
Citation: Zhu, Y.; Hu, Z.; He, Z. Edge

Intelligence Service Orchestration

with Process Mining. Appl. Sci. 2022,

12, 10436. https://doi.org/10.3390/

app122010436

Academic Editor: Miguel

García-Pineda

Received: 4 September 2022

Accepted: 9 October 2022

Published: 16 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Edge Intelligence Service Orchestration with Process Mining
Yong Zhu 1,2,3,* , Zhihui Hu 2 and Zhenyu He 3,4

1 School of Computer Engineering, Jinling Institute of Technology, Nanjing 211169, China
2 School of Computer Science & Technology, Nanjing University of Posts and Telecommunications,

Nanjing 210003, China
3 Information Department, HOHAI University, Nanjing 210098, China
4 Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University,

Hong Kong 999077, China
* Correspondence: zhudz@jit.edu.cn; Tel.: +86-1816-809-2326; Fax: +86-25-86188957

Abstract: In the post-cloud computing era, edge computing as a distributed computing paradigm,
integrating the core capabilities of computing, storage, network, and application, provides EIS (edge
intelligence service), such as real-time business, data optimization, intelligent application, security,
and privacy protection. The EIS has become the core value driver to promote the IoE (Internet of
Everything), to dig deeply into data value and create a new ecology of application scenarios. With
the emergence of new business processes, EIS orchestration has also become a hot topic in academic
research. A design methodology based on a complete “describe-synthesize-verify-evaluate” process
was established to explore executable design specifications for EIS by means of model validation
and running instances. As proof of concept, a CPN (colored Petri net) prototype was simulated and
its operational processes were discovered by process mining from event data available in EIS for
behavior verification. The instances running on WISE-PaaS demonstrate the feasibility of the research
methodology, which aims to optimize EIS through service orchestration.

Keywords: EIS; process mining; service orchestration; CPN

1. Introduction

New computing environments, such as cloud computing and IoT (Internet of Things)
provide convenient services, such as data sharing and fusion computing, greatly making use
of the data processing capacity as well as computing and storage resources [1]. According
to Cisco, the global network traffic reached 278 EB/month in 2021. Moreover, according
to the forecast by Machina research, the number of global IoT connections will increase
to 27 billion and cellular connections will reach 22 billion in 2025 [2]. The number of
networked devices is increasing rapidly, resulting in an increasing amount of data and
traffic bringing great pressure on network resources. It is difficult for traditional cloud
computing to respond to requests of terminal devices in real-time in the case of insufficient
bandwidth [3]. Moreover, the challenges are as follows [4]:

• Cloud centralized-based services might become bottlenecks when distributed queries
and updates are frequent. Meanwhile, malicious attacks can also lead to a single point
of failure;

• With the diversification of business processes and dynamic scalability of functions,
cloud centralized-based services, and data processing cannot adapt to the flexibility
and real-time metrics;

• DOs (data owners) and DCs (data consumers) relying on data centers may have data
risks of security and privacy, which may damage the rights and interests of DOs [5].

In order to respond to the existing challenges, meet business needs, and improve user
experiences, the edge computing paradigm is proposed to “sink” the cloud computing
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power and improve the processing capacity of edge devices, which provides edge ser-
vices near the data source to meet the key requirements in terms of agile connectivity and
real-time optimization and intelligent application and security and privacy [6]. The rise
of edge intelligence of IIoT will promote the manufacturing industry to dig deeply into
data value, to create a new ecology of industrial production. As a combination of edge
computing and AI, edge intelligence uses computing resources from near data sources
to complete intelligent tasks; it is a feasible solution for industrial intelligence applica-
tions. Thus, edge computing has gradually become an effective supporting platform [7] for
new IoE applications, which have three-tier architecture, including “cloud-edge-end” [8].
The core layer edge supports the downward (southward) access to various field devices
and upward (northward) connection with the cloud. EIS provides core value drivers for the
implementation of IoT applications, helping customers improve operational efficiency and
business transformation. In the post-cloud computing era, edge computing, as a distributed
computing paradigm integrating the core capabilities of computing, storage, network, and
application, providing edge intelligent services, such as real-time business, data optimiza-
tion, intelligent application, security, and privacy protection nearby, enabling developers
to quickly develop and deploy edge applications. Industry application scenarios are con-
stantly enriched, such as autonomous driving [9], IIoT, VR/AR, smart medical care, etc.
At present, the fusion of EIS, AI, and blockchain has also become a hot topic in academic
research. It is indicated by searching for the keywords: blockchain, MEC (multi-access
edge computing), ML (machine learning), and IoT [10], which, on the one hand, blockchain
introduces security, privacy, and trust to MEC, and on the other hand, MEC improves the
scalability of blockchain in a distributed and efficient manner. With various intelligent
services showing great vitality, such as XaaS derived from cloud native computing, edge
computing, and blockchain, such as BaaS and FaaS (functions as a service), as well as SDX
defined by software, such as SDN (software-defined network) and SDEc (software defined
edge computing), researchers continue to put forward new models and algorithms for solv-
ing the increasingly complex requirements. Data service servers [11] monitor and manage
data flow and enable them to interact with users. DIaaS (data integrity as a service) [12]
is implemented by smart contracts on the blockchain, which is fully decentralized. EIS
supports the business expansion and operation of developers, taking advantage of the
deployment and management of cloud service infrastructure. Services on edge computing
rely on the adequate decomposition of the system into ECN (edge computing node) or
SMCs (state machine components), which form a service composition/orchestration, where
particular operations are executed successively. The model described by a Petri net can
be decomposed into two nets that are able to exchange messages upon the occurrence
of observable events. An SPN (stochastic Petri net) model represents and evaluates the
performance of an edge computing architecture. Service composition for edge intelligence,
particularly for an AI subtask composition, is carried out on an EdaaS (edge device as a
service), which has a particular functionality and a set of non-functional features.

