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Abstract: This work presents a metaheuristic with distributed processing that finds solutions for an
optimization model of the university course timetabling problem, where collective communication
and point-to-point communication are applied, which are used to generate cooperation between
processes. The metaheuristic performs the optimization process with simulated annealing within each
solution that each process works. The highlight of this work is presented in the algorithmic design
for optimizing the problem by applying cooperative processes. In each iteration of the proposed
heuristics, collective communication allows the master process to identify the process with the best
solution and point-to-point communication allows the best solution to be sent to the master process
so that it can be distributed to all the processes in progress in order to direct the search toward a space
of solutions which is close to the best solution found at the time. This search is performed by applying
simulated annealing. On the other hand, the mathematical representation of an optimization model
present in the literature of the university course timing problem is performed. The results obtained in
this work show that the proposed metaheuristics improves the results of other metaheuristics for all
test instances. Statistical analysis shows that the proposed metaheuristic presents a different behavior
from the other metaheuristics with which it is compared.

Keywords: restart; landscape; hamming distance; collective communication; point-to-point
communication

1. Introduction

Resource programming is an activity that needs to be performed in different areas,
such as distribution of resources for the manufacture of objects, in work centers for the
distribution of tasks to staff or customer service, in the scheduling of machines when
establishing the sequence of tasks to be carried out [1], in the distribution of products to
place them at sale points, in the programming of transport systems [2], in the sequence
of processes in industry, commerce and services, on a computer or any other machine [3],
among others. Most of these problems are classified as NP [4] problems. To deal with
the problem of resource optimization, since the last century, heuristic and metaheuristic
methods have been developed and applied to NP-type problems, which can obtain solutions
close to the global optimum in a polynomial time without renouncing the search for the
optimal solution. The development of specialized heuristics is very important because,
to date, there are no exact deterministic optimization methods that can solve NP-type
problems in polynomial times [5]. Examples of some heuristic strategies applied to NP-type
problems in different areas of knowledge are presented below:
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• In [6], the authors consider that, by optimizing multi-objective problems with different
characteristics, the strategy must be changing. To achieve this, they apply Learning
Automation in an evolutionary algorithm so that it can be adapted to the characteristics
of the problem. Authors adjust the reference vector to improve the ability to solve
problems with a Pareto front.

• In [7], an adaptive polyploid memetic algorithm for scheduling trucks at a cross-
docking terminal is developed. The author proposes a new adaptive algorithm to
program the entry and exit of trucks in a terminal. The adaptive algorithm stores
copies of the parental chromosomes before applying the crossover operator. Moreover,
various hybridization techniques to facilitate the search process are used.

• In [8], they develop a multi-objective evolutionary algorithm. They propose an angle-
based selection strategy and a displacement-based density estimation strategy. These
two strategies are used in environmental selection to purify the population. They apply
diversity and convergence to compare pairs of individuals and eliminate the worst.
They indicate that their method can be easily extended to solve other multi-objective
optimization problems.

• To improve the efficiency of the distribution of perishable products, in [9], a study
with a mathematical formulation of mixed integers is presented and they solve it with
an evolutionary algorithm and compare its results with other metaheuristics. The
objective is to minimize the total cost incurred during the service of the truck.

• In [10], they address the problem of vehicle route generation by developing a linear
mixed integer programming model to minimize the total cost of the supply chain.
They use CPLEX to solve the optimization model for small problems and with the
metaheuristics of evolutionary algorithm, variable neighborhood search, taboo search
and simulated annealing solve the model for large-scale problem cases.

• In [11], the authors present a proposal for distinguishing between bacterial and viral
meningitis using genetic programming and decision trees. The authors consider two
different cases. In one case, they consider blood parameters as cerebrospinal; in the
other, they are based exclusively on blood data. For this, the authors make use of
formulations already used before for the same purpose and methodologies based on
machine learning. In experimentation, they make use of a genetic algorithm integrated
in MATHLAB.

