
Citation: Huang, S.-Y.; Lo, A.-h.;

Juan, J.S.-T. XOR-Based Meaningful

(n, n) Visual Multi-Secrets Sharing

Schemes. Appl. Sci. 2022, 12, 10368.

https://doi.org/10.3390/

app122010368

Academic Editors: Charles Tijus,

Kuei-Shu Hsu, Kuo-Kuang Fan,

Cheng-Chien Kuo, Teen-Hang Meen,

Jih-Fu Tu and Dimitris Mourtzis

Received: 30 August 2022

Accepted: 6 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

XOR-Based Meaningful (n, n) Visual Multi-Secrets
Sharing Schemes
Sheng-Yao Huang, An-hui Lo and Justie Su-Tzu Juan *

Department of Computer Science & Information Engineering, National Chi Nan University,
Nantou 54561, Taiwan
* Correspondence: jsjuan@ncnu.edu.tw

Abstract: The basic visual cryptography (VC) model was proposed by Naor and Shamir in 1994.
The secret image is encrypted into pieces, called shares, which can be viewed by collecting and
directly stacking these shares. Many related studies were subsequently proposed. The most recent
advancement in visual cryptography, XOR-based VC, can address the issue of OR-based VC’s poor
image quality of the restored image by lowering hardware costs. Simultaneous sharing of multiple
secret images can reduce computational costs, while designing shared images into meaningful
unrelated images helps avoid attacks and is easier to manage. Both have been topics of interest to
many researchers in recent years. This study suggests ways for XOR-based VCS that simultaneously
encrypts several secret images and makes each share separately meaningful. Theoretical analysis
and experimental results show that our methods are secure and effective. Compared with previous
schemes, our scheme has more capabilities.

Keywords: XOR-based visual cryptography; meaningful shares; multi-secret; secret sharing scheme;
no pixel expansion

1. Introduction

Visual cryptographic scheme (VCS) is a secret image-sharing method. In 1994, Naor
and Shamir proposed a common type of (t, n)-threshold VCS [1]. In this threshold (t, n)-VCS,
a secret binary image is encrypted to get n images (referred to as shares), in such a way
that it is impossible to learn anything about the original secret image, and then distributed
sequentially to n participants. The secret image recovery method is straightforward; after
collecting any t (or more) shares and stacking them together, and performing a simulated
stacking operation by Boolean ‘OR’ operation, secret information can be revealed directly
by the human visual system to identify the secret information without relying on complex
calculations or cryptography knowledge. If any (t – 1) or fewer shares are available, then
no secret will be revealed.

Early encryption methods for VCS generally used pixel expansion techniques, meaning
each pixel on a secret image is expanded into m pixels (m ≥ 2) on the shares. Thus, the
share size will be m times the size of the secret image. However, this will cause the restored
image to be deformed and expanded. Kafri and Keren proposed a random grid-based
visual cryptographic scheme (RGVCS) that can encrypt black and white (binary) images,
which can solve the problem of pixel expansion [2]. In other words, an RGVCS creates the
shares and restored image without pixel expansion. Inspired by Kafri and Keren, Shyu
proposed an RGVCS for grayscale/color images [3].

Contrast is the criterion for evaluating the visual quality of the recovered secret image.
Its value is between −1 and 1, with higher values indicating higher visual quality of the
restored image. When the contrast value is 0, the recovered image is a meaningless image;
and if the contrast value is negative, the image is a black-and-white reversed image of the
original secret image. The traditional stacking operation in VCS is an OR operation, and

Appl. Sci. 2022, 12, 10368. https://doi.org/10.3390/app122010368 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app122010368
https://doi.org/10.3390/app122010368
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-3654-2560
https://doi.org/10.3390/app122010368
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122010368?type=check_update&version=2

Appl. Sci. 2022, 12, 10368 2 of 22

the contrast of the restored image in an OR-based RGVCS can only reach 0.5 at most. Such
low reduction quality limits many development possibilities. To resolve the problem of
poor contrast in OR-based RGVCS, XOR-based RGVCS is proposed. The visual quality of
the recovered image by the XOR operation can be greatly improved because the contrast
value can theoretically be equal to 1.

In 2003, Tuyls et al. introduced a new visual cryptosystem using light polarization,
the operation of which is mathematically described by a XOR operation (a modulo-two
addition) [4]. So that the XOR-based VCS can be implemented by using a small, cheap
and lightweight decryption display, and it is more suitable for practical situations. In 2007,
Wang et al. proposed a XOR-based (n, n) RGVCS [5]. Although the generated share in
Wang et al.’s paper is not pixel-expanded and perfectly displays the secret image, some
issues are still refined. One of them is that the shares are meaningless, which will attract
the attention of cybercriminals and make it hard to manage.

In 2013, Wu and Sun proposed a (2, 2) generalized XOR-based RGVCS [6], where
the average light transmission of a share becomes adjustable. In their study, the visual
quality of the shares and recovered image are still not good enough due to the limitations
of the design method. In order to facilitate management and avoid unnecessary suspicion
and attacks, VCS has added a new concept to make shares meaningful in recent years.
Its main purpose is to make shares that look like a random grid no longer meaningless,
and users can easily identify who is who with the naked eye. In 2015, Ou et al. proposed
a (n, n) XOR-based RGVCS with meaningful shares [7] for increasing the image quality.
They define a variable β to balance the visual quality of the restored image with shares.
As the value of β becomes larger, the visual quality of the restored image will increase,
while the camouflage result of the share will decrease. Furthermore, their method provides
perfect black pixel reconstruction, which makes the restored image more recognizable by
human vision. In 2021, Lo and Juan proposed three (n, n) XOR-based RGVCS [8] to improve
Ou et al.’s method. The shares created in the scheme of Ou et al. must have the same
camouflage. Using Lo and Juan’s scheme allows shares to have various camouflage objects.
They are both methods of encrypting one secret image at a time.

In comparison to the VCS mentioned above, the visual multi-secret sharing scheme
(VMSSS) has the ability to simultaneously encrypt numerous secrets into shares. As a result,
it can reduce certain extra expenses while improving the encryption’s performance. In
recent years, various study projects on VMSSS have been made, including ([9–13]). In 2008,
Chen et al. proposed a four-secrets sharing scheme [11]. This method is encrypting four
secret images into the shares, and one can rotate one share by 0, 90, 180, and 270 degrees
and stack it on the other share to restore the four secret images, respectively. However,
this approach can only encrypt four square secrets at the same time. To break through the
constraints on the number and shape of secret images, Chang et al. in 2018 proposed a new
VMSSS via random grids [9]. One secret image is first divided into numerous fragments,
each of which is then independently encrypted to the associated share. By moving one
share 0, w/p, 2w/p, 3w/p, . . . , (N–1)w/p pixels and stacking it on another share, the first,
second, third, . . . , Nth secret images are recovered, where w is the width of the image.

In this paper, we propose four (n, n) XOR-based VMSSSs (or XOR-based RGVCSs) that
can simultaneously encrypt more than one secret image and separately make each share
disguised as a meaningful image. The rest of this paper is organized as follows. Section 2
shows the related work. Section 3 gives the proposed scheme and some experimental
results. Some analyses are presented in Section 4. The conclusion and future work are
given in Section 5.

2. Related Work

In this paper, we set a pixel to be 1 when it is black and 0 when it is white. To help
understand the proposed scheme, some related VCSs are introduced in this section.

Appl. Sci. 2022, 12, 10368 3 of 22

2.1. Random Grid-Based Visual Cryptography Scheme

Kafri and Keren proposed three basic RGVCS in 1987 [2]. In a random grid (RG), each
pixel can be either completely transparent (white) or completely opaque (black), and the
choice between the two options is chosen by a coin toss. There is no correlation between the
values of the different pixels in the array. They used S(i, j) to represent a pixel in the image
S and defined that S(i, j) = 1 when a pixel is black (opaque) and S(i, j) = 0 when a pixel is
white (transparent). They use Boolean ORs to compute “stacked” operations because the
results are close to human vision. The three basic RGVCS are as follows.

Algorithm KK1. [2]

Input: The secret image S with size w× h pixels.
Output: Two shares G1 and G2 with size w× h.

1. Generate a w× h random grid G1.

2. For i = 0 to w− 1 do
For j = 0 to h− 1 do

If (S(i, j) == 0)
then G2(i, j) = G1(i, j);

else G2(i, j) = G1(i, j);

3. Return G1 and G2.

Algorithm KK2. [2]

Input: The secret image S with size w× h pixels.
Output: Two shares G1 and G2 with size w× h.

1. Generate a w× h random grid G1.

2. For i = 0 to w− 1 do
For j = 0 to h− 1 do

If (S(i, j) == 0)
then G2(i, j) = G1(i, j);

else G2(i, j) = random(0, 1);

3. Return G1 and G2.

Algorithm KK3. [2]

Input: The secret image S with size w× h pixels.
Output: Two shares G1 and G2 with size w× h.

1. Generate a w× h random grid G1.

2. For i = 0 to w− 1 do
For j = 0 to h− 1 do

If (S(i, j) == 0)
then G2(i, j) = random(0, 1);

else G2(i, j) = G1(i, j);

3. Return G1 and G2.

2.2. XOR-Based Visual Secret Sharing Scheme with Meaningful Shares

An (n, n)-threshold XOR-based VCS with meaningful shares was proposed by Ou et al.
in 2015 [7]. Their encryption scheme includes three algorithms that may encrypt a secret
image S into n meaningful shares. We briefly introduce these three algorithms as follows.

In their Algorithm 1, a matrix Mn is formed. Mn is a 2n × n matrix, and the element
in row i is the binary representation of i – 1. Then, partition Mn into two sub-matrices,
Modd

n and Meven
n , such that for each row vector in Modd

n (Meven
n , respectively), the hamming

weight is odd (even, respectively). Their Algorithm 2 gave the basic algorithm for a (n, n)

Appl. Sci. 2022, 12, 10368 4 of 22

XOR-based VCS: For each position (i, j) in the secret image S, if S(i, j) = 0 (1, respectively),
construct n share pixels R1(i, j), . . . , Rn(i, j). by randomly choosing a row vector r of the
matrix Meven

n . (Modd
n , respectively) then assign the value of the (r, k) element in the matrix

to Rk(i, j). In their Algorithm 3, for each position (i, j) in the secret image S, they generate a
random bit d, which is 1 with probability β at first. If d = 1, the shares are equal to R1(i, j),
. . . , Rn(i, j). Otherwise, let the pixel of each share be the value of the cover image C(i, j),
except for a random share if n × C(i, j) = 0 mod 2.

We will design our VCS using the idea of their VCS, encrypting the secret image into
n meaningful shares.