Data science and big data signify the growing importance of data-based approaches.
Real behavior can be reconstructed from data event logs [13]. Process mining techniques
provide a wide range of data-driven methods that are process-centric at the same time,
which support discovering process models as well as behavior verification and process
discovery in past executions of processes [14]. Since the generated simulation model
is supported by historical data (event data), which is based on the DES (discrete event
simulation) technique, the generated event data are similar to the behavior of the real
process. In all of the proposed tools for simulation in process mining, interaction with the
user and their knowledge is an undeniable requirement for designing and running the
simulation models. Motivated by the above innovative paradigm (edge computing, EIS,
process mining), design methodology (XaaS, SDX), and toolchain (WISE-PaaS, CPN Tools,
ProM), the fine-grained EIS orchestration with process mining is proposed. The purpose of
this study is to establish a design methodology and explore executable design specifications
to optimize EIS.
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The key contributions of this article can be summarized as follows:

• The methodology (mixing the modeling and verifying for structure, behavior, and
data of EIS) provides a constructive way to realize the service’s flexible scalability
and process automation, which opens up space for optimizing fine-grained service
orchestration through DSE (design space exploration).

• Behavior logic, as well as architecture, are extracted from the event logs available in
EIS application scenarios by the operational process discovery of process mining, to
improve the service orchestration. The cross of CPN Tools and ProM provides deeper
insight into the knowledge of EIS orchestration.

This paper is organized as follows. After introducing the research significance, the
objectives and contributions in Sections 1 and 2 explore edge intelligence, process mining
technology, and its relationship with the Petri net model and our research route. The pro-
totype of intelligent cloud edge in CPN is put forward in Section 3, including color set
attributes and logic assignment with attribute predicate. Section 4 elaborates on the sim-
ulation verification of EIS with CPN Tools, and its service instance runs on WISE-PaaS.
Section 5 discusses the process behavior and event data by process mining as proof of
concept. Section 6 concludes the paper. Finally, future research problems are discussed.

2. Related Work

For edge intelligence, AI provides technologies and methods for edge computing,
and edge computing provides scenarios and platforms for AI. “AI on edge” focuses on how
to build an AI model on the edge computing platform, mainly including model training
and inference; “AI for edge” focuses on providing better solutions to key problems in edge
computing with the help of advanced AI technology, mainly including task unloading and
edge caching [15]. From the dimension of edge computing-enabled AI, an on-demand
acceleration framework based on edge-end collaboration is proposed, aimed at the deploy-
ment of deep learning model on the edge of the network. From the dimension of edge
computing empowered by AI, an adaptive edge service placement mechanism based on
online learning and an edge service migration method based on the factor graph model
are proposed, aimed at the placement of edge computing services [16]. Edgent [17] re-
gards the deep neural network as a directed graph and optimizes it from two aspects of
segmentation and simplification for a deep learning model. The optimization strategy is a
trade-off between the model inference speed and accuracy. Edgeke [18] balances resource
consumption and inference performance on resource-constrained edge devices. The neural
network is compressed by knowledge distillation to reduce the demand for computing
resources, and the early exit technology is used to provide a flexible computing method
for the neural network; through the EdgeMI algorithm, the distributed computing of a
deep neural network is realized on heterogeneous edge clusters, and the final performance
acceleration ratio reaches 1.84x–3.57x.

