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Abstract: Drones have been widely used in everyday life and they can help deal with various tasks,
including photography, searching, and surveillance. Nonetheless, it is difficult for drones to perform
customized online real-time object detection. In this study, we propose an intelligent real-time object
detection system for drones. It is composed of an FPGA and a drone. A neural-network (NN) engine
is designed on the FPGA for NN model acceleration. The FPGA receives activation data from an NN
model, which are assembled into the data stream. Multiple fetch and jump pointers catch required
activation values from the data stream, which are then filtered and sent to each thread independently.
To accelerate processing speed, multiple processing elements (PEs) deal with tasks in parallel by
using multiple weights and threads. The image data are transferred from the drone host to the FPGA,
which are tackled with high speed by the NN engine. The NN engine results are returned to the host,
which is used to adjust the flying route accordingly. Experimental results reveal that our proposed
FPGA design well utilizes FPGA computing resources with 81.56% DSP and 72.80% LUT utilization
rates, respectively. By using the Yolov3-tiny model for fast object detection, our system can detect
objects at the speed of 8 frames per second and achieves a much lower power consumption compared
to state-of-the-art methods. More importantly, the intelligent object detection techniques provide
more pixels for the target of interest and they can increase the detection confidence score from 0.74 to
0.90 and from 0.70 to 0.84 for persons and cars, respectively.

Keywords: neural network accelerator; FPGA; object detection; intelligent system; machine learning

1. Introduction

Drone technology has undergone rapid development in recent decades, which has
resulted in a dramatic cost reduction for commercial drones, especially quadcopter drones.
As a result, more drones are used in everyday life for different kinds of jobs, ranging from
search and rescue to photography [1–4]. In addition, by equipping various sensors, drones
are able to provide information with different features, which makes it feasible to work as
an intelligent system by merging outside information.

Traditionally, drones are controlled and operated by drone pilots to achieve specified
goals, such as searching certain targets, etc. Drone pilots play several roles throughout
the flying process, including analyzing data in real time, and avoiding obstacles for safety
requirements. However, several problems need to be addressed for drone pilots. On the
one hand, drone pilots cannot continuously work without a rest and it is necessary to
have a rest after working for a long time. On the other hand, even if drone pilots can help
analyze data such as images, it is difficult for them to perform high-speed image processing,
and some small targets may even not be spotted. Therefore, it is necessary to design an
intelligent system for drones to address these problems.

Various components and devices have been used to build intelligent systems, where
the Field Programmable Gate Array (FPGA) is a well-known acceleration device for artificial
intelligence (AI) tasks [5–8]. In this research, we propose an intelligent real-time object
detection system on drones. We first design an FPGA accelerator for real-time object
classification and detection. The drone sends image data to the FPGA via the host, which are
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assembled into the data stream for access by multiple fetch and jump pointers. Activation
values are fetched for each thread and then filtered. Processing elements tackle tasks in
parallel by using multiple weights and threads, which significantly speeds up the running
of deep-learning neural networks (NNs).

Then, we build an intelligent system using the FPGA on drones, such that the drone
can flexibly adjust flying routes to generate more pixels for objects which helps detect
objects more accurately based on FPGA results. Experimental results reveal that our
proposed FPGA design well utilizes FPGA computing resources, with 81.56% DSP and
72.80% LUT utilization rates, respectively. By using the Yolov3-tiny model for fast object
detection, our system can detect objects at the speed of 8 frames per second (FPS) and
achieve a much lower power consumption compared to state-of-the-art methods. More
importantly, the intelligent object detection techniques provide more pixels for the target of
interest and it can increase the detection confidence score from 0.74 to 0.90 and from 0.70 to
0.84 for persons and cars, respectively.

The rest of the paper is organized as follows. Section 2 introduces related work,
materials and methods are demonstrated in Section 3, results and discussion are presented
in Section 4 and Section 5 concludes the paper.

2. Related Work

Researchers have proposed plenty of object detection algorithms, especially with the
help of AI techniques. AI algorithms have been proven to be effective in object detection
in terms of detection accuracy and speed. In this section, we review existing related
work with AI techniques in different aspects, i.e., FPGA acceleration, AI object detection,
and intelligent systems.

2.1. FPGA Acceleration

FPGAs are widely used for AI task acceleration. We find three studies that are closely
related to our proposed design and they are summarized in Table 1.