2.3. Visual Multiple Secrets Sharing Scheme by Random Grids

A (2, 2)-visual multiple secret sharing scheme (VMSSS) was proposed by Chang
et al. [9] in 2018. They started by defining three functions fp, fRG and fORG in order to
simultaneously encrypt N secret images. Function fp randomly chose a pixel from S;
Function fRG is given for the first encryption; and Function fORG is given for the rest of the
encryption. The main idea of Chang et al.’s VMSSS is to evenly encrypt any two consecutive
secret images. In their algorithm, the function fp is first used to randomly select a pixel
from the pair of images. Then, randomly select a pair of consecutive secret images ((0, 1),
(1, 2), . . . , or (N–1, 0)). Then, the selected pixel pair is encrypted by the functions fRG and
fORG. Repeat the above steps until all pixels in all shares are generated.

The paper defines distortion as the unencrypted ratio in the algorithm. The distortion
of their algorithm is ((N–2)p + 1)/Np, where p is selected by the user, which must be the
divisor of w. Besides, N − 1 and p must be mutually prime.

We will refer to their scheme of encrypting multiple secret images into 2 shares at the
same time as our first step.

3. Main Scheme

In this section, based on a random grid, we want to simultaneously encrypt multiple
secret images into n meaningful shares, and only collect all n shares and use XOR as the
operation to recover all secret images. We will give four (n, n) threshold VMSSSs with
meaningful shares to separately solve the same problem in the following sections. Their
models are all similar; they only differ in a key step—Algorithm III. So, we will firstly
introduce the models of the encryption and decryption.

3.1. The Process and Definition of the Proposed Schemes

Table 1 provides illustrations of some of the symbols and parameters used in this
paper to aid in understanding the proposed VCS.

Table 1. Some symbols and parameters used in this paper.

Notation Description

0 A white pixel
1 A black pixel
Si The i-th secret image
Di The i-th camouflage image
Ci The i-th meaningless image
Mi The i-th (meaningful) share
Ri The i-th reconstructed image

S(i, j) The value of the pixel at position (i, j) in image S
N The number of secret images
n The number of shares and camouflaged images
p The number of pieces that an image will be divided into

The process of our schemes all consist of three encryption algorithms and one decryp-
tion algorithm. The models for the proposed encryption and decryption procedures are
shown in Figures 1 and 2, respectively.

Appl. Sci. 2022, 12, 10368 5 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 21

The process of our schemes all consist of three encryption algorithms and one de-
cryption algorithm. The models for the proposed encryption and decryption procedures
are shown in Figures 1 and 2, respectively.

Figure 1. The model of the encryption process of the proposed scheme.

Figure 2. The model of the decryption process of the proposed scheme.

3.2. Algorithm I. XOR-Based Visual Multi-Secret Scheme
We apply a XOR operation rather than OR when encrypting input images in our Al-

gorithm I since Chang et al.’s [9] served as inspiration. We were able to successfully en-
hance Chang et al.’s scheme’s restoring effect as a consequence. Here, we modify the two
original functions—fRG and fORG—to create fXRG and fXORG. Actually, fXRG can be selected from
any one of the three random grid algorithms in [2] (as we described in Section 2.1), which
inputs a pixel of the secret image, then outputs two cipher-pixels for two shares. fXORG is
the function based on fXRG, which inputs a cipher-pixel of shares and a pixel of the secret
image, then outputs the other cipher-pixel. Although these three random grid algorithms
(KK1, KK2, and KK3 in Section 2.1) in [2] are computed in the OR-operation, it is not dif-
ficult to see that they also apply to the XOR-operation. Therefore, there are also three pos-
sible design methods for the function fXRG and fXORG. We use the one with the best contrast
in the recovered image, listed below.

Function 𝒇𝑿𝑹𝑮
Input: The pixel of the secret image 𝑆(𝑖, 𝑗).
Output: The pixels of the two shares 𝐺ଵ(𝑖, 𝑗) and 𝐺ଶ(𝑖, 𝑗).
1. 𝐺ଵ(𝑖, 𝑗) = random(0, 1);
2. If (𝑆(𝑖, 𝑗) == 0)

then 𝐺ଶ(𝑖, 𝑗) = 𝐺ଵ(𝑖, 𝑗);
else 𝐺ଶ(𝑖, 𝑗) = 𝐺ଵ(𝚤, 𝚥)തതതതതതതതത;

3. Return 𝐺ଵ(𝑖, 𝑗) and 𝐺ଶ(𝑖, 𝑗).

Figure 1. The model of the encryption process of the proposed scheme.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 21

The process of our schemes all consist of three encryption algorithms and one de-
cryption algorithm. The models for the proposed encryption and decryption procedures
are shown in Figures 1 and 2, respectively.

Figure 1. The model of the encryption process of the proposed scheme.

Figure 2. The model of the decryption process of the proposed scheme.

3.2. Algorithm I. XOR-Based Visual Multi-Secret Scheme
We apply a XOR operation rather than OR when encrypting input images in our Al-

gorithm I since Chang et al.’s [9] served as inspiration. We were able to successfully en-
hance Chang et al.’s scheme’s restoring effect as a consequence. Here, we modify the two
original functions—fRG and fORG—to create fXRG and fXORG. Actually, fXRG can be selected from
any one of the three random grid algorithms in [2] (as we described in Section 2.1), which
inputs a pixel of the secret image, then outputs two cipher-pixels for two shares. fXORG is
the function based on fXRG, which inputs a cipher-pixel of shares and a pixel of the secret
image, then outputs the other cipher-pixel. Although these three random grid algorithms
(KK1, KK2, and KK3 in Section 2.1) in [2] are computed in the OR-operation, it is not dif-
ficult to see that they also apply to the XOR-operation. Therefore, there are also three pos-
sible design methods for the function fXRG and fXORG. We use the one with the best contrast
in the recovered image, listed below.

Function 𝒇𝑿𝑹𝑮
Input: The pixel of the secret image 𝑆(𝑖, 𝑗).
Output: The pixels of the two shares 𝐺ଵ(𝑖, 𝑗) and 𝐺ଶ(𝑖, 𝑗).
1. 𝐺ଵ(𝑖, 𝑗) = random(0, 1);
2. If (𝑆(𝑖, 𝑗) == 0)

then 𝐺ଶ(𝑖, 𝑗) = 𝐺ଵ(𝑖, 𝑗);
else 𝐺ଶ(𝑖, 𝑗) = 𝐺ଵ(𝚤, 𝚥)തതതതതതതതത;

3. Return 𝐺ଵ(𝑖, 𝑗) and 𝐺ଶ(𝑖, 𝑗).

Figure 2. The model of the decryption process of the proposed scheme.

3.2. Algorithm I. XOR-Based Visual Multi-Secret Scheme

We apply a XOR operation rather than OR when encrypting input images in our
Algorithm I since Chang et al.’s [9] served as inspiration. We were able to successfully
enhance Chang et al.’s scheme’s restoring effect as a consequence. Here, we modify the two
original functions—fRG and fORG—to create fXRG and fXORG. Actually, fXRG can be selected
from any one of the three random grid algorithms in [2] (as we described in Section 2.1),
which inputs a pixel of the secret image, then outputs two cipher-pixels for two shares.
fXORG is the function based on fXRG, which inputs a cipher-pixel of shares and a pixel of
the secret image, then outputs the other cipher-pixel. Although these three random grid
algorithms (KK1, KK2, and KK3 in Section 2.1) in [2] are computed in the OR-operation, it
is not difficult to see that they also apply to the XOR-operation. Therefore, there are also
three possible design methods for the function fXRG and fXORG. We use the one with the
best contrast in the recovered image, listed below.

Function fXRG

Input: The pixel of the secret image S(i, j).
Output: The pixels of the two shares G1(i, j) and G2(i, j).

1. G1(i, j) = random(0, 1);

2. If (S(i, j) == 0)
then G2(i, j) = G1(i, j);

else G2(i, j) = G1(i, j);

3. Return G1(i, j) and G2(i, j).

Appl. Sci. 2022, 12, 10368 6 of 22

FunctionfXORG

Input: Two pixels of the secret image S(i, j) and one share G1(i, j).
Output: A pixel of the other share G2(i, j).

1. If (S(i, j) == 0)
then G2(i, j) = G1(i, j);

else G2(i, j) = G1(i, j);

2. Return G2(i, j).

Algorithm 1, shown below (for Algorithm I), has the goal of simultaneously encrypting
multiple secret images into two shares. The purpose is to shift one of the shares by i unit
and superimpose it back into another share to restore ith secret image. Before starting
Algorithm 1, we need to number the N secret images S0, S1, S2, . . . , SN–2, SN–1. Then, we
assign two consecutive secret images as pairs (S0, S1), (S1, S2), . . . , (SN–2, SN–1), (SN–1, S0).
In a secret image of size w × h, the secret image is split into p parts, which means that each
shift is in units of (w/p) pixels. In addition, the value of p must be mutually prime with N–1;
otherwise, when generating the share, the value of the same position will be repeatedly
generated in the loop, causing the stacked share to be unsuccessful in recovering the secret
image. We randomly chose any two consecutive secret images (SA, SA + 1) to encrypt each
pixel. Since when A = N–1, the last secret image, the next must be the first secret image, 0.
The formula for the variables will be different in this case than in the other cases, so Step 5
must be separately presented. The schematic diagram of Algorithm 1 is shown in Figure 3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 21

Function 𝒇𝑿𝑶𝑹𝑮
Input: Two pixels of the secret image 𝑆(𝑖, 𝑗) and one share 𝐺ଵ(𝑖, 𝑗).
Output: A pixel of the other share 𝐺ଶ(𝑖, 𝑗).
1. If (𝑆(𝑖, 𝑗) == 0)

then 𝐺ଶ(𝑖, 𝑗) = 𝐺ଵ(𝑖, 𝑗);
else 𝐺ଶ(𝑖, 𝑗) = 𝐺ଵ(𝚤, 𝚥)തതതതതതതതത;

2. Return 𝐺ଶ(𝑖, 𝑗).

Algorithm 1, shown below (for Algorithm I), has the goal of simultaneously encrypt-
ing multiple secret images into two shares. The purpose is to shift one of the shares by i
unit and superimpose it back into another share to restore ith secret image. Before starting
Algorithm 1, we need to number the N secret images S0, S1, S2, …, SN–2, SN–1. Then, we
assign two consecutive secret images as pairs (S0, S1), (S1, S2), …, (SN–2, SN–1), (SN–1, S0). In a
secret image of size w × h, the secret image is split into p parts, which means that each shift
is in units of (w/p) pixels. In addition, the value of p must be mutually prime with N–1;
otherwise, when generating the share, the value of the same position will be repeatedly
generated in the loop, causing the stacked share to be unsuccessful in recovering the secret
image. We randomly chose any two consecutive secret images (SA, SA + 1) to encrypt each
pixel. Since when A = N–1, the last secret image, the next must be the first secret image, 0.
The formula for the variables will be different in this case than in the other cases, so Step
5 must be separately presented. The schematic diagram of Algorithm 1 is shown in Figure
3.

Figure 3. The schematic diagram of Algorithm 1 when A = 0.