Software-defined computing gives birth to cloud computing, which allows the flexible
allocation of computing resources. There are software-defined radios, software-defined
networks, software-defined data centers, and so on. SDEC [19] involves abstracting (the
logical relationship is abstracted into rules, and inferencing is carried out according to
the real-time state), virtualizing (the device model is virtualized to realize the decoupling
and separation of software, hardware, and services) and pooling (unified management,
sharing, reuse, and cooperation) the physical equipment resources on the edge by using
semantic description modeling, knowledge graphs, and other technologies. When the
edge computing gateway software [20] processes a variety of IoT communication protocol
messages (MQTT, OPC-UA, etc.), it forwards them to local computing for data collection,
analysis, and AI processing, according to the message routing rule engine, and responds
quickly. SDN and virtualization technology optimize the edge computing architecture
by defining the management and monitoring of computing, storage, data center, security,
and other resources through software, to realize resource integration and management
collaboration within multiple networks. The collaboration capability of SDN-based cloud-
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edge network framework [21] is reflected in 1© EC-IaaS resource collaboration; 2© EC-PaaS
management collaboration; 3© and EC-SaaS application service collaboration, in other
words, the application layer, control layer, and infrastructure layer of SDN correspond to
the three fields of application services, platform management, and resource facilities in the
cloud-edge collaboration. In SDIoT architecture [22], combining SDN and IoT, the resource-
limited applications can be efficiently managed at the edge, collecting sensor data from
terminal nodes through SBI (southbound interface) and providing connectivity to the cloud
service through the NBI (northbound interface).

The embedded devices in the IIoT constitute the edge computing layer in the industrial
internet. Heterogeneity is their most significant characteristic, low latency is the main
motivation for industrial scenarios, and security is another driving force for the application
of edge computing in industries. The challenges of edge computing [23], such as system
modeling with deterministic time delay, industrial task design, and unloading, real-time
container technology, resource management in the heterogeneous computing environment
and constrained resource environment, and broader forms of resource sharing are proposed.
OT experts believe that it is necessary to master the industrial mechanism model so that
AI can be applied a really work on edge; IT experts emphasize the role of AI in building
a common computing architecture [24]. Edge intelligence in industries needs to closely
combine the AI algorithm and model with industrial knowledge and mechanisms in order
to give full play to its effect. The value of the cloud edge combination provides users
with cloud-consistent functionality and applications and experiences on infrastructure.
Kubedge integrates cloud, management, edge, and end to solve five key problems of
edge computing [25]: cloud-edge collaboration, heterogeneous support, large-scale device
access, lightweight edge and end, and consistent experience. The edge-cloud project
OpenYurt [26] of CNCF extends the native Kubernetes to the intelligent open platform of
edge computing, which ensures non-invasive standardization to realize edge autonomy
and central cloud control.

The decomposition technique based on the Martinez-Silva is put forward, intended
for obtaining all the minimal support p-invariants of a Petri net. Among such invariants,
the sets of places corresponding to the SMCs will be found [27]. Reference [28] proposes
an SPN model to represent the MEC architecture and evaluate the trade-off between
the MRT (mean response time) and resource utilization. The architecture is composed
of three parts: mobile devices, front end, and edge computing; the resources of single
servers are parallelized using containers. The main objective is to minimize resource
costs and maximize performance. A blockchain-based decentralized solution for service
composition [29] has been introduced in the scope of complex multimedia service delivery.
Reference [30] proposed a collaborative framework at the network edge, aiming for a swift
composite service delivery system and service composition models. A simulation-based
optimization method using the SPN model for service composition [31] was put forward.
Reference [32] highlights both QoS (Quality of Service) and QoE (Quality of Experience) and
solves the service composition in an edge computing environment with a special focus on
fault tolerance. The work in [33] focuses on workflow processes with concurrent behavior,
which uses an extended version of the α algorithm to incorporate timing information [34].
Process mining can be seen as a tool in the context of BPI (business process intelligence) [35],
and transition systems can be represented by compact Petri nets [36]. PAIS (process-
aware information systems) by process mining discovers process models from event logs,
analyzes performance characteristics of processes, and establishes behavioral relations
between Petri nets and BPMN (business process model and notation) models in order
to visualize metrics within a BPMN diagram. The Petri net (free-choice workflow nets)
and workflow graphs deal with “high-level” process models (e.g., BPMN models, control
flow models, data, and resource perspectives) [37]. The conversion algorithms help to
construct flat control flow skeletons of the target BPMN models from the discovered Petri
nets and other “low-level” models, covering both the control flow perspective and the
resource perspective [38]. A framework [39] is proposed with core components (constraint
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formula) enabling the constraint monitor. More tailor-made rules can be formalized into
Petri-net patterns [40] or linear temporal logic to evaluate whether process executions
comply with them. The model-based and clustering-based approaches learn the rules by
analyzing event data. The constraint formula can be extended to predict and evaluate
future violations. A process mining tool generates signals by analyzing the event data and
executing the actions.

The attributes of related work are shown in Table 1:

Table 1. Comparison of Related Work Attributes.

Categories References
Attributes

AI Service
Management

Service
Orchestration

edge intelligence [15–18] strong weak weak

SDx [19–22] average average average

application [23–26] weak strong average

decomposition/
composition [27–32] average average strong

Petri Net and
process mining [33–40] weak average strong

Edge intelligence integrates AI into edge computing and is deployed on the edge,
focusing on AI algorithms, model training, and inference. The core of EIS is about task
migration and offloading, resource allocation, heterogeneous computing, and cloud-edge
collaboration. EIS orchestration arranges (intelligent/automatic invocation) multiple ser-
vices according to service requirements to realize complex applications. For example,
embedded machine learning services can monitor product quality in real-time based on
sensor data, orchestrating related software services to complete the business processes.
SOA (service-oriented architecture) is loosely coupled, and the services between nodes
provide information interaction, which lays the foundation for EIS orchestration.