Table 1. Summary of state-of-the-art object detection using FPGA accelerators.

Virtex-Yolo Zynq-Yolo Req-Yolo
[9] [10] [11]

Advantages High speed Multiple NN support High speed

Disadvantages Yolov3 not supported Yolov3 not supported Yolov3 not
supported

Few operator support Few operator support Few operator
support

No post-proc. No post-proc. No post-proc.
High power High power High power

Low speed Compressed Yolov2

Ma et al. [9] propose an FPGA accelerator for Yolov2-tiny, where the Xilinx Virtex-7
485T FPGA is used for development. They support operators of convolution, pooling,
ReLU, and fully connected layers. The input size is 448 × 448 and the system generates
7 × 7 × 2 bounding boxes. The essential contribution is that they optimize the hardware
implementation of the fully connected layer and the detection speed is fast. It is worth
mentioning that in the new Yolov3, the fully connected layer is not used.

Guo et al. [10] develop an FPGA accelerator using Xilinx Zynq 7020 FPGA board. This
design can be applied to various neural networks and it supports Yolov2, whose operators
are the same as those in [9]. Its detection speed is low compared to the work in [9].

Ding et al. [11] achieve high-speed detection using a Xilinx Virtex-7 690T FPGA. They
accelerate the convolution by utilizing FFT. The operators supported include convolution,
max pool, leaky ReLU, etc. The main contributions are that they implement the fully-
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connected layer using convolution and compress the model weight to 4.95 MB. This is
much smaller than the original and it comes with a cost of accuracy

In addition, the related studies all accelerate Yolov2—which consists of nine convolu-
tional layers—and do not support Yolov3. The operators in Yolov2 are limited. Our design
can accelerate Yolov3, which includes 13 convolutional layers and new operators such as
up-sampling and concatenation. The previous studies generate bounding boxes which are
then processed by CPUs and our design includes a post-processing module in the FPGA,
which greatly accelerates the post-processing. Since the previous studies all include SoCs
that run an operating system, the power consumption of these studies is inevitably high
and they are not suitable for lower power-consumption scenarios.

2.2. Object Detection

Object detection aims to locate and classify objects and we introduce some classic object
detection algorithms in this section. With the development of deep-learning technology,
the performance of neural networks in object detection far exceeds traditional algorithms,
and the state-of-the-art models on public datasets such as MS-COCO [12] are all based on
neural networks. The object detectors of the current mainstream object detection algorithms
can be divided into two-stage object detectors and single-stage object detectors. The R-
CNN family, such as Fast R-CNN [13], employs two-stage object detectors. Yolo [14]
and Swin transformer [15] use a single-stage object detector. These models can achieve
quite a high accuracy and real-time inference speed in object detection, but the number
of parameters is large and the training time is long. Due to limited resources in some
scenarios, we cannot deploy these models on edge devices, so there are many lightweight
models such as MobileNet [16].

R-CNN [17] is the first application of convolutional neural network (CNN) in the
field of object detection, where CNN is mainly used for feature extraction. R-CNN uses
the selective search method to select 2000 object candidate regions, then uses CNN to
extract a 4096-dimension feature vector from each region and constructs SVM classifiers to
classify the feature vectors, and, finally, uses non-maximum suppression (NMS) to adjust
the position of the candidate regions.

Compared with R-CNN, Fast R-CNN [13] uses a convolutional neural network as
the output to classify and predict the position size of the box, replacing the original SVM
classifier. In order to improve the calculation speed, the network finally uses SVD instead
of the fully connected layer, so the training speed of the latter is faster than the former.

Yolo [14] treats detection problems as a regression task to directly predict pixels as
targets instead of a classification task. Firstly, Yolo divides the input image into SXS grid
cells. Each grid cell will detect whether the center of the object falls into it, and if it falls,
the grid cell is responsible for detecting the object. Then we can obtain multiple bounding
boxes (BBoxes) and the confidence score of the boxes from each cell. If there is no target,
the confidence score is zero.

