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Abstract: The automated recognition of optical chemical structures, with the help of machine learning,
could speed up research and development efforts. However, historical sources often have some level
of image corruption, which reduces the performance to near zero. To solve this downside, we need a
dependable algorithmic program to help chemists to further expand their research. This paper reports
the results of research conducted for the Bristol-Myers Squibb-Molecular Translation competition,
which was held on Kaggle and which invited participants to convert old chemical images to their
underlying chemical structures, annotated as InChI text; we define this work as molecular translation.
We proposed a model based on a transformer, which can be utilized in molecular translation. To better
capture the details of the chemical structure, the image features we want to extract need to be accurate
at the pixel level. TNT is one of the existing transformer models that can meet this requirement. This
model was originally used for image classification, and is essentially a transformer-encoder, which
cannot be utilized for generation tasks. On the other hand, we believe that TNT cannot integrate the
local information of images well, so we improve the core module of TNT—TNT block—and propose
a novel module—Deep TNT block—by stacking the module to form an encoder structure, and then
use the vanilla transformer-decoder as a decoder, forming a chemical formula generation model
based on the encoder–decoder structure. Since molecular translation is an image-captioning task, we
named it the Image Captioning Model based on Deep TNT (ICMDT). A comparison with different
models shows that our model has benefits in each convergence speed and final description accuracy.
We have designed a complete process in the model inference and fusion phase to further enhance the
final results.

Keywords: vision transformer; image captioning; TNT; automatic text annotation of chemical images;
Bristol-Myers Squibb-Molecular Translation

1. Introduction

The Bristol-Myers Squibb Molecular Translation competition was designed to help
chemists expand access to collective chemical research, speeding up research and develop-
ment efforts in key fields by avoiding repetition of previously published chemistries and
identifying novel trends via mining large data sets [1]. In this competition, participants are
asked to interpret old chemical images. The objective is to convert an outsized quantity
of synthetic image information into the underlying chemical structure and annotated it as
International Chemical Identifier (InChI) text, which is a string jointly developed by the
International Union of Pure and Applied Chemistry (IUPAC) and the National Institute of
Standards and Technology (NIST) to uniquely identify the IUPAC name of a compound.
The string comprises four parts: (1) version, (2) chemical formula, (3) atomic linkage layer
and (4) hydrogen layer. A chemical image and its corresponding InChI text in the training
set are shown in Figure 1.

In this work, we use a deep learning methodology to accomplish the molecular
translation. The general process is to input chemical images into the model. Then the model
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generates the corresponding annotations. The molecular translation is essentially an image-
captioning task, which is a cross between the fields of computer vision and natural language
processing (NLP). In computer vision, convolutional architectures remain dominant [2–5].
To take advantage of the powerful convolutional structure, we designed a model for use as
a comparison, which consists of a convolutional neural network (CNN) [4,5] as an encoder
and a recurrent neural network (RNN) [6] as a decoder (see Section 4.1.2 for details).

(4)

InChI=1S/C12H12O2S/c1-3-8-5-4-6-9-7-10(12(13)14-2)15-11(8)9/h4-7H,3H2,1-2H3

(1) (2) (3)

(1) Version

(2) Chemical Formula

(3) Atomic Layer

(4) Hydrogen Layer

Figure 1. A glimpse of the training set.

NLP is the bridge between machine language and human language for the purpose
of human–machine communication. Today, the most fundamental model for handling
NLP tasks is the transformer, which is a network mainly composed of Multi-head Self-
Attention (MSA) [7], which has beaten the prevailing best models based on recurrent and
convolutional structures on machine translation tasks using an attention mechanism. The
training time was significantly reduced as the encoder side can calculate in parallel.

Nowadays, transformers are widely used in the NLP sector [8,9]. Researchers have
also applied this efficient structure to the field of computer vision, Vision transformer
(ViT) [10] accomplishes vision tasks without much modification of vanilla transformer. ViT
divides an image into a series of patches. On the basis of ViT, models based entirely on
self-attention have emerged in recent years [11–13]. TNT [12] follows the way of image
processing in ViT and its authors point out that ViT cannot model the local information of
an image, and a new structure is proposed: TNT block, which solves the above problems.
However, we found that TNT could not finely integrate the local information in chemical
images, so we propose the Deep TNT block. We stack Deep TNT blocks and use the
native transformer-decoder for decoding to obtain a novel generative model, which we
call ICMDT (the model structure is shown in Figure 2). The final result is evaluated by the
Levenshtein distance, which is a metric used to measure the similarity of two sequences.
This metric primarily calculates the minimum number of single-character edit operations
needed for interconversion between two sequences.

To demonstrate the effectiveness of ICMDT, in our work, we analyze three aspects
of the model size, the convergence speed during training, the final metrics (the mean
Levenshtein distance between inference results and the ground truth InChi values, the
entire evaluation process is conducted on the Kaggle platform). The influence of image
pre-processing and post-processing on the final results is also analyzed.
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ICMDT

Figure 2. Simplified processing flow of the molecular translation task and the structure of ICMDT.