Referring to related work and following the “describe—synthesis—verify—evaluate”
methodology, the research is as follows:

1. The synthesizable CPN model was firstly constructed for theoretical verification,
taking cloud-edge intelligent entities, such as nodes, gateways, interfaces, data centers,
etc., as the places, and taking behavior and logic as the transition function and guard
to imitate service orchestration for specific business processes.

2. After simulation verification, the behavior synthesis was carried out, based on ex-
ecutable specification. The standard definition of the function module, interface
protocol, and hierarchical network provided strong support for the abstraction of
data interaction and business processes. Each element could be composed of multiple
business logics, each of which could be individually listed as a service entry in the
service contract, providing rich service orchestration with structured modules and a
hierarchical network.

3. The evaluation instances were run on WISE-PaaS for DSE. With the help of a toolchain
(DeviceOn, NodeRED, MQTT, Dashboard) and management protocols to dynami-
cally deploy and execute multiple parallel applications, the efficiency of the system
development has been greatly improved.

4. With that, the knowledge of fine-grained service orchestration was extracted by
process mining from event data available in EIS for behavior verification and process
discovery, so as to improve the service orchestration.
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3. Intelligent Cloud-Edge Model

Following the design methodology of “description-synthesis-verification-optimization”,
the intelligent cloud-edge architecture was built at first, and the corresponding using-view
and deployment view were explained to ensure the implementation of the system. Based
on this, the model in CPN is described, which focuses on the hierarchical interface and
highlights cloud-edge collaboration and intelligent services. It supports the executable
design specifications using CPN Tools. The model simulation verification and its instance
activity combined with typical services are presented in the following two sections.

Edge computing is a distributed IT architecture [41], and the platform services are
mainly based on EIS and cloud component services. Cloud-edge intelligent service has
the ability to bridge and coordinate the two (cloud, edge) to guide the partition and
execution of tasks, so that time-sensitive data can be preprocessed by the local or nearest
EIS, and time-insensitive data can be sent to the cloud for big data intelligence analysis and
global long-term storage. It also manages and optimizes the network from the overall view,
and has a certain openness to flexibly deploy new applications and services. Intelligent
cloud-edge architecture is mainly composed of three parts: 1© edge layer: As PaaS in cloud-
edge cooperation, it is composed of many edge domain environments such as virtualization,
data storage, edge device management, and data processing. For each domain, EIS local
resources are defined by software, and SDN is enabled to solve the heterogeneity and
scalability of edge devices, so as to schedule edge computing network resources more
effectively; 2© cloud center: It is responsible for managing, scheduling, integrating, and
optimizing various resources distributed on the network by cloud computing technology.
The dynamic network system based on SDN enables real-time programming and large-
scale management for a value-added cloud computing network, to further enhance its
scalability and dynamics and provide new IT service; 3© Hub/Gateway: based on the
idea of step-by-step control and global/local control, it ensures the overall consistency to
realize the reasonable access to computing tasks and the optimal allocation of computing
resources, quickly responding to computing requests and feedback, computing results in
real-time, and building a service-oriented network open capability interface to meet the
different requirements of services.

Intelligent cloud-edge service involves the following elements: infrastructure,
Hub/Gateway, SDN/MQTT, data center, AIFS (AI framework service), service manage-
ment, orchestration, security, etc. Its architecture is shown in Figure 1:

Using view describes the activities that need to be coordinated between different
elements involved in edge computing to guide the implementation of reliable and complex
applications, which give the key in each stage of system design, implementation, deploy-
ment, operation, and development. The function module and implementation module
among using-view provide the basis for the subsequent stage of detailed function design
and implementation. The executable module tasks realize the business logic, which has
two ways: service orchestration and simple business invocation. User roles involve a
variety of user types in the whole life cycle of edge applications, which have corresponding
access permissions to ensure the security and reliability of the system. The core elements
emphasized in the edge computing scenario include time, space, trigger conditions, results,
and constraints. Deployment view describes the structure and techniques of an edge com-
puting architecture, where the former refers to the topology of component distribution and
their interconnection, and the latter includes interfaces, protocols, behaviors, and other
attributes to ensure that the operations and activities identified in the using-view are cor-
rectly mapped to functional components and business processes meet service orchestration
and management.
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Figure 1. Architecture of Intelligent Cloud-Edge Service.