In Step 1 of Algorithm 1, we first select a random secret image SA from N secret im-
ages, and Step 2 select a fresh pixel G1(i, j). Step 3 generates two pixels by the Function
fXRG. The first pixel G1(i, j) is at the same position as SA(i, j). The second pixel G2(i + A ×
(w/p), j) is shifted by A × (w/p) pixels for SA(i, j). The next encryption process will be divided
into two parts, depending on whether the selected secret image SA is the last secret image
or not. If SA is the last secret image (SA = SN–1), the secret SA+1 encrypted with SA will be out
of range, so we set it to be S0. In this case, the calculation will be different from the normal
case. If the selected secret image SA is not the last one (SA = {S0, S1, S2, …, SN–2}), go to Step
4. The pixel G2((i + A’ × w/p) mod w, j) is generated by the Function fXORG based on another
secret image SA+1 of the same group with the share G1(i, j). Then, the pixel G2((i + A’ × w/p)
mod w, j) is used with the known secret image pixel SA((i + (k + 1) × w/p) mod w, j) to
generate pixel G1((i + (k + 1) × w/p) mod w, j), and the process is repeated p times. If the

Figure 3. The schematic diagram of Algorithm 1 when A = 0.

In Step 1 of Algorithm 1, we first select a random secret image SA from N secret images,
and Step 2 select a fresh pixel G1(i, j). Step 3 generates two pixels by the Function fXRG. The
first pixel G1(i, j) is at the same position as SA(i, j). The second pixel G2(i + A × (w/p), j) is
shifted by A × (w/p) pixels for SA(i, j). The next encryption process will be divided into two
parts, depending on whether the selected secret image SA is the last secret image or not.
If SA is the last secret image (SA = SN–1), the secret SA+1 encrypted with SA will be out of
range, so we set it to be S0. In this case, the calculation will be different from the normal
case. If the selected secret image SA is not the last one (SA = {S0, S1, S2, . . . , SN–2}), go to
Step 4. The pixel G2((i + A’ × w/p) mod w, j) is generated by the Function fXORG based on
another secret image SA+1 of the same group with the share G1(i, j). Then, the pixel G2((i +

Appl. Sci. 2022, 12, 10368 7 of 22

A’ × w/p) mod w, j) is used with the known secret image pixel SA((i + (k + 1) × w/p) mod
w, j) to generate pixel G1((i + (k + 1) × w/p) mod w, j), and the process is repeated p times.
If the selected secret image SA is the last one (SA = SN–1), go to Step 5. We generate a group
of pixels on share G2 based on another secret image S0 and the associated pixels on share
G1. Further, we use the generated pixels on G2 to encrypt the associated pixels on G1 by
SN–1. Repeat this step p times to finish. Finally, repeat the above Step 1–Step 5 until all the
pixels in the shares G1 and G2 are generated.

Algorithm 1.

Input: N secret images S0, S1, . . . , SN−1 with size w× h pixels, a positive integer p (must be
a divisor of w, and coprime to N – 1).
Output: Two shares G1 and G2 with size w× h.

1. A = random (0, N − 1)

2. SA(i, j)← fp(SA)

3. Generate two pixels G1(i, j) and G2((i + A× w/p) % w, j) by Function fXRG(SA(i, j)).
If A ∈ {0, 1, . . . , N − 2},

then go to Step 4.
else (A = N − 1),

go to Step 5.

4. For k = 0 to p− 1 do
Let A′ = (A + k + 1) % p.
G2((i + A′ × w/p) % w, j) = fXORG(SA+1((i + k× w/p) % w, j),

G1((i + k× w/p) % w, j)).
G1((i + (k + 1)× w/p) % w, j) = fXORG(SA((i + (k + 1)× w/p) % w, j),

G2((i + A′ × w/p) % w, j)).

5. For k = 0 to p− 1 do
Let A′′ = 1− N.
G2((i + A′′ × w/p) % w, j) = fXORG(S0((i + k× A′′ × w/p) % w, j),

G1((i + k× A′′ × w/p) % w, j)).
G1((i + (k + 1)× A′′ × w/p) % w, j) = fXORG(SA((i + (k + 1)× A′′ × w/p) % w, j),

G2((i + k× A′′ × w/p) % w, j))

6. Repeat Steps 1–5 until all pixels of two shares G1 and G2 are processed.

Steps 4–5 including O(p) commands, which will be executed w× h/p times. So the
time complexity of Algorithm 1 is O(w× h).

3.3. Algorithm II. Augmented Shares Scheme

Algorithm II extends the two shares generated by Algorithm I to n shares, so that n
participants can share the secret image together. They will keep their own share, so the
secret image cannot be recovered without any of them during recovery. In fact, Algorithm
II directly encrypts G1 into bn/2c shares and G2 into bn/2c shares. After calculating the
number of X, Y, we start to pick a pixel (i, j) and assign values to all of the shares C0 ~
Cn–1 in the same pixel position. As with coin tosses, the value is set to 0 or 1, with a 1/2
chance. Next, we calculate the sum of C0(i, j) ~ CX–1(i, j) as s, and CX(i, j) ~ Cn–1(i, j) as t.
In the process of giving values to the first part of the share, we first determine whether
G1(i, j) is white or not. If it is white (= 0), and the sum s is odd, we also randomly select Cx
from these X shares; let Cx(i, j) = Cx (i, j). If they add up to an even number, their values
are not changed. If G1(i, j) is black (= 1), and if the sum s is even, we randomly select Cx
from these X shares; let Cx(i, j) = Cx (i, j) again. If s is an odd number, their values are not
changed. The second part of the share is calculated in the same way as the first part. We
present Algorithm 2 for Algorithm II as shown below. The time complexity of Algorithm 2
is also O(whn).

Appl. Sci. 2022, 12, 10368 8 of 22

Algorithm 2.

Input: Two shares G1 and G2 with size w× h, and a positive integer n ≥ 2.
Output: n shares C0, C1, . . . , Cn−1 with size w× h.

1. Let X = dn/2e and Y = dn/2e.

2. For each pixel (i, j){0 ≤ i ≤ w, 0 ≤ j ≤ h}, do

3. x = random (0, X− 1), y = random (0, Y− 1).

4. C0(i, j), . . . , Cn−1(i, j) = random(0, 1), and calculate s = C0(i, j) + . . . + CX−1(i, j),
t = CX(i, j) + . . . + Cn−1(i, j).

5. If (G1(i, j) = 0 and s is odd) or (G1(i, j) = 1 and s is even)
then Cx(i, j) = Cx (i, j).

6. If (G2(i, j) = 0 and t is odd) or (G2(i, j) = 1 and t is even)
then CX+y(i, j) = CX+y (i, j).

7. Return C0, C1, . . . , Cn−1.

3.4. Algorithm III. Meaningful Shares Scheme

We try to give the shares produced by Algorithm II with meaning in this subsection.
To specify the ratio of a share that is required to be covered, we create the parameter γ

(0 ≤ γ ≤ 1) in this case. When d = 0 (with probability 1–γ), Algorithm III directly copies
the output pixels of Algorithm II as the final output share. When d = 1 (with probability
γ), Algorithm III first copies the camouflaged pixels into the final output shares, and then
encrypts them to remove the disguised parts when decrypting. When γ = 1, it means that
the whole share is camouflaged. When γ = 0.5, it means that the proportion of pixels that
are camouflaged in a share is about 50% of all pixels, and the proportion of pixels that are
not camouflaged is 50% of all pixels. When γ = 0, it means that the whole share has no
disguise. The size of the γ also affects the quality of the restored image, and the flexible
adjustment of γ makes it easier for users to make decisions. Therefore, as γ increases, more
of the shares are camouflaged. We design four different methods for Algorithm III so that
users can choose the method that best satisfies their needs depending on the condition.
Algorithm 3 represents Method 1, called average encryption; the other three methods will
use it as the basic idea of the extension. The flow chart for Method 1 Steps 1–4 is shown in
Figure 4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 21

Algorithm 2.
Input: Two shares 𝐺ଵ and 𝐺ଶ with size 𝑤 × ℎ, and a positive integer 𝑛 ≥ 2.
Output: n shares 𝐶଴, 𝐶ଵ, … , 𝐶௡ିଵ with size 𝑤 × ℎ.
1. Let 𝑋 = ⌈𝑛/2⌉ and 𝑌 = ⌊𝑛/2⌋.
2. For each pixel (𝑖, 𝑗)  {0 ≤ 𝑖 ≤ 𝑤, 0 ≤ 𝑗 ≤ ℎ}, do
3. x = random(0, 𝑋 − 1), y = random(0, 𝑌 − 1).
4. 𝐶଴(𝑖, 𝑗), … , 𝐶௡ିଵ(𝑖, 𝑗) = random(0, 1), and calculate s = 𝐶଴(𝑖, 𝑗) + ⋯ + 𝐶௑ିଵ(𝑖, 𝑗), t =

𝐶௑(𝑖, 𝑗) + ⋯ + 𝐶௡ିଵ(𝑖, 𝑗).
5. If (𝐺ଵ(𝑖, 𝑗) = 0 and s is odd) or (𝐺ଵ(𝑖, 𝑗) = 1 and s is even)

then 𝐶௫(𝑖, 𝑗) = 𝐶௫ (𝑖, 𝑗).
6. If (𝐺ଶ(𝑖, 𝑗) = 0 and t is odd) or (𝐺ଶ(𝑖, 𝑗) = 1 and t is even)

then 𝐶௑ା௬(𝑖, 𝑗) = 𝐶௑ା௬ (𝑖, 𝑗).
7. Return 𝐶଴, 𝐶ଵ, … , 𝐶௡ିଵ.

3.4. Algorithm III. Meaningful Shares Scheme
We try to give the shares produced by Algorithm II with meaning in this subsection.

To specify the ratio of a share that is required to be covered, we create the parameter γ
(0 ≤ 𝛾 ≤ 1) in this case. When d = 0 (with probability 1–γ), Algorithm III directly copies
the output pixels of Algorithm II as the final output share. When d = 1 (with probability
γ), Algorithm III first copies the camouflaged pixels into the final output shares, and then
encrypts them to remove the disguised parts when decrypting. When γ = 1, it means that
the whole share is camouflaged. When γ = 0.5, it means that the proportion of pixels that
are camouflaged in a share is about 50% of all pixels, and the proportion of pixels that are
not camouflaged is 50% of all pixels. When γ = 0, it means that the whole share has no
disguise. The size of the γ also affects the quality of the restored image, and the flexible
adjustment of γ makes it easier for users to make decisions. Therefore, as γ increases, more
of the shares are camouflaged. We design four different methods for Algorithm III so that
users can choose the method that best satisfies their needs depending on the condition.
Algorithm 3 represents Method 1, called average encryption; the other three methods will
use it as the basic idea of the extension. The flow chart for Method 1 Steps 1–4 is shown in
Figure 4.

Figure 4. The flow chart of Method 1 Steps 1-4. Figure 4. The flow chart of Method 1 Steps 1–4.

