrence matrix was used to compute the numerical
value of each texture attribute, and it was obtained by considering 1 pixel between two-pixel
values under study and an angle of 0◦ for the straight-line segment that joins them.

The most relevant visual features corresponded to color and texture. Features from
these two groups presented advantages for visual interpretation if they were compared
with shape length and curvature. Color and texture are invariant to rigid and non-rigid
transformations as opposed to shape length and curvature. Rigid transformations include
translation, rotation, and scaling. Figure 7 shows the rotation of an apple slice (slice 2 in
Figure 6) taking place from t7 = 11.52 h to t8 = 12.95 h and from t8 to t9 = 14.32 h. During
the monitoring process, the translation and rotation of apple slices were needed due to
the sample’s position in the dryer, the imaging capture was not the same, and the camera
was unfixed. Scaling was introduced because of the distance variation between the object
and camera when the image was captured. The dehydration process provokes weight loss
and non-rigid deformation of each apple slice. The surface area of each apple slice was
reduced (shrinkage) due to diminished moisture content. The use of features invariant to
rigid and non-rigid transformations is suggested since the proposed methodology should
be low-cost, simple, feasible, and effective.
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Figure 7. Dehydration of apple slice two over time.

Entropy was used to measure the image content in terms of visual perception. Table 2
and Figure 8 show the entropy of the green channel for eight apple slices at nine instances of
time during the dehydration process. According to PCA, the entropy of the green channel
was the most critical feature. Intuitively, entropy measures the random distribution of
energy in a system. The temperatures of an object and the warmer surrounding equalize
over time as part of the thermal energy from the warm surrounding spreads to the object.
The implication that energy tends to be uniformly distributed implies maximization of
entropy. As the dehydration proceeded, there was a balance between the likelihood
of brownish regions (dehydrated parts) and the likelihood of yellowish regions (higher
moisture). As the dehydration proceeded, the entropy trend escalated. According to
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Figure 7, apple dehydration was characterized by an increase in entropy at the end of the
process. Table 3 shows the average variation of the most relevant visual features during
14.32 h of the dehydration of apple slices. The average percentage of variation of the
entropy over the dehydration process corresponds to an increase being 19.81% for the green
channel, 16.82% for the red channel, and 19.81% for the blue channel.

Table 2. Entropy of the green channel of eight apple slices at nine instances of time.

t (Hours) 1 2 3 4 5 6 7 8

1.68 4.4659 5.6065 5.6814 5.8435 5.4219 5.2304 5.1535 5.4562
4.15 5.2655 5.7509 5.8898 5.7991 5.8423 5.7779 5.7528 5.9189
6.02 5.4095 6.2502 6.3321 6.2623 6.2990 6.2864 6.1386 6.2796
8.40 4.7413 5.9452 5.9732 6.0673 5.8624 5.8795 5.8585 6.1343
9.53 4.7388 5.8542 5.8804 5.9349 5.7763 5.8466 5.7445 6.0218
10.7 5.3979 6.3871 6.5817 6.4409 6.4760 6.5777 6.3284 6.7027

11.52 5.3229 6.3724 6.5634 6.4797 6.4882 6.5789 6.3312 6.6230
12.95 4.9871 6.2365 6.5405 6.4353 6.2559 6.3823 6.3425 6.5945
14.32 5.3671 6.4145 6.6374 6.5644 6.5484 6.6065 6.3889 6.7456
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Table 3. Average percentage of variation for visual features.

Visual Feature Average (%) Visual Feature Average (%)

Entropy green channel 19.81 Entropy blue channel 19.81
Entropy red channel 16.82 Variance co-occurrence matrix 230.89

Skewness blue channel 11.25 Contrast 107.17
Skewness green channel −298.58 Kurtosis green channel 557.86

Skewness red channel −303.04 Angular second moment −37.65
Kurtosis blue channel 13.36 Correlation co-occurrence matrix −65.95

Figures 7 and 8 show that the drying curve of slice 1 (curve in blue color in Figure 8) is
below the drying curves of other slices. This sample was the third heaviest slice and was in
the upper right corner of the air dryer. These curves suggest that the dehydration of the
first slice was faster than the other slices. Thus, the drying process was not uniform in the
oven for eight apple slices.