2. Related Work
2.1. Image Captioning

Image captioning is a typical application in the field of multimodal data processing [14].
Traditional image-captioning algorithms are divided into two categories: (1) template-
based image-captioning algorithms [15–17] and (2) retrieval-based image-captioning al-
gorithms [18–20]. The former limits the diversity of description texts to some extent and
does not allow a generation of variable-length description statements. The description
statements generated by the latter method are more flexible, and the method constructs a
data retrieval database rich in semantic information by collecting a large number of images
and their corresponding text descriptions, but it is limited by the existing retrieval database.

Image-captioning algorithms based on deep learning architecture can be broadly
classified into two categories. The first includes basic encoding-decoding image-captioning
algorithms [21–23]. In this framework, the encoding process extracts the visual features
of the target image by using a deep convolutional neural network (DCNN), and the
decoding process translates the obtained visual features into description statements by
RNN. However, the descriptive statements generated by these models cannot be linked
to the relevant regions of the image. The second category includes the attention-based
encoding-decoding image-captioning algorithm [24–27]. The algorithm introduces an
attention mechanism in the decoding stage that combines the words generated in the
previous moment with the local visual information of the image, making it possible to
dynamically focus on different regions of the image as each word is generated by the
language module. In recent years, some work has also been carried out on the basis of the
self-attention model [9] to compensate for the shortcomings of the transformer model for
image-captioning tasks and to further improve the model’s performance [28–30].

2.2. Transformer

The transformer structure (Vaswani et al., 2017) has become the standard paradigm
in NLP, and a series of excellent models have been derived from it. BERT [8] is the most
representative. It is pre-trained by denoising the text corpus with self-supervision and is
then placed on a downstream task for fine-tuning. The transformer’s powerful feature
learning capability and bi-directional encoding via masked language models dramatically
improves the benchmark performance of various NLP tasks.
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Given its powerful learning capabilities, BERT has been applied to cross-modal do-
mains since 2019, aiming to build a generic feature learning model for cross-modal domains.
Several experiments have shown that architectures such as BERT continues to have strong
learning capabilities in cross-modal domains. Its application in cross-modal domains has
been divided into two schools of thought: one is the single-stream model [31–35], in which
language information and vision information are amalgamated at the start, then fed directly
into the encoder (transformer) together. The other is the dual-stream model [36,37], in
which language information and vision information are first passed through two separate
transformer-encoder modules. Then the cross-transformer module achieves the fusion of
different modal information. VLP [35] introduces a decoder and shares parameters with an
encoder, it is the first type of model to be used for generation tasks (Image captioning).

In computer vision, the transformer model has inspired improvements in the CNN
architecture [38–40]. For example, self-attention has been integrated into the CNN architec-
ture [41–44], and in recent years, increasing transformer architectures have been put into rich
computer vision tasks (target detection, semantic segmentation) [45–48], ViT [10] achieved
the image classification task by a standard transformer-encoder with few modifications, and
a series of vision transformers followed under the influence of that work [11–13,45,48,49].
DeiT [11] introduces distillation and some training strategies based on ViT [10] to improve
training speed and accuracy.

TNT [12] processes each image patch through two transformer blocks (inner trans-
former block, outer transformer block). The pixel-level information is fused with the
patch-level information. The model outperforms DeiT on ImageNet. In this paper, the
TNT block (the core module of TNT) is further improved so that it can both capture local
information in the image and integrate local information in a more precise way. It achieves
the best trade-off in size, speed, and performance compared to four other baseline models.

3. Materials and Methods

In this section, we introduce the preliminaries of transformers and vision transform-
ers, as well as our improvements based on the TNT block and our network structure,
position encoding.

3.1. Transformer

The transformer encoder consists of MSA, Feed-Forward Networks (FFN), Layer
Normalization (LN), and skip connections. In general terms, a transformer consists of two
parts: an encoder and a decoder.

In the base module of MSA, scaled dot-product attention, model inputs and the three
learnable parameter matrices are computed in dot product form and yield three vectors of
three types: queries (Q), keys (K) and values (V) (Q has the same dimension as K). The three
matrices are WQ ∈ Rd×dk ; WK ∈ Rd×dk ; WV ∈ Rd×dv where d, dk and dv are the dimensions
of input and Q, K, V. The subsequent calculations revolve around Q, K, V (as shown in
Equation (1)).

Attention(Q, K, V) = sotfmax
(

QKT
√

dk

)
V (1)

The calculation in Equation (1) yields an attention result, while MSA is responsible for
computing multiple attentions in parallel: MSA divides the attention into h parts, performs
the operations in parallel, merges the attention results of each part and obtains the result
after a linear layer projection.

Both the MSA block and FFN are immediately followed by a LN and skip connection.
The decoder differs from the encoder by the addition of a masked self-attention and cross-
attention mechanism. In masked self-attention, attention is restricted so that the queries at
each position can only focus on key-value pairs at the current and previous positions. The
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last part we call the illegal position. The conventional practice is to add a mask matrix to
the attention score, where illegal positions are masked using the following formula:

Aij = −∞ if i < j2 (2)

Cross-attention differs from self-attention in that queries are obtained from the output
projection of the previous (decoder) layer, while keys and values are obtained using the
output projection of the encoder.