Resource programming is also used in the academic area to obtain the timetabling
for students for every school period. Depending on the school level, designing school
timetabling is not always an easy task. It becomes a complicated problem, mainly because
the resources are always limited and constraints related to the availability of material
resources (rooms, laboratories, support material, technologies and others) and human
resources (teacher capacity, academic needs, student needs, time availability and others)
have to be considered. Furthermore, every school timetabling is specific for a school year.
It means that this schedule cannot be generally applied for the next school year since the
circumstances and needs frequently change. The university course timetabling problem
(UCTP) aims to distribute school resources in space and time to generate course timetabling
per week. Course timetabling can be a table where the classes that are given in each
room are scheduled, or it can also be timetabling that includes the courses for each student.
Likewise, the representation of class timetabling can be one that contains the class schedules
or courses depending on the different control restrictions imposed by a university. UCTP is
a NP-complete problem [4,12,13]. In order to tackle NP-complete problems, approximate
methods are frequently used. Because of the complexity of the UCTP, when it is applied to
real-life practical problems, a parallel simulated annealing metaheuristic is implemented to
obtain acceptable solutions, close to the optimal solution, in reasonable computation times.

The first attempts to automate course timetabling were made in 1960, where tech-
niques based on simulating design were used to obtain schedules by a manual simulation
process [14]. The basic idea of this technique was to first schedule the classes with the
highest degree of restrictions.
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Subsequently, at the beginning of the 1970s, more generic techniques began to be
applied to solve the problem. Some of the best-known research includes algorithms based
on integer programming [15] and network flow [16–18], among others.

The UCTP problem has also been addressed as a transformation to the coloring graphs
problem [19,20], where the vertices represent events and edges represent conflicts.

As well, heuristic approaches based on search techniques are presented. The solution
methods vary from constraint satisfaction [21], simulated annealing [22,23], genetic algo-
rithms [24] and tabu search [25]. In [26], a complete study of a theoretical model for UCTP
is presented, but they do not consider the teachers’ constraint. They present benchmarks
that can be solved by using various heuristics such as ant colony, iterated local search,
genetic algorithms, simulated annealing and tabu search. The benchmark is used in this
work for the tests by using the parallel simulated annealing algorithm. In [13], a very
complete review of various types of timetabling programming and their formulations with
genetic algorithms can be found [27,28], including tabu search and constraint satisfaction.

In [29], the construction of a timetabling programmer for academic institutions with
a constraint programming model is presented. In [30], a model that applies tabu search
with reinforced learning is presented. In [31], they present a model for UCTP with a
three-phase approach. At the first phase, a feasible solution is created; in the second
phase, they use simulated annealing to order the solution space created; and in the third
phase, they also use simulated annealing with a neighborhood structure to improve the
solution by the exchange of events. The algorithms of these optimization heuristics are
generic and independent of the problem to be optimized and are known under the name of
metaheuristics [32].

In [33], a practical case of UCTP is presented. A constructive heuristic is proposed to
find solutions for a real-life instance, for the Faculty of Chemical Sciences and Engineering of
the Autonomous University of the Morelos state, in Mexico City. In [34], the authors propose
a solution of timetabling courses, for specific academic areas, of the Juarez Autonomous
University of Tabasco, Mexico. They model the constraints with specification and validation
tools, typical of the Unified Modeling Language (UML). They establish their solution
strategy through two stages with a version of the tabu search, and a software to test their
solution proposal is implemented. In [35], the authors solve a particular case of UCTP,
focused on the assignment of teacher-course timetabling for an academic department
considering the traditional restrictions of full-time and part-time teachers, academic profiles,
availability of the courses and time. They present a linear integer programming model
to solve the case of study and obtain the optimal solution with low computational effort
through a classic branch and bound algorithm.