Appl. Sci. 2022, 12, 10368 9 of 22

In the most important step (main different step with other methods), Step 4 when d
= 1, we must encrypt the camouflage image D into the share M. First, give the value of
the camouflage image to the meaningful sharing image M0~n–1((i + k × w/p) mod w, j) =
D0~n–1((i + k × w/p) mod w, j) for k = 0 to p. Next, we must calculate whether the result of
the Boolean XOR operation on the shares M0 ~ Mn–1 is the same as the selected Zth secret
image SZ((i + k × w/p) mod w, j). If it is different, proceed with the following calculation:
let X is ?n/2?, and we randomly select one Mf among n meaningful sharing images. If the
selected image is among M0 ~ MX–1, let the new value of Mf((i + k × w/p) mod w, j) to be
M f ((i + k× w/p) mod w, j). If the selected Mf is among MX ~ Mn–1, let the new value of
Mf((i + (k + Z) × w/p) mod w, j) be M f ((i + (k + Z)× w/p) mod w, j). Executing p times
generates the pixels in these positions. k has an initial value of 0 and is incremented by 1
each time it finishes.

Algorithm 3. [Method 1] Average encryption

Input: N secret images S0, S1, . . . , SN−1, n meaningless shares C0, C1, . . . , Cn−1, n
camouflage images D0, D1, . . . , Dn−1, all of them with size w× h, and a positive
integer p.
Output: n meaningful shares M0, . . . , Mn−1 with size w× h.

1. Let X = dn/2e, Y = dn/2e, and randomly select a pixel (i, j){0 ≤ i ≤ w, 0 ≤ j ≤ h}.

2. Z = random (0, N − 1).

3. Define a number d = random (0, 1), which is 1 with probability γ.

4. If d = 0 then
For k = 0 to p do

For r = 0 to n – 1 do.
Mr((i + k× w/p) % w, j) = Cr((i + k× w/p) % w, j)

else
For k = 0 to p do

For r = 0 to n – 1 do
Mr((i + k× w/p) % w, j) = Dr((i + k× w/p) % w, j).

For k = 0 to p do
If (M0((i + k× w/p)%w, j)⊕ . . .⊕MX−1((i + k× w/p)%w, j)⊕

MX((i + (k + Z)× w/p)%w, j)⊕ . . .⊕Mn−1((i + (k + Z)× w/p)%w, j) 6=
Sz((i + k× w/p)%w, j)), then

Let f = random(0, n – 1).
If (f < X) then

M f ((i + k× w/p) % w, j) = M f ((i + k× w/p) % w, j).
else

M f ((i + (k + Z)× w/p) % w, j)) = M f ((i + (k + Z)× w/p) % w, j).

5. Repeat Steps 1–4 until all pixels are processed in n meaningful shares, then return
M0, M1, . . . , Mn−1.

The time complexity of Method 1 is O(whn). Next, we will list some experimental
results to better understand each of our proposed methods. Figure 5 shows two secret
images, and five camouflage images used in the following experiments, and Figure 6 shows
the experimental results of Method 1. The size of each image is 720 × 720 pixels.

Appl. Sci. 2022, 12, 10368 10 of 22

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 21

In the most important step (main different step with other methods), Step 4 when d
= 1, we must encrypt the camouflage image D into the share M. First, give the value of the
camouflage image to the meaningful sharing image M0~n–1((i + k × w/p) mod w, j) = D0~n–1((i
+ k × w/p) mod w, j) for k = 0 to p. Next, we must calculate whether the result of the Boolean
XOR operation on the shares M0 ~ Mn–1 is the same as the selected Zth secret image SZ((i +
k × w/p) mod w, j). If it is different, proceed with the following calculation: let X is n/2,
and we randomly select one Mf among n meaningful sharing images. If the selected image
is among M0 ~ MX–1, let the new value of Mf((i + k × w/p) mod w, j) to be
𝑀௙((𝑖 + 𝑘 × 𝑤/𝑝) 𝑚𝑜𝑑 𝑤, 𝑗). If the selected Mf is among MX ~ Mn–1, let the new value of Mf((i
+ (k + Z) × w/p) mod w, j) be 𝑀௙((𝑖 + (𝑘 + 𝑍) × 𝑤/𝑝) 𝑚𝑜𝑑 𝑤, 𝑗). Executing p times generates
the pixels in these positions. k has an initial value of 0 and is incremented by 1 each time
it finishes.

Algorithm 3. [Method 1] Average encryption
Input: N secret images 𝑆଴, 𝑆ଵ, … , 𝑆ேିଵ, n meaningless shares 𝐶଴, 𝐶ଵ, … , 𝐶௡ିଵ, n camouflage

images 𝐷଴, 𝐷ଵ, … , 𝐷௡ିଵ, all of them with size 𝑤 × ℎ, and a positive integer p.
Output: n meaningful shares 𝑀଴, … , 𝑀௡ିଵ with size 𝑤 × ℎ.
1. Let 𝑋 = ⌈𝑛/2⌉, 𝑌 = ⌊𝑛/2⌋, and randomly select a pixel (𝑖, 𝑗)  {0 ≤ 𝑖 ≤ 𝑤, 0 ≤ 𝑗 ≤

ℎ}.
2. Z = random(0, 𝑁 − 1).
3. Define a number d = random(0, 1), which is 1 with probability γ.
4. If 𝑑 = 0 then

For 𝑘 = 0 to 𝑝 do
For r = 0 to n – 1 do

𝑀௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗) = 𝐶௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗).
else

For 𝑘 = 0 to 𝑝 do
For r = 0 to n – 1 do

𝑀௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗) = 𝐷௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗).
For 𝑘 = 0 to 𝑝 do

If (𝑀଴((𝑖 + 𝑘 × 𝑤/𝑝)%𝑤, 𝑗) ⊕ … ⊕ 𝑀௑ିଵ((𝑖 + 𝑘 × 𝑤/𝑝)%𝑤, 𝑗) ⊕ 𝑀௑((𝑖 + (𝑘 +
𝑍) × 𝑤/𝑝)%𝑤, 𝑗) ⊕ … ⊕ 𝑀௡ିଵ((𝑖 + (𝑘 + 𝑍) × 𝑤/𝑝)%𝑤, 𝑗) ≠ 𝑆௭((𝑖 + 𝑘 × 𝑤/
𝑝)%𝑤, 𝑗)), then

Let f = random(0, n – 1).
If (𝑓 < 𝑋) then

𝑀௙((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗) = 𝑀௙((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗).
else

𝑀௙((𝑖 + (𝑘 + 𝑍) × 𝑤/𝑝) % 𝑤, 𝑗)) = 𝑀௙((𝑖 + (𝑘 + 𝑍) × 𝑤/𝑝) % 𝑤, 𝑗).
5. Repeat Steps 1–4 until all pixels are processed in n meaningful shares, then return

𝑀଴, 𝑀ଵ, … , 𝑀௡ିଵ.

The time complexity of Method 1 is 𝑂(𝑤ℎ𝑛). Next, we will list some experimental
results to better understand each of our proposed methods. Figure 5 shows two secret
images, and five camouflage images used in the following experiments, and Figure 6
shows the experimental results of Method 1. The size of each image is 720  720 pixels.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 5. (a,b) Secret images S0, S1, (c)–(g) Camouflage images D0, …, D4. Figure 5. (a,b) Secret images S0, S1, (c–g) Camouflage images D0, . . . , D4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 10 of 21

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 6. Experimental results by Method 1 for (5, 5) with 𝑝 = 45, 𝛾 = 0.5. (a,b) Restored images R0,
R1, (c)–(g) Shares M0, …, M4.

In Method 1, the white part of the secret images in the restored images are affected
by the camouflaged images. Therefore, in order to remove the influence of the camouflage
images, we make the pixels involved in camouflage appear black when restored in
Method 2: Enhanced encryption. Algorithm 4 shows Method 2 as follows.

Algorithm 4. [Method 2] Enhanced encryption
Input: N secret images 𝑆଴, 𝑆ଵ, … , 𝑆ேିଵ, n meaningless shares 𝐶଴, 𝐶ଵ, … , 𝐶௡ିଵ, n camouflage

images 𝐷଴, 𝐷ଵ, … , 𝐷௡ିଵ, all of them with size 𝑤 × ℎ, and a positive integer p.
Output: n meaningful shares 𝑀଴, … , 𝑀௡ିଵ with size 𝑤 × ℎ.
1. Let 𝑋 = ⌈𝑛/2⌉, 𝑌 = ⌊𝑛/2⌋, and randomly select a pixel (𝑖, 𝑗)  {0 ≤ 𝑖 ≤ 𝑤, 0 ≤ 𝑗 ≤

ℎ}.
2. Z = random(0, 𝑁 − 1).
3. Define a number d = random(0, 1), which is 1 with probability γ.
4. If 𝑑 = 0 then

For 𝑘 = 0 to 𝑝 do
For r = 0 to n – 1 do

𝑀௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗) = 𝐶௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗).
else
For 𝑘 = 0 to 𝑝 do

For r = 0 to n – 1 do
𝑀௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗) = 𝐷௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗).

For 𝑘 = 0 to 𝑝 do
If (𝑀଴((𝑖 + 𝑘 × 𝑤/𝑝)%𝑤, 𝑗) ⊕. . .⊕ 𝑀௑ିଵ((𝑖 + 𝑘 × 𝑤/𝑝)%𝑤, 𝑗) ⊕ 𝑀௑((𝑖 + (𝑘 +

𝑍) × 𝑤/𝑝)%𝑤, 𝑗) ⊕. . .⊕ 𝑀௡ିଵ((𝑖 + (𝑘 + 𝑍) × 𝑤/𝑝)%𝑤, 𝑗) ≠ 1), then
Let f = random(0, n – 1).
If (𝑓 < 𝑋) then

𝑀௙((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗) = 𝑀௙((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗).
else

𝑀௙((𝑖 + (𝑘 + 𝑍) × 𝑤/𝑝) % 𝑤, 𝑗)) = 𝑀௙((𝑖 + (𝑘 + 𝑍) × 𝑤/𝑝) % 𝑤, 𝑗).
5. Repeat Steps 1–4 until all pixels are processed in n meaningful shares, then return

𝑀଴, 𝑀ଵ, … , 𝑀௡ିଵ.

The difference between Method 1 and Method 2 is the change in statement in Step 4,
so the time complexity of Method 2 is still 𝑂(𝑤ℎ𝑛). Figure 7 shows the flow chart of
Method 2 Steps 1-4, and Figure 8 shows the experimental results of Method 2.

Figure 6. Experimental results by Method 1 for (5, 5) with p = 45, γ = 0.5. (a,b) Restored images R0,
R1, (c–g) Shares M0, . . . , M4.

In Method 1, the white part of the secret images in the restored images are affected by
the camouflaged images. Therefore, in order to remove the influence of the camouflage
images, we make the pixels involved in camouflage appear black when restored in Method
2: Enhanced encryption. Algorithm 4 shows Method 2 as follows.

Algorithm 4. [Method 2] Enhanced encryption

Input: N secret images S0, S1, . . . , SN−1, n meaningless shares C0, C1, . . . , Cn−1, n
camouflage images D0, D1, . . . , Dn−1, all of them with size w× h, and a positive
integer p.
Output: n meaningful shares M0, . . . , Mn−1 with size w× h.