3.2. Vision Transformer

As the pioneer of vision transformer, ViT [10] differs from the vanilla transformer-
encoder in that the FFN is replaced with a multilayer perceptron (MLP) and the LN is
placed in front of the MSA block and the MLP block. The only difference between the
MLP and the feed-forward layer is that the activation function is changed from ReLu
to GeLu [50]. In image processing, ViT segments a 2D image into a series of patches
X = [X1, X2, X3, . . . , Xn] ∈ Rn×p2×c, where n represents the length of the sequence of
facets; p2 represents the size of each patch, and c represents channels. These patches are
then flattened and projected through a linear layer into a 1D sequence X f ∈ Rn×d. After
adding a class token and attaching a position encoding Epos ∈ R(n+1)×d, they are fed into
the model for processing (Equations (3) and (4)), and the classification results are output
through an MLP.

z∗`−1 = MSA(LN(z`−1)) + z`−1 ` = 1, 2 . . . L (3)

z` = MLP
(

LN
(
z∗`−1

))
+ z∗`−1 ` = 1, 2 . . . L (4)

3.3. Deep-TNT Block

TNT block [12] models local information and global information separately. First, the
local information (pixel embedding) is processed by the inner-transformer block, and then
the local information is attached to the corresponding patches and the outer transformer
block to process the global information (patch embedding). Path-level information is
integrated into global information through simple position encoding, but we believe this
operation is not an accurate way to obtain global information. Thus, to better model the
global and local information of chemical images, we model the patch-level information
again. First, we fuse several patch-level messages into one large patch, then process them
through a transformer-block. This makes the integration of location coding and global
information much easier. We denote this module as Deep TNT block. It is used to process
three levels of information (as shown in Figure 3), and by stacking a total of L times, this
module forms the encoder of our model.

Figure 3. Processing of three levels of information.
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Similarly, we divide an image into n non-overlapping patches, noting that the size of
the patches (p, p) here is larger than that in TNT. Then we unfold and linearly project each
patch into a sequence of patch tensors of size (p′, p′); Zi

0 denotes the patch tensor:

Z0 =
[

Z1
0 , Z2

0 , . . . , Zn
0

]
∈ Rn×p′×p′×c (5)

where Zi
0 acts as a sequence of small patch embeddings; c represents the channel. Then

each small patch is further divided into target sizes (p′′, p′′) and linearly projected again
into a sequence of pixel-level tensors, where the sequence length is kept as n, which is for
easier fusion with higher-level information.

y0 =
[
Y1

0 , Y2
0 , . . . , Yn

0

]
∈ Rn×p′′×p′′×c1 (6)

In this case, y0 represents the whole picture, and Yi
0 is a small patch level of information

consisting of pixel-level information. After re-division, to keep the length of the sequence,
the number of channels is changed. This is represented by c1, in the same way as in TNT.
Here we consider each tensor Yi

0 as a pixel embedding sequence:

Yi
0 =

[
Y i,1

0 ,Y i,2
0 , . . . ,Y i,m

0

]
(7)

where m = p′′2; Y i,j
0 ∈ Rc1 , and j = 1, 2, . . . , m.

We process different levels of information by three data streams. The first one is used to
process large patch embeddings; the second one is used to process small patch embeddings,
and the third one processes pixel-level features in small patches. The transformer blocks
in the three processes are the exterior transformer block, middle transformer block, and
internal transformer block.

Y∗i` = Y∗i`−1 + MSA
(

LN
(

Y∗i`−1

))
(8)

Yi
` = Y∗i` + MLP

(
LN
(

Y∗i`
))

(9)

Equations (8) and (9) show the processing of the pixel embedding sequence in the
internal transformer block, which is consistent with ViT in that the LN is also preceded.
Here, subtle local information is modeled, and each vertex in the chemical structure and
its connected chemical elements are captured in one place where ` represents the ordinal
number of the `th level; ` = 1, 2, . . . , L, and we denote the total number of layers as L.

Zi
`−1 = Zi

`−1 + Flat
(

Yi
`−1

)
W`−1 + b`−1 (10)

Z∗i` = Zi
`−1 + MSA

(
LN
(

Zi
`−1

))
(11)

Zi
` = Z∗i` + MLP

(
LN
(

Z∗i`
))

(12)

Equations (10)–(12) show the process of integrating pixel-level features into the small
patch embedding and modeling the small patch embedding sequence. The feature infor-
mation output by the internal transformer block is expanded into a vector by the Flat()
function and then processed by a linear layer to be attached to the corresponding small
patch embedding. W`−1 ∈ Rm×c1×(p′2×c) and b`−1 ∈ Rp′2×c are the weights and bias,
respectively. The sequence of small patch embeddings is modeled with an exterior trans-
former block.

We use N0 =
[

N1
0 , N2

0, . . . , Nn
0

]
∈ Rn×d to denote the sequence of large patch embed-

dings. Since it is no longer used as a classification task and is simply encoded to obtain the
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intermediate vectors, classification markers are eliminated here. As in Equations (10)–(12),
the small patch tensor is first expanded and added to the patch embedding by linear projection.