Backbone architectures are an important component in the object detector to extract
the input image features. The ResNet [18] proposed by Kaiming He et al. is one of
the widely used backbones in object detection. ResNet avoids the vanishing gradient
phenomenon through the cross-layer connection of the neural network, and this connection
method does not bring additional computational complexity. There are two basic blocks in
ResNet-50, Conv Block and Identity Block. The input dimension and output dimension
of Identity Block are the same, which are used to deepen the network depth. There are
16 bottleneck modules and a 7X7 convolutional kernel, each bottleneck module has three
layers of convolution. The ResNet-50 network contains 49 convolutional layers, and a fully
connected layer.
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2.3. Intelligent Systems

With the rapid development of technology, researchers have investigated various
methods to build intelligent systems and we introduce some typical intelligent systems in
this section. Many sensors are equipped in various systems to help gather surrounding
information that can be used to make intelligent decisions. Tactile sensors are used in
advanced intelligent systems–such as robotics and human-machine interfaces–to achieve
safe and precise operations in uncertain environments [19]. Vehicle visual sensors are
adopted by Li et al. to perform real-time semantic understanding and segmentation of
urban scenes [20]. Qiu et al. [21] build intelligent human motion capture systems using
wearable sensors. Haseeb et al. [22] propose a sensor-cloud architecture for intelligent
Internet of Things to provide data security and network scalability.

In addition, machine learning (ML) is becoming increasingly important in intelligent
systems [23,24]. A large amount of data have been generated from equipped sensors and
the Internet, which offers routes to training systems becoming more intelligent using these
data together with ML. He et al. [25] summarize sensing applications and investigate
how machine-learning algorithms are used to develop intelligent sensor systems. The
standard extreme learning machine achieves the best diagnosis result with an accuracy of
80%. Prencipe et al. [26] propose a system that utilizes a 2.5D convolutional neural network
(CNN) with the multi-class focal Dice loss, such that liver segments can be classified for
surgical planning. An intelligent system is developed to manage and control plant leaf
diseases using feature fusion and PCA-LDA classification [27].

Haq et al. [28] propose an intelligent system that takes advantage of decision trees
to classify healthy and diabetic subjects using clinical data. González et al. [29] build an
intelligent system to solve a closed-loop supply-chain problem using fuzzy logic with
machine learning. Deepa et al. [30] perform healthcare analysis with an AI-based intel-
ligent system using a Ridge-Adaline Stochastic Gradient Descent (RASGDC) classifier.
Zekić et al. [31] utilize deep neural network (DNN) and tree-partitioning methods to pre-
dict energy consumption in smart cities such that an intelligent system is developed for
efficient energy management.

3. Materials and Methods

The aim of this paper is to develop an intelligent system on drones that performs
real-time object detection. We first describe the design of the FPGA that takes ML methods
for object detection, then we explain the system design in detail.

3.1. FPGA Design

To perform real-time object detection using different NN models, we take advantage
of an FPGA and design a reconfigurable accelerator architecture with it. The FPGA that we
adopt is Kintex-7 410T, as shown in Figure 1. It contains 406,720 logic cells, 1540 DSP slices,
16 high-speed serial transceivers, 12.5 Gb/s transceiver aggregate bandwidth, 28 Mb block
RAM, 500 I/O pins, and 800 Gb/s bandwidth. The Kintex-7 FPGA is ideal for applications
including 3G and 4G wireless, flat panel displays, and video over IP solutions. We design
an NN engine to accelerate NN models on it.

The architecture of the NN engine on the FPGA is displayed in Figure 2. Data are
first transferred to the FPGA. Then the NN engine assembles the data into the data stream,
which are used for the following processing. Specifically, data streams are sent to multiple
fetch and jump pointers. Note that we adopt a multi-threading strategy such that parallel
computation can be achieved using multiple weights and buffers.
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Figure 1. The Xilinx Kintex-7 410T FPGA.
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Figure 2. The FPGA NN engine accelerator architecture for neural networks.

A fetch and jump (F&J) mechanism is used to independently obtain required activation
data for each thread from the data stream. Fetch pointers—which are programmed in
accordance with the kernel structure—access the data stream in parallel, and fetch the
activation data into specific L1 buffers. Together with a low-cost jump logic, a fetch pointer
catches the required data individually. Then, we filter the activation data with sliding
windows and use a dynamic thread-allocation module to mark thread buffer and thread
status. At the same time, neural network weights are put into weight buffers. The activation
data and weights are used to process image data using multiple processing elements (PEs)
for NN acceleration, whose outputs are written to the out-of-order commit buffer. The out-
of-order data are reconstructed by the in-order construction module and they are sent to
the external data sink.