1. Let X = dn/2e, Y = dn/2e, and randomly select a pixel (i, j){0 ≤ i ≤ w, 0 ≤ j ≤ h}.

2. Z = random (0, N − 1).

3. Define a number d = random (0, 1), which is 1 with probability γ.

4. If d = 0 then
For k = 0 to p do

For r = 0 to n – 1 do
Mr((i + k× w/p) % w, j) = Cr((i + k× w/p) % w, j).

else
For k = 0 to p do

For r = 0 to n – 1 do
Mr((i + k× w/p) % w, j) = Dr((i + k× w/p) % w, j).

For k = 0 to p do
If (M0((i + k× w/p)%w, j)⊕ ... ⊕MX−1((i + k× w/p)%w, j)⊕

MX((i + (k + Z)× w/p)%w, j)⊕ ... ⊕Mn−1((i + (k + Z)× w/p)%w, j) 6= 1), then
Let f = random(0, n – 1).
If (f < X) then

M f ((i + k× w/p) % w, j) = M f ((i + k× w/p) % w, j).
else

M f ((i + (k + Z)× w/p) % w, j)) = M f ((i + (k + Z)× w/p) % w, j).

5. Repeat Steps 1–4 until all pixels are processed in n meaningful shares, then
return M0, M1, . . . , Mn−1.

Appl. Sci. 2022, 12, 10368 11 of 22

The difference between Method 1 and Method 2 is the change in statement in Step
4, so the time complexity of Method 2 is still O(whn). Figure 7 shows the flow chart of
Method 2 Steps 1–4, and Figure 8 shows the experimental results of Method 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 21

Figure 7. The flow chart of Method 2 Steps 1-4.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 8. Experimental results by Method 2 for (5, 5) with 𝑝 = 45, 𝛾 = 0.5. (a,b) Restored images R0,
R1 (c)–(g) Shares M0, …, M4.

Next, we introduce Method 3: Favor encryption, which focuses on encrypting the
first secret image so that the first secret image is as completely restored as possible. In
Methods 1 and 2, although each recovered image is partially recoverable, the chance of
each secret being chosen to be recoverable decreases as the number of N increases. Some-
times the user needs to specify that a certain secret image has a higher restored visual
quality. We propose Method 3 to solve this problem, and the restoration of this image is
as good as in Algorithm I. However, other unselected secret images will be slightly less
recovered. Algorithm 5 shows Method 3 as follows.

Figure 7. The flow chart of Method 2 Steps 1–4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 21

Figure 7. The flow chart of Method 2 Steps 1-4.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 8. Experimental results by Method 2 for (5, 5) with 𝑝 = 45, 𝛾 = 0.5. (a,b) Restored images R0,
R1 (c)–(g) Shares M0, …, M4.

Next, we introduce Method 3: Favor encryption, which focuses on encrypting the
first secret image so that the first secret image is as completely restored as possible. In
Methods 1 and 2, although each recovered image is partially recoverable, the chance of
each secret being chosen to be recoverable decreases as the number of N increases. Some-
times the user needs to specify that a certain secret image has a higher restored visual
quality. We propose Method 3 to solve this problem, and the restoration of this image is
as good as in Algorithm I. However, other unselected secret images will be slightly less
recovered. Algorithm 5 shows Method 3 as follows.

Figure 8. Experimental results by Method 2 for (5, 5) with p = 45, γ = 0.5. (a,b) Restored images R0,
R1 (c–g) Shares M0, . . . , M4.

Next, we introduce Method 3: Favor encryption, which focuses on encrypting the first
secret image so that the first secret image is as completely restored as possible. In Methods
1 and 2, although each recovered image is partially recoverable, the chance of each secret
being chosen to be recoverable decreases as the number of N increases. Sometimes the user
needs to specify that a certain secret image has a higher restored visual quality. We propose
Method 3 to solve this problem, and the restoration of this image is as good as in Algorithm
I. However, other unselected secret images will be slightly less recovered. Algorithm 5
shows Method 3 as follows.

The difference between Method 3 and the previous two methods is that we delete
the previous Step 2 and modify Step 3. The time complexity of Method 3 is also O(whn).
The flow chart of Method 3 Steps 1–3 is shown in Figure 9, and the experimental results of
Method 3 is illustrated in Figure 10.

Appl. Sci. 2022, 12, 10368 12 of 22

Algorithm 5. [Method 3] Favor encryption

Input: N secret images S0, S1, . . . , SN−1, n meaningless shares C0, C1, . . . , Cn−1, n camouflage
images D0, D1, . . . , Dn−1, all of them with size w× h, and a positive integer p.
Output: n meaningful shares M0, . . . , Mn−1 with size w× h.

1. Let X = dn/2e, Y = dn/2e, and randomly select a pixel (i, j){0 ≤ i ≤ w, 0 ≤ j ≤ h}.

2. Define a number d = random (0, 1), which is 1 with probability γ.

3. If d = 0 then
For k = 0 to p do

For r = 0 to n – 1 do
Mr((i + k× w/p) % w, j) = Cr((i + k× w/p) % w, j).

else
For k = 0 to p do

For r = 0 to n – 1 do
Mr((i + k× w/p) % w, j) = Dr((i + k× w/p) % w, j).

For k = 0 to p do
If (M0((i + k× w/p)%w, j)⊕ ... ⊕Mn−1((i + k× w/p)%w, j) 6=
S0((i + k× w/p)%w, j)), then

Let f = random (0, n – 1).
M f ((i + k× w/p) % w, j) = M f ((i + k× w/p) % w, j).

4. Repeat Steps 1–3 until all pixels are processed in n meaningful shares, then
returnM0, M1, . . . , Mn−1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 21

Algorithm 5. [Method 3] Favor encryption
Input: N secret images 𝑆଴, 𝑆ଵ, … , 𝑆ேିଵ, n meaningless shares 𝐶଴, 𝐶ଵ, … , 𝐶௡ିଵ, n camou-

flage images 𝐷଴, 𝐷ଵ, … , 𝐷௡ିଵ, all of them with size 𝑤 × ℎ, and a positive integer
p.

Output: n meaningful shares 𝑀଴, … , 𝑀௡ିଵ with size 𝑤 × ℎ.
1. Let 𝑋 = ⌈𝑛/2⌉, 𝑌 = ⌊𝑛/2⌋, and randomly select a pixel (𝑖, 𝑗)  {0 ≤ 𝑖 ≤ 𝑤, 0 ≤ 𝑗 ≤

ℎ}.
2. Define a number d = random(0, 1), which is 1 with probability γ.
3. If 𝑑 = 0 then

For 𝑘 = 0 to 𝑝 do
For r = 0 to n – 1 do

𝑀௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗) = 𝐶௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗).
else

For 𝑘 = 0 to 𝑝 do
For r = 0 to n – 1 do

𝑀௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗) = 𝐷௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗).
For 𝑘 = 0 to 𝑝 do

If (𝑀଴((𝑖 + 𝑘 × 𝑤/𝑝)%𝑤, 𝑗) ⊕. . .⊕ 𝑀௡ିଵ((𝑖 + 𝑘 × 𝑤/𝑝)%𝑤, 𝑗) ≠ 𝑆଴((𝑖 + 𝑘 ×

𝑤/𝑝)%𝑤, 𝑗)), then
Let f = random(0, n – 1).

 𝑀௙((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗) = 𝑀௙((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗).
4. Repeat Steps 1–3 until all pixels are processed in n meaningful shares, then return

𝑀଴, 𝑀ଵ, … , 𝑀௡ିଵ.

The difference between Method 3 and the previous two methods is that we delete the
previous Step 2 and modify Step 3. The time complexity of Method 3 is also 𝑂(𝑤ℎ𝑛). The
flow chart of Method 3 Steps 1-3 is shown in Figure 9, and the experimental results of
Method 3 is illustrated in Figure 10.

Figure 9. The flow chart of Method 3 Steps 1-3. Figure 9. The flow chart of Method 3 Steps 1–3.

Appl. Sci. 2022, 12, 10368 13 of 22Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 21

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 10. Experimental results by Method 3 for (5, 5) with 𝑝 = 45, 𝛾 = 0.5. (a,b) Restored images
R0, R1 (c)–(g) Shares M0, …, M4.

Last, we would like to introduce Method 4. Because Method 2 only considers whether
the result is black pixels for the Zth image, it is unable to fully restore all the black pixels
for all secret images. In order to restore the black pixels of all secret images completely
(perfect black), we propose Method 4: Perfect black encryption. Algorithm 6 shows
Method 4 as follows.

Algorithm 6. [Method 4] Perfect black encryption
Input: N secret images 𝑆଴, 𝑆ଵ, … , 𝑆ேିଵ, n meaningless shares 𝐶଴, 𝐶ଵ, … , 𝐶௡ିଵ, n camouflage

images 𝐷଴, 𝐷ଵ, … , 𝐷௡ିଵ, all of them with size 𝑤 × ℎ, and a positive integer p.
Output: n meaningful shares 𝑀଴, … , 𝑀௡ିଵ with size 𝑤 × ℎ.
1. Let 𝑋 = ⌈𝑛/2⌉, 𝑌 = ⌊𝑛/2⌋, and randomly select a pixel (𝑖, 𝑗)  {0 ≤ 𝑖 ≤ 𝑤, 0 ≤ 𝑗 ≤

ℎ}.
2. Define a number d = random(0, 1), which is 1 with probability γ.
3. If 𝑑 = 0 then

For 𝑘 = 0 to 𝑝 do
For r = 0 to n – 1 do

𝑀௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗) = 𝐶௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗).
else

For 𝑘 = 0 to 𝑝 do
For r = 0 to n – 1 do

𝑀௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗) = 𝐷௥((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗).
For 𝑘 = 0 to 𝑝 do

If 𝑀଴((𝑖 + 𝑘 × 𝑤/𝑝)%𝑤, 𝑗)) ⊕. . .⊕ 𝑀௑ିଵ((𝑖 + 𝑘 × 𝑤/𝑝)%𝑤, 𝑗) ≠ 1, then
Let f = random(0, X – 1).
𝑀௙((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗) = 𝑀௙((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗).

If 𝑀௑((𝑖 + 𝑘 × 𝑤/𝑝)%𝑤, 𝑗)) ⊕. . .⊕ 𝑀௡ିଵ((𝑖 + 𝑘 × 𝑤/𝑝)%𝑤, 𝑗) ≠ 0, then
Let g = random(X, n – 1).
𝑀௚((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗)) = 𝑀௚((𝑖 + 𝑘 × 𝑤/𝑝) % 𝑤, 𝑗).

4. Repeat Steps 1– 3 until all pixels are processed in n meaningful shares, then return
𝑀଴, 𝑀ଵ, … , 𝑀௡ିଵ.

The time complexity of Method 4 is 𝑂(𝑤ℎ𝑛) . Figure 11 shows the flow chart of
Method 4 Steps 1-3. Note that, since we made the pixels participating in the camouflage
appear black when restoring the first X shares and the last Y shares, these two shares will
look similar if X = 2 or Y = 2. See Figure 12, the experimental results of Method 4, for an
example (where N = 5, Y = 2). Therefore, we give another experimental result (N = 8) for
this method. Figure 13 shows the new experimental results.