Drying curves of other visual features (entropy of the red channel and skewness)
are shown in Figures 9 and 10. Skewness measures the asymmetry of the probability
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distribution of the pixel values about their mean, indicating the magnitude and direction
of the deviation from the normal distribution. A negative skew usually means that the
distribution tail is on the left side, while a positive skew indicates that the tail is on the
right. The skewness in the green and red channels dropped while the skewness in the
blue channel raised. It is observed that contrast decreased during the first four hours, then
increased significantly during the next four hours, followed by a slightly decreased until the
completion of drying, as shown in Figure 10. The local variation (contrast) within the slice
content increased as the drying proceeded, representing higher roughness. The entropy of
the red and blue channels escalated with time due to the development of brownish regions.

The box plots in Figure 11 show the variation of visual attributes over time for eight
apple slices. Each box represents the time variation of a visual attribute within an apple
slice. The line in the middle of a box corresponds to the median of the whole range of
feature values (quartile 2). The top of the box (quartile 3) represents the median of the
range of feature values between quartile 2 and the maximum, and the bottom of the box
(quartile 1) represents the median of the range between the minimum and quartile 2. The
cross inside a box is the average value.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 13 
 

 

Figure 9. Drying curves for other visual features. 

 

Figure 10. Drying curves for additional visual features. 

  

Figure 9. Drying curves for other visual features.



Appl. Sci. 2022, 12, 11269 11 of 13

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 13 
 

 

Figure 9. Drying curves for other visual features. 

 

Figure 10. Drying curves for additional visual features. 

  

Figure 10. Drying curves for additional visual features.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 13 
 

The box plots in Figure 11 show the variation of visual attributes over time for eight 

apple slices. Each box represents the time variation of a visual attribute within an apple 

slice. The line in the middle of a box corresponds to the median of the whole range of 

feature values (quartile 2). The top of the box (quartile 3) represents the median of the 

range of feature values between quartile 2 and the maximum, and the bottom of the box 

(quartile 1) represents the median of the range between the minimum and quartile 2. The 

cross inside a box is the average value. 

 

Figure 11. Variation of visual features of apple slices during the dehydration process: entropy of the 

green, red and blue channels; contrast. 

4. Conclusions 

Apple slices were dehydrated to produce healthy snacks as new labor and economic 

activity within a rural community. Monitoring of the dehydration process was based not 

only on measuring weight and moisture but also on measuring visual features such as 

color, texture, and forms by analyzing images captured with an iPhone. One advantage 

of using computer vision to analyze the changes in food images visually is that these tech-

niques are non-invasive and feasible to implement without using expensive laboratory 

equipment. The most important visual features were entropy and skew in the three RGB 

channels and texture contrast. Entropy was the most critical visual attribute, increasing 

with the uniformity of the temperature process. This characteristic could be used for mon-

itoring changes in temperature for processing standardization. 

Author Contributions: Conceptualization, D.B.-A. and M.R.-R.; methodology, D.B.-A., M.R.-R. and 

R.R.-R.; formal analysis, D.B.-A., M.R.-R. and R.R.-R.; writing—original draft preparation, D.B.-A., 

M.R.-R. and R.R.-R.; writing—review and editing, D.B.-A., M.R.-R. and R.R.-R.; funding acquisition, 

D.B.-A. All authors have read and agreed to the published version of the manuscript 

Funding: The Mexican National Council of Science and Technology (CONACYT) funded this re-

search, under project grant Redes Horizontales del Conocimiento 314456 and European Union’s 

Horizon 2020 Research and Innovation. Program under grant agreement No. 952594 (ERA Chair 

project DRIFT-FOOD). 