3.2. System Design

To build an intelligent system on drones, we first select the AMOVLAB Z410 drone
model as the base platform. It is composed of an Intel Realsense T265 tracking camera,
a flight controller, and a Raspberry Pi 4 Model B board host. The host includes a quad-core
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Cortex-A72 (ARM v8) SoC @ 1.5GHz and the operating system is Ubuntu 20.04. We equip
the FPGA to the drone for NN model acceleration and connect it to the host. The overview
of the proposed system is shown in Figure 3.

Drone Host

Camera

Flight Controller
FPGA

Linux OS

Deep Learning 
ModelARM SoC

Controller

Image 
data

Image data
/NN model
result

Flight status
/commands

Figure 3. The architecture of the proposed intelligent system.

From Figure 3, we can see that the drone host is the central unit of the intelligent
system and it is in charge of the system management. The camera sends image data to the
drone host for processing. The host forwards the image data to the FPGA for AI processing
using ML models, and the result is returned to the host. Meanwhile, the host sends flight
status and commands to the flight controller—a separate module for flight control and
adjustment—throughout the flight journey, such that the drone can fly smoothly and safely.

The intelligent system picture is shown in Figure 4. As explained in previous sections,
the system includes four key components, i.e., the host, the camera, the flight controller,
and the FPGA. In addition, other components are necessary to support the system, including
the battery for power supply and GPS for outdoor positioning.

Kintex-7 

410T FPGA

Flight 

Controller Realsense

T265 Camera

Raspberry 

Pi 4B Host

Battery

GPS

Figure 4. The proposed intelligent system.

3.3. Intelligent Object Detection

We note that when performing object detection, the objects may be misclassified in
some cases. Therefore, we propose intelligent object detection techniques, as displayed in
Figure 5. It generates the image and performs object detection on it. Only when the object
detection is higher than or equal to the preset threshold, will the system report the image
remotely. This way, there is no need to send every image to the remote machine, which
significantly reduces the transferred image data.
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Figure 5. The workflow of the proposed intelligent object detection.

Specifically, in the workflow of Figure 5, the drone first starts flying in an area of
interest and then looks around to search for different types of targets. Depending on the
battery, a drone can fly typically between 10 to 30 minutes and power consumption is a
concern for drones.

While flying, the drone captures images using equipped sensors, including pressure
sensors, humidity sensors, accelerometer sensors, image cameras, etc. With the help of
deep learning, it is feasible to detect objects using images. Therefore, we use the camera to
capture images during the flight.

Upon the image data generation, the host transfers the image data to the FPGA
for object detection. The FPGA contains the NN engine that can run various NN models,
including ResNet-50, Yolov3, and Yolov3-tiny models. These models can be used to perform
object classification and detection tasks with low power consumption.

Based on the object detection results, the system evaluates if there is any target of
interest (TOI) in the search area. The TOI is the target that the user specifies in advance,
and it may be a person, a car, or other objects. If no TOI is found, the drone moves to the
next area of interest.

When TOI is found, our system looks into the confidence score of the object detection.
We use a confidence-score threshold as the tuning hyperparameter for the user to adjust.
When the confidence score is greater than or equal to the threshold, the system is confident
that the image provides enough information and then sends the image to the remote
machine for the report. The drone can then start searching the next area.

If the confidence score is below the threshold value, the drone flies around and
attempts to take images of the object from different angles. By approaching the target,
the system can generate images that may contain more pixels for the TOI. In this case,
the confidence score will be effectively increased.

Note that the confidence score denotes the uncertainty of the object detection result
from Yolo. By using a preset threshold, the uncertainty in decision-making can be reduced.
When the threshold is set to a low value (e.g., 0.60), the uncertainty is high and the object
may not be that clear in the image; when it is set to a high value (e.g., 0.95), the uncertainty
decreases but the system may not be able to reach the threshold, which results in a deadlock.

Figure 6 illustrates the principle of intelligent object detection. The target of interest
is the person, and in the first image, the object detection confidence score is 0.60 and it
is below the threshold (e.g., 0.8). By providing more pixels of the person, the system can
produce a more effective object detection with a higher confidence score—i.e., 0.90—and
report the image accordingly.
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Person 0.60

Person 0.90

Figure 6. The illustration of intelligent object detection by providing more pixels for the target of
interest, which effectively increases the object detection confidence score.

4. Results and Discussion

In order to test the effectiveness of the proposed intelligent system, we first evaluate
the NN engine of the FPGA. Then, we perform experiments on the whole system for a
full evaluation.