The preliminaries of CPN and color set are as follows:

Definition 1. A CPN is a 9-tuple: CPN = (P, T, A, ∑, V, C, G, E, I) where: 1© P is a finite set
of places; 2© T is a finite set of transitions such that P ∩ T = Φ; 3©A ⊆ P× T ∪ T × P is a set
of directed arcs; 4© ∑ is a finite set of non-empty color sets. 5© V is a finite set of typed variables
such that Type[v] ∈ ∑, ∀v ∈ V. 6© C : P→ ∑ is the color set function that assigns a color set to
each place. 7© G : T → EXPRv is a guard function that assigns a guard to each transition t, such
that Type[G(t)] = Bool. 8© E : A → EXPRv is an arc expression function that assigns an arc
expression to each arc a, such that Type[E(a)] = C(p)MS. 9© I : P→ EXPR∅ is an initialization
function that assigns an initialization expression to each p, such that Type[I(a)] = C(p)MS.

Definition 2. Let S = {s1, s2, s3, ...} be a non-empty set, and the multi-set function is m :
s → N, ∀s ∈ S, where N is a non-negative integer. The multi-sets are in the following form:
∑s∈S m(s)‘s = m(s1)‘s1 ++m(s2)‘s2 ++m(s3)‘s3 ++...Their basic operations are defined as
follows: 1© ∀s ∈ S : (m1 + +m2)(s) = m1(s) + m2(s). 2© ∀s ∈ S : (m1 − −m2)(s) =
m1(s)−m2(s). 3© ∀s ∈ S : (n ∗ ∗m)(s) = n ∗m(s). 4© m1 ≤ m2 ⇔ .∀s ∈ S : m1(s) ≤ m2(s).
5© |m| = ∑s∈S m(s).

By introducing associating data structure (color set) to every token, the modeling
ability of CPN is enhanced. Obviously, hierarchical intelligent cloud-edge architecture has
an infrastructure layer, intelligent edge layer, cloud service layer, etc., in which there is
data and information exchange between entities. The business state is transitioned through
running tasks to realize service orchestration. To build the CPN model of hierarchical
intelligent cloud-edge architecture, the main entities, such as nodes, gateways, EIS, dedi-
cated function modules and their interfaces, cloud services, data centers, asset resources
and other entities are described as places. Moreover, the behavior logic of different states,
such as application deployment, task migration, service orchestration, etc., is mapped to
transition reflecting the related place and token. The CPN network structure can be divided
into multiple functional blocks to form a hierarchical network by substitution transition.
The parent-child logical association is implemented by the fusion-set place in CPN Tools.
The places in the sub-page are called port-place and those in sup-page are called slot-places,
providing powerful support for the decomposition of complex business networks into sub-
models through substitution transition and fusion-set, such as southbound heterogeneous
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data access and northbound RESTFul access through typical layer interfaces of cloud-edge
intelligent services.

The key to CPN modeling lies in color set design. The combination of its data struc-
ture and guard can describe complex state transitions to represent polymorphic behavior.
The basic color set (limited to space, only some examples are listed) is designed as follows:

colset Usr = STRING // User information; The same applies to other entities
colset Usr_L = listUsr // User list
colset Serve = with Gateway | AIFS | Dashboard | ... | SSO
// Enumeration of various services; The same applies to process status
colset DataX = product Data0 ∗ Rule
// Product data structure that contains attributes, such as rules-based data stream
colset EISAddr = record IP1 : Port1 ∗ IP2 : Port2 ∗ IP3 : Port3
// Record data structure that maps respective EIS address into the “IP: Port”
Model behavior attribute is assigned by APre (Attribute Predicate). It is a triple of

(Entity, ∝, Entity) or (Entity, ∝ <Value>) representing the place object, transitions behavior
and color set respectively, where ∝∈ {∧,∨,¬,∪,∩,⊆,⊇,∈, ∀, ∃} is an operator to limit the
value range of the attribute. Typical APre logic examples are as follows:

AD ⊆ A× D // Attribute-Data assignment
ADObj ⊆ AD×Obj // Attribute-Data-Object assignment
NS( f un, srv) = f un ∈ N|( f un, srv) ∈ NS // Function map to service set
RuleD(rule, data) = rule ∈ Rule|(rule, data) ∈ RuleD
// Protocol and rule map to communication, interface, data stream engine
regEle(addr : AD, src, tgt, rule, prot) :
Src ∪ {srcsrc/ ∈ Src}, Tgt ∪ {tgt|tgt/ ∈ Tgt}, Rule ∪ {rule|rule ∈ Rule}, Prot ∪

{prot|prot ∈ Prot}
// Register runtime service process elements, such as source, target, rule, protocol, etc
checkS(name : S, data, attr) : ∀ f un(∩datai ⊆ D) ∩ (∩attri ⊆ A)
// Check, audit, and verification services
The above notations are based on the color set of the CPN model and logical rep-

resentation. The former represents object characteristics, which uses the prefix symbol
“colset” as a token to apply to CPN Tools software; the latter uses predicate logic and set
paradigm to describe object behavior and its relationship with attributes, which can be
mapped to transition functions and guards of the CPN model. The corresponding entities
and behaviors of the cloud-edge are first mapped to the nine-tuple (P, T, A, ∑, V, C, G, E, I)
to construct the model prototype in the CPN modeling process. color set design is the key
to representing model data structures to achieve complex data streams. APre assignment
logic ensures high-level entity behavior, which in turn supports automated business and
intelligent services.