N i
`−1 = N i

`−1 + F lat
(

Zi
`

)
W ′`−1 + b′`−1 (13)

N ∗i` = N i
`−1 + MSA

(
LN
(
N i

`−1

))
(14)

N i
` = N

∗i
` + MLP

(
LN
(
N ∗i`

))
(15)

Here, Ni
`−1 ∈ Rd;W ′`−1 ∈ R

(
p′2 × c

)
× d; b′`−1 ∈ Rd. The sequence of patch embed-

dings is modeled using an exterior transformer block.
We built the Deep-TNT as the encoder part of our generative model by fusing the local

information at a finer level. The internal transformer block makes pixel-level interactions
to extract deep local image information. The middle transformer block extracts “shallow
global features” from a sequence of small patches, and the exterior transformer block
further fuses the shallow global features to obtain more accurate “deep global features”.
For the whole Deep-TNT block, the outputs and inputs include pixel embeddings, small
patch embeddings, and large patch embeddings, so it can be expressed in general as

y`,Z`,N` = Deep− TNT(y`−1,Z`−1,N`−1) (16)

3.4. Position Encoding

To better integrate patch-level features and pixel-level features to obtain complete
information about the image, position encoding is essential. Positional information is
incorporated in the form of fixed or trainable [51] position embeddings.

They are added to the patch tokens before the first transformer block and are then fed
into a stack of transformer blocks. The details are shown in Figure 4. We add corresponding
position encoding to each small patch embedding and pixel embedding, which are shared
and kept consistent between each large patch. The difference is that for the large patch
embedding, a learnable 1D position encoding is used here.

N0 ← N0 + Elarge patch (17)

Zi
0 ← Zi

0 + Esmall patch (18)

Yi
0 ← Yi

0 + Epixel (19)

where Elarge patch ∈ Rn×d is the position encoding for large patches; Esmall patch ∈ Rp′2×c is
the position encoding for small patches, and Epixel ∈ Rm×c1 is the fixed pixel position en-
coding.

3.5. Parameter Setting in the Network Architecture

The middle transformer block and the internal transformer block in our Deep TNT
are similar to the structure of the TNT block. We considered the lightness of the model, so
we set the hyperparameters of our two transformer blocks according to the configuration
of TNT-S. To maximize the utility of TNT-S, we kept its structural integrity and modified
only the embedding dimension. The small patch size was set to 16 × 16 and the pixel-level
patch size p′′ was set to 4.

In Table 1, “Hidden_size” and “Mlp_act” represent the dimension of the hidden layer
in the MLP and the activation function used in the MLP, respectively. “Vocab size” refers to
the maximum length of the word list generated by the decoder, and “text_dim” represents
the embedding dimension of the label into the decoder.
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Figure 4. Patch embedding and Pixel embedding position encodings.

Table 1. Strategies used in the training phase.

Encoder

Dim # Heads Pixel/batch size Depth Hidden_size Mlp_act

Internal transformer block 160 4 4
12

640 GELU
Middle transformer block 10 6 16 128 GELU
Exterior transformer block 2560 10 32 5120 GELU

Decoder

Decoder dim Heads FFN dim Depth Vocab_size text_dim

Transformer-decoder 2560 8 1024 3 193 384

4. Results

In this section, we first discuss the experimental setup, such as dataset, optimiza-
tion, pre-processing, and training methods, and then compare five models from multiple
perspectives to show the efficiency of ICMDT. Finally, we conclude with a complex and
complete model inference and fusion process.

4.1. Setup
4.1.1. Datasets

The dataset used in this experiment is the bms-molecular-translation provided by
Bristol-Myers Squibb. The dataset is divided into a training set and a test set. The training
set contains 2,424,186 chemical images. Each image has InChI markers of different lengths
according to the complexity of the chemical structure. Thus, training the model on this
dataset is a supervised learning process. To simulate the real old chemical images, image
noise was added to the images, and some images were blurred, which added difficulty to
the training. The test data contain 1,616,107 chemical images. Compared with the training
set, some of the images in the test set are noisier and have a much different aspect ratio.
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4.1.2. Models for Comparison

We constructed several representative models for comparison. In the first type of
convnet is the encoder and the full transformer structure is the decoder because it maintains
the integrity of the ViT structure. ViT usually segments the image into a series of patches
and then forms the image patch embeddings through a linear layer, which serves as the
input to the model. We instead obtained the model input through the convolution function,
where the convnet and transformer-encoder can be analogous to ViT. Thus, the whole
model can be seen as a combination of ViT and the transformer-decoder (as shown in
Figure 5). Another type of model is the combination of convnet and RNN. We added the
attention mechanism in the decoder part of the model (as shown in Figure 6).

Figure 5. The combination of convnets and transformer. The red box represents the complete
transformer structure, and the yellow box is the structure we use as an analogy to ViT. Note that here
we use ResNet to symbolize convnets; in the actual experiment, we had two options here, ResNet
and EfficientNet (the same in Figure 6).

Figure 6. The structure of the model combined by convnet and RNN. The orange box represents the
RNN structure. The 3D chemical image is processed by convnet to generate the feature vector and is
processed by the attention mechanism to generate the attention vector for the token sequence, and
the attention vector is fused with the token embedding. The state vector h, generated by the RNN at
the previous time step, is also processed by the attention mechanism and fused with the previous
two. It is used as the input for the current time step.

4.1.3. Pre-Processing

In terms of pre-processing, both the training and test sets have too much noise, and the
core chemical structure is only in the middle of the image (blank borders exist in the image).