4.1. FPGA Resource Utilization

We first evaluate the resource consumption of the FPGA to see how many resources
our NN engine has utilized, as listed in Table 2. Lookup table (LUT) blocks and DSP blocks
are important computing resources. LUT blocks are the programmable fabric that can
be used to implement arithmetic circuits. DSP blocks are a scarce resource on an FPGA
chip and they are more efficient to implement arithmetic circuits compared to LUT blocks.
Thus, it is important to use DSP blocks as efficiently as possible. We can see that 185,046
of 254,200 LUT blocks are utilized, i.e., with a 72.80% utilization rate. A total of 1256 of
1540 DSP blocks are utilized, i.e., with an 81.56% utilization rate. This means that LUT
and DSP blocks are used efficiently, i.e., we have well utilized the computing resources of
the FPGA.

Table 2. NN engine resource consumption of the FPGA.

Resource Available Utilization Utilization %

LUT 254,200 185,046 72.80
LUTRAM 90,600 1297 1.43

FF 508,400 136,483 26.85
BRAM 795 304 38.24

DSP 1540 1256 81.56
IO 400 119 29.75

BUFG 32 5 15.63
MMCM 10 2 20.00

PLL 10 1 10.00

4.2. Power

Figure 7 illustrates the power consumption of the FPGA. It is shown that the total
on-chip power is 3.529 W, where dynamic power is the dominant one with a portion of
93%. The on-chip power is not large and can be supplied with portal DC power sources.
Thus, we adopt a battery bank to supply a 5 V voltage for the FPGA.
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Figure 7. The power consumption of the FPGA.

There are two power sources for the intelligent system, i.e., a battery for the flying of
the drone and a battery for the FPGA. Table 3 lists the battery-life duration of the drone
and the FPGA. We can see that although the FPGA exhibits low-power characteristics that
can work for 2 hours, the system’s duration is determined by the battery duration of the
drone, which is limited to the duration of 11 minutes.

Table 3. Battery duration for drone and the FPGA.

System Component Battery Duration

Drone 11 min
FPGA 2 h

4.3. NN Model Speed

The NN engine is an accelerator for NN models and it can leverage various NN
models for object classification and detection. We validate three models in our experiments,
i.e., ResNet-50, Yolov3, and Yolov3-tiny models. Table 4 summarizes the NN models
and their corresponding processing time. In general, NN models require a large number
of weights that are trained using numerous labeled images. For ResNet-50 and Yolov3,
the weight sizes are 147 MB and 384 MB, respectively. The weights need to be transferred
from the host to the FPGA and, thus, it takes a long time—16.01 s for ResNet-50 and 39.31 s
for Yolov3—to load the weights.

Though it is time-consuming to load the weights, the weight loading happens only
once and it does not cost extra time after loading. On average, the processing time of each
image is only 1.17 s and 0.8 s for Yolov3 and ResNet-50, respectively.

It is worth mentioning that Yolov3-tiny is a widely used NN model for object detection,
which dramatically improves the processing speed. Compared to Yolov3, the weight size
is reduced from 384 MB to 51 MB and the processing time decreases from 1.17 s to 0.13 s,
i.e., 8 FPS. Therefore, we adopt the Yolov3-tiny NN model for real-time object detection.
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Table 4. NN engine speed for different NN models.

NN model Weight Size Weight Loading Time Processing Time

ResNet-50 147MB 16.01 s 0.8 s
Yolov3 384 MB 39.31 s 1.17 s

Yolov3-tiny 51 MB 5.88 s 0.13 s

Figure 8 displays the detailed time decomposition of different NN models, where
weight loading denotes the time to load the NN model weight and im represents the time
spent for object classification and detection for the ith image. Ten images are tested for each
model. We find that Yolov3-tiny significantly outperforms Yolov3 and ResNet-50.

0 10 20 30 40 50

Yolov3-tiny

Yolov3

ResNet-50

Weight Loading (s) i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

Figure 8. The detailed time decomposition of various NN models using ten images.

4.4. Comparison with Other Approaches

To evaluate the performance of our design, we compare our work with other ap-
proaches, as illustrated in Table 5. We randomly select 500 images from the public COCO
dataset [12] for performance evaluation. It is evident that our work produces object detec-
tion with extremely low power at 3.525 W, which is significantly lower than the power of
23 W from work [11]. This is because we implement neural networks without SoC, which
eliminates the operating system and, thus, dramatically reduces power consumption.