4. Fine-Grained Service Orchestration for EIS

Cloud-edge intelligence is implemented based on the micro-service framework. Ser-
vices can be called through RESTful or RPC, with the characteristics of business decoupling,
decentralization, and “self-service”. The EIS at the core layer completes the data acquisi-
tion and monitoring of heterogeneous devices southbound, and realizes cloud connection
and intelligent device management northbound, which with open standard architecture
follows MQTT protocol and docker container technology as the basic framework. Edge
interface provides customers with the development application of RESTful API, MQTT
communication, and NodeRED data stream. Data infrastructure services provide database
and data network services. The data analysis framework integrates a variety of machine
learning function libraries and back-end distributed computing resources. The system
supports data security (SSL/TSL protocol communication), application security (container
deployment) and platform security (based on RBAC, UAA, SSO, and JSON tokens).

WISE-PaaS [42] has functional modules, such as security management, SCADA (Su-
pervisory Control and Data Acquisition), HMI (human and machine interface), AIFS, etc.,
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for end devices to provide comprehensive development tools and standard protocol SDKs
with various IoT connectivity. The sensor network connection at the bottom layer of the
architecture is responsible for collecting data, managing the sensor hub, converting the
sensor protocol into MQTT, and then transmitting the data to the MQTT server or proxy.
The management and interface layer uses Webmin for configuration. Whether the service
is deployed on edge devices or in the cloud, SSL/TLS communication security features
are configured. Cloud-edge intelligent services support elastic capacity expansion to man-
age complex platform environments and resource expansion. It has the ‘penness’ ability,
enabling users to quickly create, deploy, and manage cloud applications. More software
modules can be flexibly added through WISE-PaaS Marketplace to help build, implement,
and start cloud-edge intelligent innovative applications, and provide users with vertical
industry SRP (solution-ready package) and DFSI (domain focus system integrator).

The model based on service orchestration supports the visual presentation of model
business processes through model definitions, such as architecture, interface, functions, and
requirements, to generate executable specifications in the form of multi-language version
code/script. The edge computing domain model is integrated with the vertical industry
domain model through the development platform and toolchain to support model library
version management. Service orchestration is based on a three-layer architecture. 1© The
orchestration service located in the cloud defines business organization processes, provides
visual workflow tools, supports CRUD operations, and develops a service framework based
on reuse. 2© The strategy controller deployed on edge realizes the local nearby control to
ensure the real-time performance of business scheduling. In order to better integrate the
requirements of edge computing and vertical industry, high-quality and efficient service
templates and policy templates can be predefined. 3© The strategy executor module built
in each edge computing node is responsible for translating the strategy into the device
command and scheduling the execution locally. The strategy focuses on high-level service
requirements, and the specific intelligent algorithm realizes fine-grained control of edge
computing nodes.

The event with tokens fire state transition in CPN, representing different service be-
haviors. The subsequently transitional color set represents the attributes of their respective
services, so as to realize the fine-grained EIS orchestration mode, i.e., service/business→
DBaaS (database as a Service), CaaS (container as a Service)→ FaaS, such as CRUD, URL
call, Lambda→ task process, such as start, stop, update, and message passing. The EIS ser-
vice orchestration model is both a hierarchical (orchestration service in the cloud–strategy
controller on the edge–strategy executor in the node) architecture and a process (data
stream and business flow) pattern. The former realizes the hierarchical interface through
substitution transitions and fusion-set places, while the latter is described by Kanban
information flow, as shown in Figure 2:

Figure 2. EIS Model with Kanban Information Flow.
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EIS with fine-grained service orchestration consists of a series of business processes.
It’s assumed that there are three work nodes (excluding input and output interfaces) in
this model, which also provides the Kanban information flow in the opposite direction
corresponding to each node to provide feedback on the service status. One of the working
nodes is shown in Figure 2, whose structure and behavior are consistent, only relevant
parameters are different, such as processing times, resources per work node, and Kanban
in between work nodes. The performance and resources of service orchestration are
optimized by configuring parameters. The rationality of CPN model behavior can be
verified by SSA (state space analysis). DSE is realized through parameter configuration.
Performance is evaluated by the monitor of CPN Tools 4.0 in timed color set tokens.
Among them, although the color set processing times significantly affect the efficiency of
service orchestration. However, the color set resources per work node have little impact,
because the conflict between nodes is not fully considered. Kanban’s mode tuning can
reasonably arrange service orchestration.

The EIS state behavior in the CPN model represented by the color set is verified by
CPN Tools, and then its process instance is about to run on WISE-PaaS to evaluate the
data stream engine performance and communication proxy QoS (quality of service). WISE-
PaaS is built into EIS. Among them, WISE-Agent provides abundant interaction-friendly
and intelligent interfaces. Its application is connected to the WISE-PaaS/RMM cloud
server, which is not only used to communicate and exchange information between edge
devices and cloud platforms but also has the function of a small database and lightweight
computing and analysis. The plug-in with a special protocol is configured to meet the
requirements of flexible and extended services. The instance of service orchestration with
information flow on WISE-PaaS is shown in Figure 3:

Figure 3. Instance of Service Orchestration Running on WISE-PaaS.