We adopted three means to process the image: (1) image denoising (noise filtering in
images employing convnet at a convolution kernel size of 1), (2) smart cropping (the blank
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border with little information about the chemical structure is removed), and (3) padding
resizing (during the training process, resizing images with inconsistent aspect ratios may
cause image distortion and loss of original information). We first reshaped the image into a
square, and then used the longer edge of the original image as the edge length of the new
image, and the insufficient part was supplemented by the pixel points in the middle part of
the image. In Section 4.3, we experiment with different combinations of these processing
methods. The effects of the three pre-processing means are shown in Figure 7.

(a) (b)

(c) (d)

Figure 7. Comparison of original image to the image after pre-processing. (a) Original image.
(b) Denoising and padding reshaping. (c) After denoising. (d) Denoising and padding reshaping,
smart cropping.

4.1.4. Training Details

The experiments were all performed with ICMDT as a benchmark.
The general data augmentation methods we used without additional statements were

GaussNoise, Blur, RandomRotate90 [52], and PepperNoise. To obtain the best possible
model performance in a limited time, the optimizers we used were Lookahead [53] and
RAdam [54]. In terms of loss function, we chose Anti-Focal loss [55], which is based on
Focal loss [56]. Focal loss solves the situation of uneven distribution of samples with
different training difficulties and puts more attention on error-prone (difficult to train)
samples during training through weight assignment. Raunak et al. [55] pointed out that in
the Seq2Seq, there is a difference between the inference within the training part and the
testing part. Using this loss function can reduce this difference. In addition to this, we
added label smoothing [57].

In the training process, we first trained all images at a resolution of 224 and then put
images with label lengths greater than 150 to a resolution of 384 for fine-tuning, following
the strategy of Touvron et al. [58]. While changing the resolution, if we did not change the
patch size which will result in a change in sequence length—we used the same strategy as
Dosovitskiy et al. [10] to add a new position code to the patch sequence by performing 2D
interpolation of the pre-trained position encoding at low resolution.

Test time augmentation (TTA) was used to generate two model results by inference on
the original test set, and the test set was processed by rotating 90° in any direction. The
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two model results that were consistent and conformed to the InChI form (here using the
open-source cheminformatics and machine learning toolkit, RDKit [59], to carry out the
filtering) were used as pseudo-labels. To further enhance the robustness of the model and
to allow the model to correctly predict subsequent tokens despite the incorrect prediction
of a token during inference, we introduced Noisy Labels to randomly replace a chemical
element of the corresponding label of the training samples with a certain probability. The
main strategies adopted in the training and the hyperparameter settings are explained
in Table 2.

Table 2. Strategies used in the training phase.

Pre-Processing Optimizer Batch
Size

Learning
Rate

Label
Smooth

Loss
Function

Data
Augmentation

Image denoising Lookahead
(α = 0.5, k = 5) 16 1e-4 Anti-Focal loss

(γ = 0.5) GaussNoise

Smart cropping RAdam
(β1 = 0.9, β2 = 0.99) 32 2e-4 / / RandomRotate90

Padding resizing / 64+ (4e-4)+ / / PepperNoise
(SNR = 0.996)

In Table 2, we set the batch size from 16 to 64+. We set a smaller batch size at the
beginning of the training, then gradually increased it as the training proceeded, increasing
the learning rate in the same proportion [60]. When the validation loss value tended to
level off, we kept the batch size constant and then slowly reduced the learning rate until
it was close to the global optimum. Where 64+ means that continued growth in powers
of 2 based on 64, with a maximum value of 1024, (4e-4)+ in the same way. In terms of
data enhancement, we only included the three core methods. Adding pepper noise to the
training data at Signal-to-noise ratio (SNR) = 0.996, the training data can fit the test data to
the maximum extent and the best results. The pre-processing methods shown in Table 2
are not used by default.

4.2. Comparison

In this section, we compare the five models in terms of three dimensions: model
parameters, the speed of convergence, and the best results. In Figure 8, we compare the pa-
rameters of the five models. Among them, RNN refers to the bidirectional LSTM structure.
Transformer adheres to its feature of having a large number of parameters. We can see that
the overall number of model parameters is lower when using RNN as the decoder. In the
case of using transformer as the model’s decoder, the number of parameters is the largest
when using DCNN as the encoder, and the overall model parameter number is also larger
than ICMDT when using the lightweight convnet as the encoder. Thus, from the overall
situation, the number of model parameters for our ICMDT is at an intermediate level.

We compared the convergence process of the five models, as shown in Figure 9. Using
lightweight convnet as an encoder converges faster than using DCNN as an encoder,
provided that a bidirectional LSTM is used as the model decoder (the former inference on
the test set at 4.9 epochs of training achieves an edit distance of 10 from the real result, while
the latter training at 10.36 epochs), and the final results are better. When the transformer is
the decoder, using lightweight convnet as the encoder converges faster than DCNN, but
the final result of the latter is slightly better when the training time is long enough. Our
model outperformed the best results of the other four models as early as 6.7 epochs, and
finally converged at 9.76 epochs. We can see that our model outperformed the other four
models in both convergence speed and final results.