In [36], a parallel genetic algorithm to solve UCTP is presented. The authors intro-
duce some parallelization techniques using MPI libraries. They assume the master–slave
management structure and, based on the number of processing nodes and the size of
the population, the scalability of the system and the quality of the solution is estimated.
In [37], the authors present a novel real application to maximize the use of resources. They
developed a genetic algorithm which uses a simple weighted sum formula to manage
conflicts and contemplate teacher preferences. Moreover, a composite aptitude function
that considers the use of space is applied. For the tests, they used a large set of real data
from the Faculty of Commerce of the University of Alexandria, in Egypt. In [38], a mixed
integer linear programming model is present. A hybrid genetic algorithm (HGA) that
includes a tabu search strategy is implemented to solve the model. For the analysis, the
authors indicate how to map UCTP to the 3D container packaging problem. The tabu search
algorithm is used to compare results with the hybrid genetic algorithm. They show that
HGA obtains a better solution than the tabu search algorithm in a reasonable time. In [39],
a hybrid algorithm based on parallel genetic algorithm and local search to solve UCTP is
presented. They combine direct representation of timetabling with crossover operators
to ensure that hard constraints are not violated to always obtain feasible solutions. The
authors apply instances of Ben Paechter’s competences and reproduce some of the known
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results in the state of the art. In [40], they propose to solve UCTP with a hybrid method
based on genetic algorithms and tabu search. They propose a mixed linear programming
model, which serves as a reference when defining the problem and the constraints to
be considered. For the validation, they use real data for the scheduling of the academic
periods, semester 1 of 2018 and semester 2 of 2018, for the academic program of Industrial
Engineering, at the Industrial Santander University. The results are compared with the data
of the timetabling courses manually obtained by the coordinator. The authors say it can
take from hours to days to obtain the data manually, depending on the designer’s ability,
while their algorithm can obtain the results in a limited time.

As a consequence of the boom that UCTP has had as a model for the assignment and
obtaining of timetabling of university courses and the interest of obtaining feasible solutions,
in 1995, the International Conference on the Practice and Theory of Automated Timetabling
(PATAT) was born. It has been regularly held every 2 years, and its 13th version will be
carried out in the year 2022. PATAT also works as a forum for an international community
of researchers and practitioners. It has also been supporting a range of competitions and
challenges. PATAT is considered as the main conference for the EURO Working Group on
Automated Timetabling (EWG-PATAT). Until the fourth conference, held in 2002, UCTP
was the main theme and, from 2004, they extended to other topics on timetabling.

In this work, a metaheuristic that addresses the university course timetabling problem
(UCTP), which applies processes cooperation with collective communication and point-to-
point communication, is presented. It is applied to the UCTP model of Rossi-Doria [26]. A
mathematical representation of this model is also proposed.

After the introduction, the paper presents the following sections: Section 2 presents
the symbolic representation and the mathematical model of UCTP. Section 3 presents the
proposed metaheuristic of simulated annealing with cooperative processes (SACP) that
works on a distributed computing system. Section 4 presents the SACP results in efficiency
and efficacy; it also includes a statistical analysis of the proposed metaheuristics. Finally,
the conclusions of this work are presented.

2. University Course Timetabling Problem (UCTP)

The symbolic representation for the UCTP problem, used to design the data struc-
ture, is shown. It stores the representation for the instance to be solved by the proposed
metaheuristic. Then, the mathematical formulation of the UCTP optimization model, to
represent the benchmark of Rossi-Doria [26], is presented. It defines a target function using
soft constraints and also features several sets of hard constraints.

2.1. Symbolic Representation

Table 1 shows the representation of a timetable with 45 timeslots. The relationship
among days (Monday to Friday) and periods (five time periods) forms a set of 45 timeslots
which, when scheduling events and assigning them to the timeslots, a timetable for each
room is obtained. So, the solution that is obtained in UCTP has as many tables as rooms
exist. Therefore, a solution will consist of a set of timetables.

The schedule table is the abstraction of a two-dimensional structure for each room,
with the scheduling of the week, which is formed with the days on the X axis and the
periods on the Y axis. In this two-dimensional structure, the events that are taught and the
students who attend, during the week each of these events are scheduled. In addition, the
room must offer the necessary facilities for the event to be carried out. A third dimension
is created to form the set of the schedule tables, by scheduling events and students in the
different rooms.
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Table 1. Two-dimensional table of schedules assigned to a room with 45 timeslots.

Slot
Day

Monday Tuesday Wednesday Thursday Friday

1 1 2 3 4 5

2 6 7 8 9 10

3 11 12 13 14 15

4 16 17 18 19 20

5 21 t (5, 2) = 22 23 24 25

6 26 27 28 29 30

7 31 32 33 34 35

8 36 37 38 39 40

9 41 42 43 44 45

Figure 1 presents a three-dimensional structure with three dimensions: day, period,
room. This abstraction of three-dimensional structure can store the UCTP solution by
having events assigned to its students. Each coordinate of the matrix, x, y, z, represents a
timeslot. This is the structure used by the metaheuristic proposed SACP.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 32 
 

the room must offer the necessary facilities for the event to be carried out. A third dimen-

sion is created to form the set of the schedule tables, by scheduling events and students in 

the different rooms. 