Appl. Sci. 2022, 12, 10436 11 of 16

A service consists of several businesses according to the verification model. The service
instance is assumed to include five segments of businesses, whose performance (service
delay) and QoS (communication queue) are measured on WISE-PaaS for EIS, service orches-
tration, and non-orchestration. The test platform supports the data stream design engine
(Node-RED), message passing (MQTT), function and service management, and output vi-
sualization. Service orchestration is based on business loads and node resources, and tasks
are dispatched via MQTT topics. The tests show that service orchestration achieves the best
results. Only EIS results come in second place because of reduced communication overhead
on a single EIS node. The result of non-orchestration warns that the result may deteriorate
due to mismatches between nodes and tasks if node resources are not properly utilized
for service orchestration. This also basically shows that service delay can be significantly
reduced by EIS and its service orchestration compared with centralized cloud computing.
If interactive and AI algorithms are used, an optimal performance can be achieved in
large-scale and complex environments. However, the benefit gained comes at a cost for
edge computing. Therefore, there is a trade-off in cost performance.

5. Process Mining for EIS

Process mining insights support process discovery; operational processes monitor
transform into automated actions execution, aim to discover, monitor, and improve busi-
ness processes by extracting knowledge from event logs available in EIS. It also offers
techniques for automatic discovery of process models from event logs, which enhance
discovered processes with event data. Discovered process models become more available
and understandable, which can be imported/exported from/to most modeling tools to
simulate. Moreover, process mining techniques can be easily integrated into the existing
suites, and process discovery models with different representations, such as Petri net,
transition systems, and BPMN, allow for the combination of different perspectives varying
from control flow to the perspective of resources.

The model with process mining for EIS mainly includes three parts: the event logs,
rule monitor (similar to Kanban information in the previous section) and service engine (as
work nodes in the previous section), which are defined as follows:

• Event logs: They are considered a starting point in the context of process mining. Each
event may refer to different objects from different object classes. A conventional event
log (trace) is a special case of this event data notion. Their formal definition is defined
as follows:
Let A ⊆ µA be a set of activity labels. Where A trace σ ∈ A∗ is a sequence of activity
labels. L ∈ β(A∗) is an event log, i.e., a multi-set of traces. Event projection can be
expressed as e = (Trace, name, org, time, state) ∈ µevent(See Table 2).

• Rule Monitor: Abstracted from context, formula, rule, and instance, it is able to analyze
future events. Let R ⊆ µr be a set of rules to be used for monitoring. rmR ∈ µlog → µRL
is the rule monitor, ∀L ∈ µlog.

• Service Engine: Based on actions (activity/operation), formula, and instance, it is able
to assess future rule instances. Let A ⊆ µa be a set of actions used by the service
engine. seA ∈ µlog → µAL is the service engine, ∀L ∈ µlog.

The architecture of process mining for EIS is shown in Figure 4:
There are two major components of rule monitoring (with the model, knowledge, and

rule) and service engine (with a series of actions) defined above. The sound structure of an
SWF-net reflects its behavior and vice versa, which includes routing constructs (sequential,
parallel, conditional, iterative) and workflow building blocks (AND-split, AND-join, OR-
split, OR-join). The mining algorithm, Algorithm α, is able to discover a large class of sound
WF-nets/SWF-nets on the basis of complete event logs, whose basic relations are expressed
as follows:

• Direct succession: x > y iff for case x is directly followed by y;
• Causality: x → y iff x > y and not y > x;
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• Parallel: x||y iff x > y and y > x;
• Choice: x#y iff not x > y and not y > x.

Figure 4. Architecture of Process Mining for EIS.

Notation A, σ, L, e, and R are the element symbols of process mining, which constitute
the basis for describing the model. The service business processes with the basic relations
(>,→, ||, #) can be mined by importing set L with σ and e into ProM software, combining
it with EIS rule R and applying algorithms (such as α Miner).

The process mining approach starts with a subset of model formal semantics (based
on token includes activities, start and end events, exclusive and parallel gateways), apply-
ing the α mining algorithm on the original event log L (a concrete case for EIS given in
Table 2). Therewith, a process model is discovered in the form of a well-defined control
flow modeling formalism, such as Petri nets, transition system, and causal nets process.

L = [trace1i, trace2j, trace3k. . . ] (1)

An event log is represented as a multi-set of traces, in which one trace can appear mul-
tiple (n) times. Multi-sets are also used to present the states of Petri nets and BPMN models.

The performance information for a Petri net can be visualized in the initial BPMN
model to show the behavioral properties of process models discovered from an event
log, and language relations between Petri nets and corresponding BPMN. Subsequently,
performance analyses provide the metrics, such as case arrival rate and average duration of
the activities, which aim to provide a simulation model and the corresponding simulated
event log as close to reality as possible.