Figure 11. Variation of visual features of apple slices during the dehydration process: entropy of the
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4. Conclusions

Apple slices were dehydrated to produce healthy snacks as new labor and economic
activity within a rural community. Monitoring of the dehydration process was based not
only on measuring weight and moisture but also on measuring visual features such as color,
texture, and forms by analyzing images captured with an iPhone. One advantage of using
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computer vision to analyze the changes in food images visually is that these techniques are
non-invasive and feasible to implement without using expensive laboratory equipment.
The most important visual features were entropy and skew in the three RGB channels
and texture contrast. Entropy was the most critical visual attribute, increasing with the
uniformity of the temperature process. This characteristic could be used for monitoring
changes in temperature for processing standardization.
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Funding: The Mexican National Council of Science and Technology (CONACYT) funded this research,
under project grant Redes Horizontales del Conocimiento 314456 and European Union’s Horizon
2020 Research and Innovation. Program under grant agreement No. 952594 (ERA Chair project
DRIFT-FOOD).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge Universidad de las Américas Puebla for the infrastructure and
equipment provided and the Food Analysis Laboratory, Intema S.A. de C.V. for their contribution in
the performed analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Samsatli, S.; Martinez-Hernandez, E.; Ng, K.S. Towards a sustainable bio- economy: Working in harmony with the environment–

food–energy–water nexus. Food Bioprod. Process. 2020, 119, 371–372. [CrossRef]
2. Linko, S.; Linko, P. Developments in Monitoring and Control of Food Processes. Food Bioprod. Process. 1998, 76, 127–137.

[CrossRef]
3. Ochieng, J.; Kirimi, L.; Mathenge, M. Effects of climate variability and change on agricultural production: The case of small-scale

farmers in Kenya. NJAS-Wagening. J. Life Sci. 2016, 77, 71–78. [CrossRef]
4. Rosas-Romero, R.; Tagare, H.D. Segmentation of endocardium in ultrasound images based on sparse representation over learned

redundant dictionaries. Eng. Appl. Artif. Intell. 2014, 29, 201–210. [CrossRef]
5. Rosas-Romero, R. Remote detection of forest fires from video signals with classifiers based on K-SVD learned dictionaries. Eng.

Appl. Artif. Intell. 2014, 33, 1–11. [CrossRef]
6. Unnikrishnan, S.; Donovan, J.; Macpherson, R.; Tormey, D. Machine Learning for Automated Quality Evaluation in Pharmaceutical

Manufacturing of Emulsions. J. Pharm. Innov. 2019, 15, 392–403. [CrossRef]
7. Raponi, F.; Moscetti, R.; Chakravartula, S.S.N.; Fidaleo, M.; Massantini, R. Monitoring the hot-air drying process of organically

grown apples (cv. Gala) using computer vision. Biosyst. Eng. 2021, 223, 1–13. [CrossRef]
8. Sharma, S.; Dhalsamant, K.; Tripathy, P.P. Application of computer vision technique for physical quality monitoring of turmeric

slices during direct solar drying. J. Food Meas. Charact. 2018, 13, 545–558. [CrossRef]
9. Sánchez, A.J.; Albarracin, W.; Grau, R.; Ricolfe, C.; Barat, J.M. Control of ham salting by using image segmentation. Food Control.

2008, 19, 135–142. [CrossRef]
10. Jia, W.; Liang, G.; Tian, H.; Sun, J.; Wan, C. Electronic Nose-Based Technique for Rapid Detection and Recognition of Moldy

Apples. Sensors 2019, 19, 1526. [CrossRef] [PubMed]
11. Ezhilan, M.; Nesakumar, N.; Babu, K.J.; Srinandan, C.; Rayappan, J.B.B. An Electronic Nose for Royal Delicious Apple Quality

Assessment—A Tri-layer Approach. Food Res. Int. 2018, 109, 44–51. [CrossRef] [PubMed]
12. Baietto, M.; Wilson, A.D. Electronic-Nose Applications for Fruit Identification, Ripeness and Quality Grading. Sensors 2015, 15,