In addition, the runtime latency of our work is 130 ms, and it is much smaller than the
runtime of work [9]. It is also comparable to the latency of work [10]. However, the FPGA
of work [10] runs at 150 MHz, whiles ours runs at 100 MHz, which means that our design
outperforms the work of [10] at the same operating frequency.

The object detection speed of our design is only 8 FPS, which is a disadvantage
compared to other approaches. This is because our design is limited by the I/O property of
the FPGA board, which is an inherent limitation, as indicated by the roofline model. We can
improve the speed by using an FPGA board with a high I/O bandwidth in future designs.

Table 5. Benchmarking with state-of-the-art object detection using FPGA accelerators.

Implementation Virtex-Yolo Zynq-Yolo Req-Yolo Our Work
[9] [10] [11]

Device Type Xilinx Virtex-7 485t Zynq 7020 ADM-7V3 FPGA Kintex-7 410T

Clock Freq. (MHz) 140 MHz 150 MHz 200 MHz 100 MHz

Speed (FPS) 21 8 208 8

Power (W) N/A N/A 23 3.529

Latency (ms) 970 125 N/A 130

4.5. Intelligent Object Detection

We perform object detection and display some detection results in this section. We
aim to find the targets of interest in an area using the drone and report detected objects in
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real time. Note that due to the characteristics of the Yolo model, it is inevitable to produce
wrong object detection results.

We randomly select some objects to evaluate if the system can increase the confidence
score when it is below the specified value. Note that Figures 9–12 are from the camera and
are not publicly available. Figure 9 shows an ordinary person-detection result, where some
bikes are misclassified as a person.

Figure 9. The ordinary person-detection result.

With our intelligent object detection techniques, we empirically set the confidence
score threshold to 0.8 and the drone approaches the detected target when the score is less
than the threshold. On the one hand, it can generate more detection results, such that the
wrong detection results may be spotted. On the other hand, it produces more pixels as the
drone approaches, which helps improve the accuracy of object detection.

Figure 10 displays the person-detection result using intelligent object detection tech-
niques. We can see that the confidence score of the person has improved from 0.74 to
0.90. In addition, the misclassified bikes have been corrected from person to bicycle with a
confidence score of 0.50.

In addition to a person, we also demonstrate the effectiveness of the system for
cars. Figure 11 illustrates the ordinary car detection and most confidence scores are
between 0.50 and 0.70. Figure 12 shows the intelligent object detection mechanism for
the car and the confidence scores have been varied, where the top score has been increased
from 0.7 to 0.84.

From the experimental results, we can see that the system is intelligent in two ways.
On the one hand, Table 5 validates that our system can intelligently process the image
detection and consumes low power. On the other hand, Figures 9–12 indicates that when the
TOI contains few pixels, the resulting confidence score is low and our system intelligently
approaches the TOI to increase the object detection score, which leads to a larger TOI in
the image.
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Figure 10. The intelligent person-detection result.

It is worth mentioning that since our system can run various neural network models
and signal processing tasks, the system is not limited to person and car detection and it can
also be used for other object detection or even other types of tasks. For example, it can be
adopted to accelerate the CNN model that monitors littering activities [32], and deal with
thermographic fault diagnosis tasks using a feature-extraction technique [33].

Figure 11. The ordinary car-detection result.
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Figure 12. The intelligent car-detection result.

5. Conclusions

In this research, we propose an intelligent object detection system on drones. We
implement a power-efficient neural network engine on the FPGA and use it as the NN
model accelerator. The image data are transferred by the host from the camera to the FPGA.
To improve the accuracy of object detection, our intelligent detection approaches the target
and generates images with more pixels for the target. Experimental results indicate that our
system can achieve real-time detection at the speed of 8 FPS. Compared to other approaches,
our work achieves low power consumption at 3.529 W with a lower latency of 130 ms.
In addition, it can increase the detection confidence score from 0.74 to 0.90 and from 0.70 to
0.84 for persons and cars, respectively. In future work, we plan to apply our approach to
various intelligent applications—such as smart city monitoring and fault diagnosis using AI
techniques—and combine our design with state-of-the-art edge-computing and blockchain
technologies to deal with data security issues while capturing images in real-time [34,35].
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