Considered together through these three dimensions, our model is the most eclectic
choice among the five models.
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Figure 8. Comparision of model parameters.

Figure 9. Convergence process comparison.

4.3. Ablation

In this section, we discuss whether fusing patch-level features is effective, whether po-
sitional encoding contributes to model performance, and the impact of three pre-processing
approaches on model performance.

To explore the validity of our patch-level feature fusion and large patch position
encoding, we set two comparisons: (1) change the encoder in our model to TNT-S, which
we denote as TNTD; (2) keep the structure of TNTD unchanged and set the patch size to 32
to directly replace the processing conducted by the exterior transformer block, which we
denote as TNTD-B. Both models use the same position encoding as TNT. We also divide
ICMDT into two models. The first model is the original model, keeping our original three
position encodings. In the second model we remove the position encoding used for large
patches, which is denoted as ICMDT*.
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From previous work [10,12] we know that adding position encoding for pixel-level
sequences and small patch sequences is valid, so we do not discuss it here. From Table 3,
we know that adding position encoding for large patch sequences is valid. Setting the patch
size to the size of our large patch directly on the basis of TNT will reduce the performance of
the model (TNTD vs. TNTD-B), and from the comparison of ICMDT vs. TNTD we conclude
that further fusion of patch information can improve the model’s performance. In fact,
other competitors in the Bristol-Myers-Squibb competition often used a fusion of several
excellent models as their final submission, but our single ICMDT outperformed them.

Table 3. A discussion of position encoding as well as feature fusion.

Model Parameters (M) Levenshtein Distance

ICMDT 138.16 0.69
TNTD 114.36 1.29
TNTD-B 114.36 1.37
ICMDT* 138.16 1.04

We further investigated data pre-processing (training data denoising of all data),
smart cropping, padding resizing, and test data denoising (all data). Then, we conducted
experiments on the fraction of denoised data within the training data for the purpose of
deriving the best mixture of original data and denoised data in the training set.

From Table 4, we can see that if we only denoise all the data in the training set, the
performance of the model is greatly reduced, but if we also denoise the data in the test
set, the performance of the model improves. The model’s performance is not affected
by filling the training data with padding resizing while keeping all the training and test
data denoised, so a simple resizing of the images does not lead to much information loss.
However, we find that smart cropping of the images degrades the model’s performance,
presumably because the white edges in the images also contain valid information.

Table 4. Study of the ratio of denoised images to original training data.

Pre-Processing
Strategy

Training
Data Denoising

Smart
Cropping

Padding
Resizing

Test
Data Denoising

Levenshtein
Distance

Group 1
√

× × × 7.69
Group 2

√
× ×

√
2.69

Group 3
√ √ √

× 7.82
Group 4

√ √ √ √
3.02

Group 5
√

×
√

× 7.69
Group 6

√
×

√ √
2.69

We experimented with the proportion of denoised data in the training set and whether
to denoise the test data; note that the other two pre-processing methods are not included in
that experiment.

As shown in Table 5, we set the ratio of denoised data to original data in the training
data to 2:13. When we also denoise the test data, we can achieve the best result of hybrid
training, so we can assume that the performance of the model will not be damaged too
much when denoising is used as a data augmentation method. Since there is more noise
within the test data than within the training data, we find that adding noise to the data
during training better preserves the best performance of the model because it can fit the
test data to the maximum extent. Note that we did not do any denoising of the test and
training data during the training and testing of the final model. The realistic chemical
images will have more noise. Although we cannot be sure whether these noises have
meaningful information, it is certain that blindly denoising an image is not the best option.
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Table 5. Pre-processing strategy study.

Denoised Training Data + Original Training Data

Proportion 13:2 11:4 8:7 7:8 4:11 2:13
Denoised test data 7.5 6.32 5.02 5.0 2.69 1.04
Original test data 2.57 1.87 2.54 2.56 4.87 6.64

4.4. Analysis of Inference Results

In this section, the differences in inference results between ICMDT and several other
comparative models on chemical images of varying complexity will be presented and the
strengths and weaknesses analyzed.

We selected three representative chemical images, divided into three levels of com-
plexity: low, general and high. The inference results of the model for the three images are
represented in the inference results of the model for chemical images of the same complexity.

The true InChI expressions corresponding to the three chemical structures in Figure 10
are shown in Table 6.

(a) (b)

(c)

Figure 10. Example diagrams with varying levels of complexity. (a) Example diagram of low
complexity. (b) Example diagram of general complexity. (c) Example diagram of a high level
of complexity.

The information in InChI is structured as a sequence of layers and sub-layers, with each
layer providing one specific type of information. The layers and sub-layers are separated
by the delimiter “/” and start with a characteristic prefix letter. In view of these features,
the prefixes “/C”, “/C”, “/h”, “/t” of each layer adopt fixed encoding mode and divide
these prefixes consisting of two characters into a token when dividing labels. Therefore,
our model and other comparative models will not incorrectly predict these prefixes when
reasoning. We just need to pay attention to the specific contents of each layer: atoms, the
number of atoms, connections between atoms, etc.