899–931. [CrossRef] [PubMed]
13. Tang, Y.; Xu, K.; Zhao, B.; Zhang, M.; Gong, C.; Wan, H.; Wang, Y.; Yang, Z. A novel electronic nose for the detection and

classification of pesticide residue on apples. RSC Adv. 2021, 11, 20874–20883. [CrossRef] [PubMed]
14. Li, C.U.I.; Niu, L.Y.; Li, D.J.; Liu, C.Q.; Liu, Y.P.; Liu, C.J.; Song, J.F. Effects of different drying methods on quality, bacterial

viability and storage stability of probiotic enriched apple snacks. J. Integr. Agric. 2018, 17, 247–255. [CrossRef]
15. Cichowska-Bogusz, J.; Figiel, A.; Carbonell-Barrachina, A.A.; Pasławska, M.; Witrowa-Rajchert, D. Physicochemical Properties

of Dried Apple Slices: Impact of Osmo-Dehydration, Sonication, and Drying Methods. Molecules 2020, 25, 1078. [CrossRef]
[PubMed]

16. Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3,
610–621. [CrossRef]

http://doi.org/10.1016/j.fbp.2019.12.001
http://doi.org/10.1205/096030898531936
http://doi.org/10.1016/j.njas.2016.03.005
http://doi.org/10.1016/j.engappai.2013.09.008
http://doi.org/10.1016/j.engappai.2014.03.011
http://doi.org/10.1007/s12247-019-09390-8
http://doi.org/10.1016/j.biosystemseng.2021.07.005
http://doi.org/10.1007/s11694-018-9968-0
http://doi.org/10.1016/j.foodcont.2007.02.012
http://doi.org/10.3390/s19071526
http://www.ncbi.nlm.nih.gov/pubmed/30934812
http://doi.org/10.1016/j.foodres.2018.04.009
http://www.ncbi.nlm.nih.gov/pubmed/29803469
http://doi.org/10.3390/s150100899
http://www.ncbi.nlm.nih.gov/pubmed/25569761
http://doi.org/10.1039/D1RA03069H
http://www.ncbi.nlm.nih.gov/pubmed/35479381
http://doi.org/10.1016/S2095-3119(17)61742-8
http://doi.org/10.3390/molecules25051078
http://www.ncbi.nlm.nih.gov/pubmed/32121055
http://doi.org/10.1109/TSMC.1973.4309314


Appl. Sci. 2022, 12, 11269 13 of 13

17. Löfstedt, T.; Brynolfsson, P.; Asklund, T.; Nyholm, T.; Garpebring, A. Gray-level invariant Haralick texture features. PLoS ONE
2019, 14, e0212110. [CrossRef] [PubMed]

18. Brynolfsson, P.; Nilsson, D.; Torheim, T.; Asklund, T.; Karlsson, C.T.; Trygg, J.; Nyholm, T.; Garpebring, A. Haralick texture
features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters. Sci. Rep.
2017, 7, 4041. [CrossRef] [PubMed]

19. Yang, M.; Kpalma, K.; Ronsin, J. A Survey of Shape Feature Extraction Techniques. Pattern Recognit. 2008, 15, 43–90. Available
online: https://hal.archives-ouvertes.fr/hal-00446037 (accessed on 12 January 2020).

20. Safar, M.H. Shape analysis and retrieval of multimedia objects. In Intelligent Virtual World: Technologies and Applications in
Distributed Virtual Environment; World Scientific Publishing Company: Singapore, 2004; pp. 21–51. [CrossRef]

21. Chen, Y.; Li, F.; Huang, T. Curvature features based shape analysis. In Proceedings of the International Conference on Intelligent
Computing, Shanghai, China, 15–18 September 2008; pp. 414–421. [CrossRef]

http://doi.org/10.1371/journal.pone.0212110
http://www.ncbi.nlm.nih.gov/pubmed/30794577
http://doi.org/10.1038/s41598-017-04151-4
http://www.ncbi.nlm.nih.gov/pubmed/28642480
https://hal.archives-ouvertes.fr/hal-00446037
http://doi.org/10.1007/978-1-4615-0349-1_3
http://doi.org/10.1007/978-3-540-87442-3_52

	Introduction 
	Materials and Methods 
	Apple Snacks Preparation 
	Computer Vision Measurements 
	Feature Extraction 
	Selection of Features 

	Results 
	Conclusions 
	References