Existing process mining tools provide users with a visual representation of process dis-
covery and performance analyses using event data in the form of event logs, which include
three main modules: process mining using mining algorithm (Algorithm α), simulation rep-
resentation (BPMN), and transformation of the generated events into an event log. BPMN
packages architecture and their functionality in the tool, such as ProM or Disco, provides
the ability to convert Petri nets, transition, and causal nets to BPMN. Moreover, the resource
and data flow perspectives can be discovered as well: Process trees with resources can be
converted to the BPMN model with lanes, and data Petri nets by the data-aware process
mining algorithm can be used to create BPMN models with data perspective.

The EIS is instantiated in a ProM plug-in, whose input objects are event logs shown in
Table 2:
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Table 2. Event Log.

Trace Name Org Time State

1 A JIT 2022-01-08T08:20:01 complete

1 B JIT 2022-01-08T08:21:01 complete

1 C JIT 2022-01-08T08:22:01 complete

1 D JIT 2022-01-08T08:23:01 complete

2 A JIT 2022-01-10T08:20:01 complete

...

3 A JIT 2022-01-12T08:20:01 complete

...

The process miner includes the following three aspects: 1© log summary: learn
about process event classes and their related properties in the dashboard, inspector,
and summary; 2© discovering processes: the model is mined into a Petri net by pro-
cess mining algorithm; 3© modeling for visualization: replays a log to obtain perfor-
mance information, and enhances the process. The event logs in Table 1 are expressed as
L = [ABCD3, ACBD3, AED4. . . ] according to Formula (1). Its event occurrences (absolute/
relative) are as follows: A = 10/27.8%, B = 6/16.7%, C = 6/16.7%, D = 10/27.8%, E = 4/11.1%.
The results mined by Alpha Miner and the inductive visual miner for an EIS instance are
shown in Figure 5:

Figure 5. Models mined in ProM.

The above process mining implementation for EIS can discover processes such as
proof-of-concept, to enhance and optimize the business processes. The experimental results
highlight the research:

• Rule monitors effectively detect violations to analyze future events through context,
formula, and rule;

• Service engine effectively generates corresponding actions to assess future rule in-
stances, with business (activity/operation) and formula;

• The application from event data improves business processes by process discovery.

Process mining can achieve structural models preserving behavior recorded in an
event log on the control flow perspective; Petri nets, causal nets, and the transition system
are generated from an event log by various control flow discovery algorithms.
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6. Conclusions

As an extension of cloud computing, edge computing has the advantages of IT decen-
tralization, infrastructure autonomy, edge hosting, and so on. Both of them complement
and depend on each other. The value of an organic whole of cloud-edge is that the func-
tions and experiences users obtain on any infrastructure are consistent with those on the
cloud, for cloud-edge-end applications. The container-based isolation ensures the business
security running on the edge, and the decoupling or loose coupling between resources and
services well supports the adaptation of heterogeneous resources. Edge computing fuses
with AI to carry out AI processing close to data sources (such as IoT sensors and devices),
which can effectively reduce time delay in IIoT.

With the increasing of the system scalability and process complexity in edge comput-
ing, on the one hand, it is necessary to effectively manage many internal infrastructures
and their massive data, combine them with heterogeneous objects (downward or south-
ward) in different communication protocols and standards, make rational use of cloud
computing service capabilities (upward or northward), and expand the integrated system
(eastward–westward); On the other hand, innovative BPI should be adopted to deal with
EIS, service orchestration, edge real-time computing and analysis.

Following the design methodology, physical objects are abstracted into structure
and behavior models to generate executable specifications. The standard function block
interface definition and business process logic are provided to map into software service.
The efficiency of development and deployment for EIS is improved on WISE-PaaS. Process
mining extracts service orchestration knowledge from event data available in EIS to solve
process-related problems of modeling, analysis, and monitoring for diverse industries. Our
conclusion is that in the post-cloud computing era, the key drivers provided by EIS will
become the core values in the implementation of the IoE application. EIS can be effectively
improved by constructing special attributes of model behavior, decoupling cloud-edge
intelligent services, deploying fine-grained service orchestration. Process mining obtains a
structural model in which the behavior is preserved in event data, and discovers various
process models (Petri net, BPMN) from event logs, to reinforce, analyze, and visualize
EIS processes.

There are still two issues that are worth further research:

• There are the limits on the methodology of the CPN model and process mining for
complex EIS, based on the control (process) behavior. In future research, it is necessary
to provide the methodology with “value-added” for service orchestration, such as data
attributes, which can adapt to well-established control/data structures and behaviors.

• Service orchestration has to go through multiple rigorous model validations, as well
as an instance running. In order to solve the above deficiencies, it is necessary to
design an efficient executable specification for comprehensive experimental settings
and performance comparison and to ensure the consistency of the entire methodology.
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