In Table 6, the inference results of the six models for the chemical structures in
Figure 10a are as follows: TNTD, our model and the two combined models of “ResNet101d
+ Transformer” and “EfficientNetb0 + Transformer” can correctly predict the InChI expres-
sion of the image. In fact, these four models are very reliable for such simple chemical
structure predictions. The result of the “ResNet50d + RNN” model shows that the number
of some atoms in the atomic layer is wrong, and the “EfficientNetb0 + RNN” model is
wrong to predict the content in the hydrogen layer. However, in a large number of chemical
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structures of the same type, the two models incorrectly predict the hydrogen and atomic
layers in only a few cases, and correctly predict in most cases. The analysis of the overall
situation shows that the model with a transformer as the decoder is more advantageous.

Table 6. Results of ICMDT and other comparative models for the inference of three types of
chemical structures.

Image Number
& Real InChI Model Inference Results

Figure 10a ICMDT InChI = 1S/C7H7ClN2S/c8-7-9-4-6-5(10-7)2-1-3-11-6/h4H,1-3H2
InChI = 1S/C7H7C1N2S
/c8-7-9-4-6-5(10-7) ResNet101d + Transformer InChI = 1S/C7H7ClN2S/c8-7-9-4-6-5(10-7)2-1-3-11-6/h4H,1-3H2

2-1-3-11-6/h4H,1-3H2 EfficientNetb0 + Transformer InChI = 1S/C7H7ClN2S/c8-7-9-4-6-5(10-7)2-1-3-11-6/h4H,1-3H2
ResNet50d + RNN InChI = 1S/C7H7ClN2S/c8-7-9-4-6-5(10-7)2-1-9-11-8/h4H,1-3H2
EfficientNetb0 + RNN InChI = 1S/C7H7ClN2S/c8-7-9-4-6-5(10-7)2-1-3-11-6/h5H,1-4H2
TNTD InChI = 1S/C7H7ClN2S/c8-7-9-4-6-5(10-7)2-1-3-11-6/h4H,1-3H2

Figure 10b

InChI = 1S/C19H26N2O3/
ICMDT InChI = 1S/C19H26N2O3/c1-13-3-6-15(7-4-13)21(2)19(23)12-24-16-8-9-17-14(11-16)

5-10-18(22)20-17/h8-9,11,13,15H,3-7,10,12H2,1-2H3,(H,20,22)

C1-13-3-6-15(7-4-13)
21(2)19(23)12-24-16-
8-9-17-14(11-16)5-10

ResNet101d + Transformer InChI = 1S/C19H26N2O3/c1-13-3-15(7-4-13)21(2)19(23)12-24-16-8-9-17-14(11-16)
5-10-18(22)20-17/h8-9,11,13,15H,3-7,10,12H2,1-2H3,(H,20,22)

-18(22)20-17/h8-9,11,
13,15H,3-7,10,12H2,1
-2H3,(H,20,22)

EfficientNetb0 + Transformer InChI = 1S/C19H26N2O3/c1-13-3-6-15(7-4-13)21(2)19(23)12-24-16-9-17-14(11-16)
5-10-18(22)20-17/h8-9,11,13,15H,3-7,10,12H2,1-2H3,(H,20,22)

ResNet50d + RNN InChI = 1S/C19H26N2O3/c1-13-3-6-15(7-4-13)21(2)19(23)-24-16-8-9-17(11-16)
5-10-18(22)20-17/h8-9,11,13,16H,3-7,10,13H2,1-2H3,(H,20,22)

EfficientNetb0 + RNN InChI = 1S/C19H26N2O3/c1-13-3-6-15(7-4-13)21(2)19(23)12-24-9-17-14(11-16)
5-10-18(22)20-17/h8-9,11,13,15H,3-7,12H2,1-2H3,(H,20,22)

TNTD InChI = 1S/C19H26N2O3/c1-13-3-6-15(7-4-13)21(2)19(23)12-24-16-8-9-17-14(11-16)
5-10-18(22)20-17/h8-9,11,13,14H,3-7,10,12H,1-2H3,(H,20,22)

Figure 10c

InChI = 1S/C39H68O2/
c1-7-8-9-10-11-12-
13-14-15-19-37(40)

ICMDT

InChI = 1S/C39H68O2/c1-7-8-9-10-11-12-13-14-15-19
-37(40)41-32-24-26-38(5)31(28-32)20-21-33-35-23
-22-34(30(4)18-16-17-29(2)3)39(35,6)27-25-36(33)
38/h20,29-30,32-36H,7-19,21-28H2,1-6H3/t30-,32-,
33-,34-,35-,36-,38+,39+/m1/s1

41-32-24-26-38(5)
31(28-32)20-21-33-
35-23-22-34(30(4)
18-16-17-29(2)3)39
(35,6)27-25-36(33)

ResNet101d + Transformer

InChI = 1S/C39H68O2/c1-7-8-9-10-11-12-13-14-15-19
-37(40)41-35-24-26-38(5)35(28-32)20-25-33-35-23
-22-34(30(4)18-16-17-39(35,6)27-25-36(33)38/h20,
29-30,32-39H,7-19,21-23H2,1-6H3/t30-,32-,33+,36-,38+,39-/m1/s1

38/h20,29-30,32-
36H,7-19,21-28H2,
1-6H3/t30-,32-,33+,
34-,35+,36-,38+,
39-/m1/s1