Table 1. Two-dimensional table of schedules assigned to a room with 45 timeslots. 

Slot 
Day 

Monday Tuesday Wednesday Thursday Friday 

1 1 2 3 4 5 

2 6 7 8 9 10 

3 11 12 13 14 15 

4 16 17 18 19 20 

5 21 t (5, 2) = 22 23 24 25 

6 26 27 28 29 30 

7 31 32 33 34 35 

8 36 37 38 39 40 

9 41 42 43 44 45 

Figure 1 presents a three-dimensional structure with three dimensions: day, period, 

room. This abstraction of three-dimensional structure can store the UCTP solution by hav-

ing events assigned to its students. Each coordinate of the matrix, x, y, z, represents a 

timeslot. This is the structure used by the metaheuristic proposed SACP. 

 

Figure 1. Three-dimensional table of schedules assigned to various rooms (r1 to r10). 

2.2. Optimization Model 

According to what Paechter raised in [13,26,41], a feasible solution is the one in which 

all events are scheduled, assigning them in the possible 45 existing timeslots for each 

room. This schedule of events considers the capacity of the room, the facilities offered by 

the room, the needs required by the event and the students who will attend the event. The 

optimization model is made up of sets of soft constraints and sets of hard constraints. 

Hard constraints are constraints that must be met to obtain a feasible solution. These con-

straints are related to the physical resources. Soft constraints are constraints that are pref-

erable to comply with, but they do not need to be met for the solution to have a feasible 

Figure 1. Three-dimensional table of schedules assigned to various rooms (r1 to r10).

2.2. Optimization Model

According to what Paechter raised in [13,26,41], a feasible solution is the one in which
all events are scheduled, assigning them in the possible 45 existing timeslots for each room.
This schedule of events considers the capacity of the room, the facilities offered by the
room, the needs required by the event and the students who will attend the event. The
optimization model is made up of sets of soft constraints and sets of hard constraints. Hard
constraints are constraints that must be met to obtain a feasible solution. These constraints
are related to the physical resources. Soft constraints are constraints that are preferable to
comply with, but they do not need to be met for the solution to have a feasible result. A
penalty is assigned, in the objective function, which is to minimize, when the constraints
are not met.
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The optimization model presents the following sets. The set of events E = {1, 2, 3, . . . ,
nE}, the set of timeslots T = {1, 2, 3, . . . , 45}, the set of days D = {1, 2, 3, 4, 5}, the set of periods
P = {1, 2, 3, 4, 5, 6, 7, 8, 9}, the set of rooms R = {1, 2, 3, . . . , nR}, the set of students S = {1, 2,
3, . . . , nS} and the set of facilities F = {1, 2, 3, . . . , nF}. Equation (1) minimizes the objective
function which exclusively accounts for violations committed to the soft constraints, Soft1,
Soft2 and Soft3, that are related to each student and that are implicit in functions F1, F2 and
F3. The soft constraint Soft1 indicates that a student s ∈ S should not have class in the last
period of the day. The soft constraint Soft2 indicates that a student should not have more
than two adjoining classes. The soft constraint Soft3 indicates that a student should not
have a single class per day, from the set T = {1, 2, 3, . . . , 45} of timeslots, which represents
45 h available in a 5-day school week with 9 periods per day. Events can be scheduled with
students and the schedule table can be found for each room, where each room can offer
different facilities and each event can have different needs. The UCTP optimization model
is presented with the formulation from (1) to (7).

min OF =
nA

∑
s=1

F1(s, So f t1) +
nA

∑
s=1

F2(s, So f t2) +
nA

∑
s=1

F3(s, So f t3) (1)

s.t.