Figure 10. Experimental results by Method 3 for (5, 5) with p = 45, γ = 0.5. (a,b) Restored images
R0, R1 (c–g) Shares M0, . . . , M4.

Last, we would like to introduce Method 4. Because Method 2 only considers whether
the result is black pixels for the Zth image, it is unable to fully restore all the black pixels
for all secret images. In order to restore the black pixels of all secret images completely
(perfect black), we propose Method 4: Perfect black encryption. Algorithm 6 shows Method
4 as follows.

Algorithm 6. [Method 4] Perfect black encryption

Input: N secret images S0, S1, . . . , SN−1, n meaningless shares C0, C1, . . . , Cn−1, n camouflage
images D0, D1, . . . , Dn−1, all of them with size w× h, and a positive integer p.
Output: n meaningful shares M0, . . . , Mn−1 with size w× h.

1. Let X = dn/2e, Y = dn/2e, and randomly select a pixel (i, j){0 ≤ i ≤ w, 0 ≤ j ≤ h}.

2. Define a number d = random (0, 1), which is 1 with probability γ.

3. If d = 0then
For k = 0 to p do

For r = 0 to n – 1 do
Mr((i + k× w/p) % w, j) = Cr((i + k× w/p) % w, j).

else
For k = 0 to p do

For r = 0 to n – 1 do
Mr((i + k× w/p) % w, j) = Dr((i + k× w/p) % w, j).

For k = 0 to p do
If M0((i + k× w/p)%w, j))⊕ ... ⊕MX−1((i + k× w/p)%w, j) 6= 1, then

Let f = random(0, X – 1).
M f ((i + k× w/p) % w, j) = M f ((i + k× w/p) % w, j).

If MX((i + k× w/p)%w, j))⊕ ... ⊕Mn−1((i + k× w/p)%w, j) 6= 0, then
Let g = random(X, n – 1).
Mg((i + k× w/p) % w, j)) = Mg((i + k× w/p) % w, j).

4. Repeat Steps 1–3 until all pixels are processed in n meaningful shares, then return
M0, M1, . . . , Mn−1.

The time complexity of Method 4 is O(whn). Figure 11 shows the flow chart of Method
4 Steps 1–3. Note that, since we made the pixels participating in the camouflage appear
black when restoring the first X shares and the last Y shares, these two shares will look
similar if X = 2 or Y = 2. See Figure 12, the experimental results of Method 4, for an example
(where N = 5, Y = 2). Therefore, we give another experimental result (N = 8) for this method.
Figure 13 shows the new experimental results.

Appl. Sci. 2022, 12, 10368 14 of 22Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 21

Figure 11. Process chart of Method 4 Steps 1-3.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 12. Experimental results by Method 4 for (5, 5) with 𝑝 = 45, 𝛾 = 0.5. (a,b) Restored images
R0, R1 (c)–(g) Shares M0, …, M4.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

Figure 13. Experimental results by Method 4 for (8, 8) with 𝑝 = 10, 𝛾 = 0.5. (a–c) Camouflage images
D5, D6, D7, (d,e) Restored images R0, R1 (f)–(m) Shares M0, …, M7.

3.5. Algorithm IV. Secret Reconstruct Scheme
In this subsection, Algorithm IV is introduced, which decrypts the recovered image.

To restore G1, we pool the first X shares together and apply an XOR operation to them.
The remaining shares will restore G2 in the same way. Similar to [8], restoring the ith secret
image requires shifting G2’s 𝑖𝑤/𝑝 pixels and stacking them on G1 by applying an XOR op-
eration. We present Algorithm 7 for Algorithm IV as shown below. In Figure 14, the sche-
matic is displayed.

Figure 11. Process chart of Method 4 Steps 1–3.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 21

Figure 11. Process chart of Method 4 Steps 1-3.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 12. Experimental results by Method 4 for (5, 5) with 𝑝 = 45, 𝛾 = 0.5. (a,b) Restored images
R0, R1 (c)–(g) Shares M0, …, M4.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

Figure 13. Experimental results by Method 4 for (8, 8) with 𝑝 = 10, 𝛾 = 0.5. (a–c) Camouflage images
D5, D6, D7, (d,e) Restored images R0, R1 (f)–(m) Shares M0, …, M7.

3.5. Algorithm IV. Secret Reconstruct Scheme
In this subsection, Algorithm IV is introduced, which decrypts the recovered image.

To restore G1, we pool the first X shares together and apply an XOR operation to them.
The remaining shares will restore G2 in the same way. Similar to [8], restoring the ith secret
image requires shifting G2’s 𝑖𝑤/𝑝 pixels and stacking them on G1 by applying an XOR op-
eration. We present Algorithm 7 for Algorithm IV as shown below. In Figure 14, the sche-
matic is displayed.

Figure 12. Experimental results by Method 4 for (5, 5) with p = 45, γ = 0.5. (a,b) Restored images
R0, R1 (c–g) Shares M0, . . . , M4.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 21

Figure 11. Process chart of Method 4 Steps 1-3.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 12. Experimental results by Method 4 for (5, 5) with 𝑝 = 45, 𝛾 = 0.5. (a,b) Restored images
R0, R1 (c)–(g) Shares M0, …, M4.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

Figure 13. Experimental results by Method 4 for (8, 8) with 𝑝 = 10, 𝛾 = 0.5. (a–c) Camouflage images
D5, D6, D7, (d,e) Restored images R0, R1 (f)–(m) Shares M0, …, M7.

3.5. Algorithm IV. Secret Reconstruct Scheme
In this subsection, Algorithm IV is introduced, which decrypts the recovered image.

To restore G1, we pool the first X shares together and apply an XOR operation to them.
The remaining shares will restore G2 in the same way. Similar to [8], restoring the ith secret
image requires shifting G2’s 𝑖𝑤/𝑝 pixels and stacking them on G1 by applying an XOR op-
eration. We present Algorithm 7 for Algorithm IV as shown below. In Figure 14, the sche-
matic is displayed.

Figure 13. Experimental results by Method 4 for (8, 8) with p = 10, γ = 0.5. (a–c) Camouflage images
D5, D6, D7, (d,e) Restored images R0, R1 (f–m) Shares M0, . . . , M7.

3.5. Algorithm IV. Secret Reconstruct Scheme

In this subsection, Algorithm IV is introduced, which decrypts the recovered image.
To restore G1, we pool the first X shares together and apply an XOR operation to them. The
remaining shares will restore G2 in the same way. Similar to [8], restoring the ith secret

Appl. Sci. 2022, 12, 10368 15 of 22

image requires shifting G2’s iw/p pixels and stacking them on G1 by applying an XOR
operation. We present Algorithm 7 for Algorithm IV as shown below. In Figure 14, the
schematic is displayed.

Algorithm 7.

Input: n meaningful shares M0, . . . , Mn−1 with size w× h, and a positive integer p.
Output: N recovered images R0, . . . , Rn−1 with size w× h.

1. Let X = dn/2e.

2. For each pixel in {(i, j) | 0 ≤ i ≤ w, 0 ≤ j ≤ h} do

3. For k = 0 to N − 1 do
Rk(i, j) = M0(i, j)⊕ . . .⊕MX−1(i, j)⊕MX((i + k× w/p)%w, j)⊕ . . .⊕
Mn−1((i + k× w/p)%w, j).

3. Return R0, . . . , RN−1.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 21

Figure 14. The schematic diagram of Algorithm 7.

Algorithm 7.
Input: n meaningful shares 𝑀଴, … , 𝑀௡ିଵ with size 𝑤 × ℎ, and a positive integer p.
Output: N recovered images 𝑅଴, … , 𝑅௡ିଵ with size 𝑤 × ℎ.
1. Let 𝑋 = ⌈𝑛/2⌉.
2. For each pixel in {(𝑖, 𝑗) | 0 ≤ 𝑖 ≤ 𝑤, 0 ≤ 𝑗 ≤ ℎ} do
3. For 𝑘 = 0 to 𝑁 − 1 do

𝑅௞(𝑖, 𝑗) = 𝑀଴(𝑖, 𝑗) ⊕ … ⊕ 𝑀௑ିଵ(𝑖, 𝑗) ⊕ 𝑀௑൫(𝑖 + 𝑘 × 𝑤/𝑝)%𝑤, 𝑗൯ ⊕ … ⊕

𝑀௡ିଵ൫(𝑖 + 𝑘 × 𝑤/𝑝)%𝑤, 𝑗൯.
4. Return R0, …, RN–1.

4. Analysis
In this section, we perform some evaluations of the security and accuracy of the pro-

posed schemes, and then analyze the experimental results of the proposed schemes. We
discuss the contrast, PSNR, Sensitivity and SSIM, and security analysis for the proposed
scheme in the following four subsections. Users can observe the changes of different meth-
ods under different values of γ.

4.1. Contrast Analysis
The security of a VCS and visual quality of restored images are important. We intro-

duce the definition of transmittance and contrast, and calculate the contrast for the pro-
posed VCS in this subsection. Usually, the value of contrast is defined as α. The higher the
contrast, the better the visual quality of the restored image. In a XOR-based VCS, the max-
imum possible contrast ratio is 1, which means perfect reconstruction—the restored image
is exactly equal to the secret image. At first, we introduce the definition of the average
transmittance. In the transmittance of an image S, T(S) represents the proportion of white
pixels in S, that is T(S) = the number of white pixels in S/the total number of pixels in S.
Allow T[G[X(0)]] to stand for the average transmittance of the area in image G that corre-
sponds to the white (transparent) area in image X. The average transmittance of the area
in image G that corresponds to the black (opaque) area in image X is indicated by the
notation T[G[X(1)]]. Under this definition, we can discuss the case where G = the restored
image R, X = the secret image S, G = meaningful share M, and X = camouflage image D.
As a result, the following formula can be used to determine the contrast of the restored
image R and meaningful share M.

𝛼ோ =
𝑇ൣ𝑅[𝑆(0)]൧ − 𝑇ൣ𝑅[𝑆(1)]൧

1 + 𝑇ൣ𝑅[𝑆(1)]൧
 (1)

𝛼ெ =
𝑇ൣ𝑀[𝐷(0)]൧ − 𝑇[𝑀[𝐷(1)]]

1 + 𝑇[𝑀[𝐷(1)]]
 (2)

Figure 14. The schematic diagram of Algorithm 7.

4. Analysis

In this section, we perform some evaluations of the security and accuracy of the
proposed schemes, and then analyze the experimental results of the proposed schemes. We
discuss the contrast, PSNR, Sensitivity and SSIM, and security analysis for the proposed
scheme in the following four subsections. Users can observe the changes of different
methods under different values of γ.