EfficientNetb0 + Transformer

InChI = 1S/C39H68O2/c1-7-8-9-10-11-12-13-14-15-19
-46-32-24-26-33(5)31(28-32)23-21-33-35-23-22-34
(30(4)18–29(2)3)39(35,6)26-25-36(33)38/h20,29-
30,32-36H,7-19,21-28H2,1-6H3/t30-,35+,36+,38-,39-/m1/s1

ResNet50d + RNN

InChI = 1S/C39H68O2/c1-7-8-9-10-11-12-12-12-15-19
-32-24-26-38(5)31(28-32)20-21-33-35-23-22-34(30
(4)18-16-17-29(2)3)39(35,6)27-25-36(33)38/h20,
29-30,32-36H,7-19,21-28H2,1-6H3/t30-,32-,33+,34+,35+,36-,38-,39-/m1

EfficientNetb0 + RNN

InChI = 1S/C39H68O2/c1-7-8-9-10-11-12-13-14-15-19
-37(40)41-32-38(5)31(23-32)20-23-22-21-33-35-34
(30(4)18-16-17-29(2)3)39(35,6)27-25-36(33)38/h20
,29-30,7-19,21-28H2,1-9H3/t30-,32-,33-,34-,38-,39-/m1/s1

TNTD

InChI = 1S/C39H68O2/c1-7-8-9-10-11-12-13-16-15-19
-37(40)41-29-24-26-38(5)31(28-32)20-21-23-22-34
(30(4)18-18-17-29(2)3)39(35,6)27-25-36(33)38/h20,
29-30,32-36H,7-19,21-28H2,1-6H3/t30-,32-,33+,34+,35+,36-/m1/s1

As can be seen in model inference results for Figure 10b, our model is able to predict
the InChI expression of this chemical structure completely and correctly. In contrast, both
TNTD and some models using the transformer as a decoder show a few errors in the
prediction of the hydrogen and atomic layers. In fact, such errors are common in the
predictions of both types of models for other chemical structures of equal complexity, while
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some models using the RNN as decoder show multiple errors in the prediction of the
hydrogen layer and also the contents of the atomic layer, with the absence of certain atoms.

The other models show many errors in the prediction of chemical structures of high
complexity at the atomic, hydrogen and stereochemical layers as well as large errors in
the identification of atomic numbers, atomic connections and stereochemical information.
“ResNet50d + RNN” does not even identify the type of stereochemical information (pre-
fix: “s”). Our model also showed some errors in the identification of the stereochemical
layers, as it did not perform well in identifying whether the atomic number of neighbors
was increasing clockwise (prefix: “t”) and there were errors in the discrimination of the
“+/−” signs. However, the model performed significantly better than the other models in
identifying other non-stereochemical layers.

At this point, the next step in our research is to improve the model’s ability to recognize
the stereochemical layers. One excellent method that is to use a full object detection
approach, as it predicts both atom and bonds coordinates, and then identifies which
atoms are connected based on the geometrical coordinates of the atoms and bonds. This
additional information is fed into the model. We hope that the model itself can also restore
3D information from the 2D chemical structure without resorting to methods independent
of the model and to be able to model 3D structure, so as to achieve high accuracy of
detection of 3D information. This is still a very challenging process.

4.5. Inference & Fusion

We replaced the ResNet50d + RNN structure with TNTD. In the inference stage, we
used the strategy of beam search (k = 16) and TTA for all five groups of models to obtain
a total of 10 sets of results. If the predictions for some of the ten sets of results were
consistent and met the InChI specification, these results were retained and used as the final
predictions for this part of the test data. For some test data, if none of the models met the
InChI specification, we continued to use beam search, set k to 64, and used a step-wise
logit ensemble to fuse the five models (the output with the largest logit value in each
time step was used as the input for the next time step) until the normative results were
produced. The remaining results that meet the InChI specification but have disagreement
were divided into categories according to the form of the results, and a voting method
was used to select the final results. Specifically if the number of votes in a category was
4 or greater , it was taken as the final result . The edit distance between each result was
calculated one by one, and the average of the edit distance between each result and the
other results was the score of that category. The lowest score was taken as the final result.
The complex reasoning and fusion process improved the results of a single model by 0.24
to 2.5 (Levenshtein distance reduction).

5. Conclusions

In this paper, we have proposed an ICMDT network for image-captioning tasks. We
used a vanilla transformer-decoder as the decoder of the model, and in the encoder part,
we proposed a Deep TNT block based on the TNT block that can perform a finer fusion of
the local information of the image, which contains three transformer blocks that can handle
image features of different levels. The internal transformer block was used to process the
pixel embedding, and the pixel embedding information was projected into the small patch
embedding; the middle transformer block was used to process the small patch embedding,
and the small patch embedding information was fused into the large patch embedding. The
exterior transformer block was used to process the large patch embedding and integrate
all local information. The model models the global and pixel-level information of the
image more effectively and is applicable to complex chemical structure images. We selected
four representative generative models for controlled experiments, and our model had a
significant advantage. In addition, we replaced the encoder with TNT, and the results were
not as good as our original model. In the actual inference results, ICMDT performed much
better than other comparative models in identifying non-stereochemical layers.
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