4.1. Contrast Analysis

The security of a VCS and visual quality of restored images are important. We intro-
duce the definition of transmittance and contrast, and calculate the contrast for the proposed
VCS in this subsection. Usually, the value of contrast is defined as α. The higher the
contrast, the better the visual quality of the restored image. In a XOR-based VCS, the
maximum possible contrast ratio is 1, which means perfect reconstruction—the restored
image is exactly equal to the secret image. At first, we introduce the definition of the
average transmittance. In the transmittance of an image S, T(S) represents the proportion of
white pixels in S, that is T(S) = the number of white pixels in S/the total number of pixels
in S. Allow T[G[X(0)]] to stand for the average transmittance of the area in image G that
corresponds to the white (transparent) area in image X. The average transmittance of the
area in image G that corresponds to the black (opaque) area in image X is indicated by the
notation T[G[X(1)]]. Under this definition, we can discuss the case where G = the restored
image R, X = the secret image S, G = meaningful share M, and X = camouflage image D. As

Appl. Sci. 2022, 12, 10368 16 of 22

a result, the following formula can be used to determine the contrast of the restored image
R and meaningful share M.

αR =
T[R[S(0)]]− T[R[S(1)]]

1 + T[R[S(1)]]
(1)

αM =
T[M[D(0)]]− T[M[D(1)]]

1 + T[M[D(1)]]
(2)

We utilize each of the seven images in Figure 5 as the secret and camouflage image in
turn to get more precise results. That means in total 7! = 5040 experiments were performed.
Let N = 2, n = 5, and p = 45. Table 2 shows the average results (from 5040 experiments) for
the average contrast of five shares and restored two images of the proposed Methods 1–4
when γ is 1, 0.7, 0.5, 0.3, or 0.

Table 2. The Contrast analysis of the proposed schemes.

γ Scheme αshares αR0 αR1

1

Method 1 0.73112 0.41256 0.41242

Method 2 0.73121 0.00456 0.00370

Method 3 0.73105 1.00000 0.01860

Method 4 0.52898 0.00000 0.00000

0.7

Method 1 0.46104 0.55675 0.55639

Method 2 0.46080 0.26068 0.25982

Method 3 0.46111 0.99480 0.23623

Method 4 0.33886 0.29930 0.29939

0.5

Method 1 0.30524 0.66746 0.66728

Method 2 0.30492 0.45372 0.45297

Method 3 0.30516 0.99155 0.40721

Method 4 0.23194 0.49910 0.49963

0.3

Method 1 0.17385 0.78586 0.78570

Method 2 0.17338 0.64508 0.64515

Method 3 0.17387 0.98794 0.60569

Method 4 0.12970 0.69844 0.69816

0

Method 1 0.00022 0.98313 0.98359

Method 2 0.00011 0.98335 0.98342

Method 3 0.00035 0.98344 0.98328

Method 4 0.00012 0.98347 0.98350

As γ decreases, the contrast value of the shares decreases while the contrast of the
restored images increases, as seen in Table 2. αshares in Methods 1–3 is almost the same and
better than αshares in Method 4. The contrast of the two restored images is about the same
when the value of γ is the same for Methods 1, 2, and 4. In the case of Method 3 with the
same value of γ, the contrast of the first restored image (almost 1) is much better than that
of the second restored image. In conclusion, the average contrast of the restored images of
Method 1 gives the best results. Method 3 has the best contrast of the first restored image,
while the contrast of the second restored image is worse than that of the other methods.

Appl. Sci. 2022, 12, 10368 17 of 22

4.2. PSNR Analysis

In this subsection, we introduce the Peak Signal-to-Noise Ratio (PSNR), which is a
ratio of the maximum possible power of the signal and destructive noise power affecting
its representation accuracy, and PSNR is often expressed in decibel units. In the image, we
can use PSNR as a more objective method to calculate the distortion of the image because it
has quantitative data. The PSNR is defined simply by the mean-square error (MSE). Given
an original image I of size w× h and a reconstructed image K, the PSNR and mean square
error (MSE) are defined as:

MSE =
1

w× h

m−1

∑
0

n−1

∑
0
[I(i, j)− K(i, j)]2 (3)

PSNR = 10× log10

(
MAX2

I
MSE

)
(4)

MAXI is the maximum possible value of pixels for an image. If each pixel is represented
by 8 bits, then black pixels are 0 and white pixels are 255, so MAXI in our scheme is always
calculated using 255. We perform PSNR analysis of our schemes in Table 3. In this table, we
use the corresponding method to encrypt two secret images and five camouflaged images
with p = 45, N = 2, and n = 5 in different γ cases for the analysis. The values in this table are
the average PSNR for two restored images (except Method 3) and five shares. A total of 7!
(= 5040) experimental results were averaged and presented in Table 3. PSNR is generally
used for gray-scale image or color image analysis, so the results are for reference only since
we use binary data in these schemes.

Table 3. The PSNR analysis of the proposed schemes.

γ Image Method 1 Method 2 Method 3 * Method 4

1
shares 10.08540 10.08555 10.08565 7.21653

Restored image 6.12667 3.01978 inf 3.03151 1.10599

0.7
shares 6.59821 6.59845 6.59842 4.64744

Restored image 7.60584 4.59838 27.66252 4.66005 2.65272

0.5
shares 5.23130 5.23122 5.23126 4.61973

Restored image 9.03888 6.07030 25.54497 6.08073 4.10810

0.3
shares 4.22439 4.22448 4.22460 3.88114

Restored image 11.15357 8.10970 23.99535 8.19519 6.36929

0
shares 3.01179 3.01144 3.01125 3.01124

Restored image 22.54548 22.54521 22.55623 22.55617 22.5452
* The PSNR values of the restored images are different in Method 3. The restored image on the left in this column
is the first image, and on the right is the second image.

Observing Table 3, we can find that the PSNR value of the shares decreases as γ
decreases. The PSNR values of shares in Methods 1–3 are almost the same and better than
shares in Method 4. As γ decreases, the PSNR of restored images gets better. With the
same value of γ for Method 1, Method 2, and Method 4, the PSNR of the two restored
images is almost identical, so we show their average value in this table. In Method 3 with
the same value of γ, the PSNR for the first restored image is much better than the second
restored image; thus, we write them separately. In conclusion, Method 1 gives the best
results for the average PSNR in restored images, and Method 3 has the best PSNR for the
first restored image.

Appl. Sci. 2022, 12, 10368 18 of 22

4.3. Sensitivity and SSIM Analysis

PSNR is mainly for calculating the image distortion rating data, and sometimes it
does not fully represent the human visual perception. Numerous experimental findings
indicate that the visual quality perceived by the human eye and PSNR numbers do not
always match up completely. In fact, higher PSNR scores may appear worse than lower
PSNR scores. Therefore, we will introduce Sensitivity in this subsection. In the sensitivity
analysis, we focus on the restoration of black pixels, called a black pixel in a restored image
positive; NTP and NFN represent the number of pixels with the “true positive” and “false
negative” features in the restored image. A pixel that is black in the original image is called
a “true positive” pixel if it is still black after restoration; on the other hand, a pixel that is
black in the original image is called a “false negative” pixel if it is restored to white. The
formula for Sensitivity is given below:

Sensitivity =
NTP

NTP + NFN
(5)

We perform Sensitivity analysis for each of our proposed methods with p = 45, N = 2,
and n = 5 in different γ, then present the results together. A total of 7! (= 5040) experimental
results were averaged and given in Table 4.

Table 4. The Sensitivity analysis of the proposed schemes.

γ Image * Method 1 Method 2 Method 3 Method 4

1
R0 0.75828 0.80167 1.00000 1.00000

R1 0.75806 0.80166 0.51906 1.00000

0.7
R0 0.82518 0.85985 0.99821 0.99846

R1 0.82533 0.85961 0.66205 0.99829

0.5
R0 0.87733 0.89863 0.99709 0.99723

R1 0.87721 0.89842 0.75523 0.99726

0.3
R0 0.92243 0.93629 0.99585 0.99591

R1 0.92264 0.93640 0.84933 0.99598

0
R0 0.99438 0.99441 0.99445 0.99449

R1 0.99450 0.99442 0.99443 0.99456
* R0 and R1 represent the first and the second restored image, respectively.

The structural similarity index (SSIM) is a technique for calculating how two similar
images are in terms of structure, contrast, and luminance. SSIM takes the value range [0, 1],
and the higher the value, the lower the image distortion. Compared with the traditional
image quality measurement standards, SSIM is more consistent with the human vision
judgment of image quality. Given an original image I of size w× h and a reconstructed
image K, we calculate the average value E(I) in image I, the average value E(K) in image K,
and the three variances SI, SK, SIK by using the formula demonstrated below. A constant
term c1 is set equal to (K1 × L)2 and c2 is set equal to (K2 × L)2. Set the black pixel to 0,
white pixel to 255, K1 to 0.01, K2 to 0.03, and L to 255, to avoid a denominator of 0 and keep
it stable. The formula of the SSIM is given below:

SSIM(I, K) =
2× E(I)× E(K) + c1

E(I)2 + E(K)2 + c1
× 2× SIK + c2

S2
I + S2

K + c2
(6)

E(I) =
1

w× h

w×h

∑
i=1

Ii (7)

Appl. Sci. 2022, 12, 10368 19 of 22

E(K) =
1

w× h

w×h

∑
i=1

Ki (8)

SI =

√√√√ 1
w× h

w×h

∑
i=1

(Ii–E(I))2 (9)

SK =

√√√√ 1
w× h

w×h

∑
i=1

(Ki–E(K))2 (10)

SIK =
1

w× h

w×h

∑
i=1

(Ii–E(I))× (Ki–E(K)) (11)

We perform SSIM analysis for each of our proposed methods with p = 45, N = 2, and
n = 5 in different γ, then present the results together. A total of 7! (= 5040) experimental
results were averaged and given in Table 5.

Table 5. The SSIM analysis of our schemes.

γ Image * Method 1 Method 2 Method 3 Method 4

1
R0 0.51361 0.00633 1.00000 0.00000

R1 0.51371 0.00623 0.02929 0.00000

0.7
R0 0.65416 0.29760 0.99657 0.22111

R1 0.65418 0.29742 0.30329 0.21992

0.5
R0 0.75793 0.49789 0.99442 0.45613

R1 0.75782 0.49791 0.50376 0.45631

0.3
R0 0.84490 0.69740 0.84933 0.68785

R1 0.84469 0.69795 0.69750 0.68774

0
R0 0.98884 0.98885 0.98889 0.98889

R1 0.98902 0.98892 0.98887 0.98897
* R0 and R1 represent the first and the second restored image, respectively.

Observing Tables 4 and 5, we can find that in Methods 1, 2 and 4, as γ decreases, the
sensitivity and SSIM value of the restored images becomes better and are almost identical.
In turns of sensitivity, Method 4 gives the best result; Method 2 is slightly better than
Method 1. In Method 3, as γ decreases, the sensitivity of the first restored image becomes
slightly worse, but the second restored image becomes better, while the first recovered
image has a sensitivity close to 1 and is always better than the second recovered image. In
conclusion, the average sensitivity result of the restored image for Method 4 is the best.
Method 1 has the best average SSIM results for the restored images. Method 3 has the best
SSIM for the single restored image.

4.4. Security Analysis

In the proposed scheme, we need to stack all shares to fully recover the original secret
image; otherwise, the secret image cannot be leaked. For each pixel, it is only encrypted
for two consecutive secret images, or is used as a camouflage image. When the pixel is
used as a camouflage image, if we stack only k (k < n) shares, it just like we XOR k random
values by our Algorithm III, so the original secret image cannot be reconstructed. It also
produces unpredictable images because it is impossible to determine whether the stacked
pixels are black or white. Therefore, it is impossible to correctly recover any secret image
without collecting all N shares when γ 6= 0. On the other hand, if we collect all of the first
n/2 shares (or the last n/2 shares) and stack them using the XOR operation, G1 (or G2)
will be recovered if γ = 0. Note that, from the constructing of Algorithm 1, we seem to be

Appl. Sci. 2022, 12, 10368 20 of 22

sacrificing some security in the pursuit of optimizing the contrast of the restored image.
From Algorithm 1, it can be found that if we XOR the output G1 or G2 with a version of
itself shifted over by w/p pixels, then we get an image where most of the pixels depend only
on the secret images: G1(i, j) ⊕ G1(i + w/p, j) = SA(i + w/p, j) ⊕ SA+1(i, j) and G2(i + Aw/p, j)
⊕ G2(i + (A+1)w/p, j) = SA(i, j) ⊕ SA+1(i, j). The latter one implies G2(i, j) ⊕ G2(i + w/p, j) =
SA(i–Aw/p, j) ⊕ SA+1(i–Aw/p, j). However, since A is randomly selected from 0 to N–1, it is
impossible to tell which pixel is encrypted by which two consecutive secret pixels. This
means that the stacked image will be a complex image where all the secret images and their
shifted images are interleaved together; there are 2N possibilities, so it is still impossible
to identify any single secret image. Even taking into account the edge case where all but
one of the secret images (A) are completely 0, this still does not fully reveal the remaining
secret image—there are still two possibilities: G1(i, j) ⊕ G1(i + w/p, j) = SA(i + w/p, j) or
SA(i, j) and G2(i, j) ⊕ G2(i + w/p, j) = SA(i – Aw/p, j) or SA(i – (A–1)w/p, j). That means it
will appear as a mixed image of the secret image A and itself shift by w/p pixels. However,
this is still an unwelcome result. A good choice when there are very few secret images is to
use Method 1 and set γ = 1. In this case, an influence of the Algorithm 1 will disappear,
and the problems that may be caused can be solved at the same time. The original secrets
can still be restored, but the contrast of the restored image cannot be as high as when using
Algorithm 1 (γ < 1) (see Table 2). Fortunately, Algorithms II and III (Algorithms 3, 4, 5 or 6)
can generate interference and increase the uncertainty of shares and make leaks less likely,
provided that γ cannot be equal to 0. Since the proposed scheme uses Algorithms I, II and
III (Algorithms 3, 4, 5 or 6) completely sequentially, the user cannot obtain G1 or G2 directly.

Under such observation, the value of p cannot be set too small, the value of γ cannot
be too close to 0, and avoid setting all but one secret image to white (in the same position).
In addition, KK2 and KK3 can be selected for fXRG and fXORG instead of KK1 for Algorithm
I. This will avoid the above problem, but the performance of the new algorithm will not be
as good as it currently is.

5. Concluding Remarks

This paper studies the (n, n) XOR-based multi-secret sharing schemes with meaningful
sharing. There are four different methods held in Algorithm III. The shares and restored
images produced by these four methods are different. It can be said that we have designed
four different VCSs. At the same time, there are two parameters γ and p in the proposed
VCSs that will affect the light transmittance of the shares and restored images. These two
values can also be determined by the user, which makes the proposed VCSs more flexible.
Therefore, the user can decide the appropriate method and parameters according to the
situation.

The time complexity of the encryption process of the proposed VCSs is O(whn), and
the time complexity of the decryption process is O(whnN). Theoretical analysis and experi-
mental results show that the proposed VCSs are safe and effective. All our proposed VCSs
have the following characteristics:

1. No pixel expansion.
2. Multiple secrets can be encrypted at the same time.
3. Each share can be disguised as a different meaningful image.
4. Both shares and reconstructed images have good visual quality.
5. Parameters γ and p can be adjusted as required.

Table 6 shows the comparison of the proposed scheme with some previous research.
Among these four proposed methods, according to the analysis in Section 4, if the user needs
to obtain one of the clearer restored images, then Method 3 is the best recommendation;
otherwise, Method 1 performs better than other methods in all aspects. However, Method
4 can obtain perfect black restoration, which is helpful for visual recognition of the restored
image, and is also a recommended method when N and n are large.

Appl. Sci. 2022, 12, 10368 21 of 22

Table 6. Compare the proposed scheme with related works.

Schemes
Features

Without Pixel Expansion Meaningful Multi-Secret XOR-Based

[1] (1994) No No No No

[2] (1987) Yes No No No

[6] (2013) Yes Yes No Yes

[7] (2015) Yes Yes No Yes

[8] (2021) Yes Yes No Yes

[9] (2018) Yes No Yes No

[11] (2008) Yes Yes No No

[13] (2020) Yes Yes Yes No

[14] (2019) Yes Yes No No

Ours Yes Yes Yes Yes

The VCS presented in this paper has many topics for further study. For example,
how to enhance the proposed VCSs to apply to grayscale or color images, modify the
proposed VCSs to extend the encrypt ability of (n, n)-threshold to (k, n)-threshold for any
k < n, and consider whether the ability of the proposed VCSs can be increased, so that
the OR operation can also be used to recover the secret image. Besides, since we initially
encrypt the N secret images into two shares in Algorithm I, although these two shares are
subsequently encrypted into n shares in Algorithm II, this process adds distortion of the
schemes. Therefore, it will be fascinating to work on in the future to directly encrypt N
secret images into n shares in order to reduce distortion.

Author Contributions: Conceptualization, J.S.-T.J.; methodology, J.S.-T.J. and S.-Y.H.; software, S.-
Y.H.; validation, S.-Y.H., A.-h.L. and J.S.-T.J.; formal analysis, S.-Y.H. and J.S.-T.J.; investigation,
J.S.-T.J.; resources, S.-Y.H.; data curation, S.-Y.H.; writing—original draft preparation, S.-Y.H. and
A.-h.L.; writing—review and editing, J.S.-T.J.; visualization, S.-Y.H. and A.-h.L.; supervision, J.S.-T.J.;
project administration, J.S.-T.J.; funding acquisition, J.S.-T.J. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of Taiwan, ROC,
Grants number MOST 110-2221-E-260-003, and 111-2115-M-260-001.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the reviewer for the constructive feedback.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Naor, M.; Shamir, A. Visual cryptography. Lect. Notes Comput. Sci. 1994, 950, 1–12. [CrossRef]
2. Kafri, O.; Keren, E. Encryption of pictures and shapes by random grids. Opt. Lett. 1987, 12, 377–379. [CrossRef] [PubMed]
3. Shyu, S.J. Image encryption by multiple random grids. Pattern Recognit. 2009, 42, 1582–1596. [CrossRef]
4. Tuyls, P.; Kevenaar, T.; Schrijen, G.J.; Staring, A.A.M.; van Dijk, M. Visual crypto displays enabling secure communications. Secur.

Pervasive Comput. LNCS 2003, 280, 271–284.
5. Wang, D. Probabilistic (n, n) Visual Secret Sharing Scheme for Grayscale Images. Inf. Secur. Cryptol. 2007, 4990, 192–200.
6. Wu, X.; Sun, W. Generalized random grid and its applications in visual cryptography. IEEE Trans. Inf. Forensics Secur. 2013, 8,

1541–1553. [CrossRef]
7. Ou, D.; Sun, W.; Wu, X. Non-expansible XOR-based visual cryptography scheme with meaningful shares. Signal. Process. 2015,

108, 604–621. [CrossRef]

http://doi.org/10.1007/BFb0053419
http://doi.org/10.1364/OL.12.000377
http://www.ncbi.nlm.nih.gov/pubmed/19741737
http://doi.org/10.1016/j.patcog.2008.08.023
http://doi.org/10.1109/TIFS.2013.2274955
http://doi.org/10.1016/j.sigpro.2014.10.011

Appl. Sci. 2022, 12, 10368 22 of 22

8. Lo, A.-H.; Juan, J.S.-T. (n, n) XOR-based Visual Cryptography Schemes with Different Meaningful Shares. In Proceedings of the
2021 International Conference on Computational Science and Computational Intelligence (CSCI’21), Las Vegas, NV, USA, 15–17
December 2021.

9. Chang, J.J.-Y.; Huang, B.-Y.; Juan, J.S.-T. A New Visual Multi-Secrets Sharing Scheme by Random Grids. Cryptography 2018, 2, 24.
[CrossRef]

10. Chang, J.J.-Y.; Li, M.-J.; Wang, Y.-C.; Juan, J.S.-T. Two-Image Encryption by Random Grids. In Proceedings of the International
Symposium on Communication and Information Technologies, Engineering and Technology (ISCIT2010), Tokyo, Japan, 26–29
October 2010; pp. 458–463.

11. Chen, T.-H.; Tsao, K.-H.; Wei, K.-C. Multiple-Image Encryption by Rotating Random Grids. In Proceedings of the Eighth
International Conference on Intelligent Systems Design and Applications (ISDA’08), Kaohsiung, Taiwan, 26–28 November 2008;
pp. 252–256.

12. Salehi, S.; Balafar, M.A. Visual multi secret sharing by cylindrical random grid. J. Inf. Secur. Appl. 2014, 19, 245–255. [CrossRef]
13. Huang, B.-Y.; Juan, J.S.-T. Flexible meaningful visual multi-secret sharing scheme by random grids. Multimed. Tools Appl. 2020, 79,

7705–7729. [CrossRef]
14. Chung, Y.-C.; Ou, J.-H.; Juan, J.S.-T. Fault-Tolerant Visual Secret Sharing Scheme Using Meaningful Shares. In Proceedings of the

IEEE 10th International Conference on Awareness Science and Technology (iCAST), Morioka, Japan; 2019; pp. 1–6.

http://doi.org/10.3390/cryptography2030024
http://doi.org/10.1016/j.jisa.2014.05.003
http://doi.org/10.1007/s11042-019-08436-w

	Introduction
	Related Work
	Random Grid-Based Visual Cryptography Scheme
	XOR-Based Visual Secret Sharing Scheme with Meaningful Shares
	Visual Multiple Secrets Sharing Scheme by Random Grids

	Main Scheme
	The Process and Definition of the Proposed Schemes
	Algorithm I. XOR-Based Visual Multi-Secret Scheme
	Algorithm II. Augmented Shares Scheme
	Algorithm III. Meaningful Shares Scheme
	Algorithm IV. Secret Reconstruct Scheme

	Analysis
	Contrast Analysis
	PSNR Analysis
	Sensitivity and SSIM Analysis
	Security Analysis

	Concluding Remarks
	References