X(e, Φ(t, r)) =

{
1, i f Φ(t, r) = 1 and R(r, e) = 1
0, In another way

∀e ∈ E (2)

45
∑

t=1

nR
∑

r=1
X(e, Φ(t, r)) = 1 ∀e ∈ E (3)

nE
∑

e=1
X(e, Φ(t, r)) ≤ 1

∀t ∈ T
∀r ∈ R

(4)

ns
∑

s=1
Z(s, X(e, Φ(t, r))) ≤ Capacity(r)

∀e ∈ E
∀t ∈ T
∀r ∈ R

(5)

nE
∑

e=1

nR
∑

r=1
Z(s, X(e, Φ(t, r))) ≤ 1

∀s ∈ A
∀t ∈ T

(6)

t, r, e, s ∈ (N − {0}) (7)

The five sets of hard constraints presented from (2) to (6) have to be satisfied to obtain a
feasible solution to the optimization model. A pair (t, r) is defined, where t ∈ T represents
a timeslot and r ∈ R represents a room, such that:

Φ(t, r) =

{
1, I f any e is assigned in t o f r
0, In another way

(8)

For example, if Φ(22, 3) = 1, this indicates that there is an assigned event in timeslot 22
in room 3. A pair (r, e) is defined for each r ∈ R room and for each e ∈ E event, such that:

R(r, e) =

{
1, I f r meets the needs o f e
0, In another way

(9)

The set of constraints in (2) indicates that a room r must meet the needs of the event e
that is scheduled in timeslot t. If Equations 8 and 9 are true, that is, they have a value of 1,
the relation X(e, Φ(t, r)) is satisfied.

The set of constraints in (3) indicates that all events have to be scheduled. For each
e ∈ E, the expression (3) of the set of constraints checks that all events e are scheduled
in some timeslot t of some room r (Φ(t, r) = 1) and that meets the needs of the event.
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Moreover, each event can be scheduled only once in the week and, because of this, the
equality must always be 1.

The set of constraints in (4) indicates that, in each room alone, there will be one event
at a time. When in some timeslot t ∈ T and some room r ∈ R, (e, Φ(t, r)) = 1, then the
event e is scheduled in the timeslot t of room r, (Φ(t, r) = 1). So X(e′, Φ(t, r)) = 0, ∀e′ ∈ E,
with e′ 6= e.

The set of constraints in (5) indicates that room r must have sufficient capacity to
attend to the student of the event. To define this constraint, from the expression (10) that
indicates that for each student s ∈ S, this will be true, if the student s is attending the event
e that occurs in the timeslot t of room r, (Φ(t, r) = 1). So, the number of students in class
should not exceed the capacity of the room.

Z(s, X(e, Φ(t, r))) =

{
1, i f X(e, Φ(t, r)) = 1, s attends to e
0, In another way

(10)

The set of constraints in (6) indicates that a student will not attend more than one
event at the same time. For a student s ∈ S, the expression (10) means that if the student s
is attending the event e in the room r, then this student will not be able to attend another
event e’ in another room in the same timeslot, because Z(s, X(e′, Φ(t, r))) = 0, ∀e ∈ E, with
e 6= e. Hence, when evaluating the expression (6) (with value 0 or 1) of the set of constraints,
it indicates that, if the expression (10) is true (equal to 1), and the sum in (6) is 0, the student
s does not attend any event in any room in the timeslot t. Otherwise, if the sum in (6) is 1,
then the student s attends a single event in a single room in the timeslot t.

In (7), the values of the variables are within the set of natural numbers.
For each of the soft constraints, Soft1, Soft2 and Soft3, that make up the function to be

optimized, in Equation (1), each occurrence of violation, of any of these constraints, assigns
to the penalty variable the value of one. For the soft constraint Soft1, a timeslot t, an event
e ∈ E and a room r ∈ R in which is the student s ∈ S, a soft constraint is evaluated for each
student (11):

F1(s, So f t1) =

{
1, I f Z(s, X(e, Φ(t, r))) = 1, to t ∈ 41 ≤ t ≤ 45
0, In another way

(11)

The penalty for the occurrence of F1(s, So f t1) = 1 indicates that a student should not
have a class in the last period of the day, which is in 41 ≤ t ≤ 45.

For the soft constraint Soft2, there will be a day d ∈ D, a period p ∈ P, for each student
s ∈ S it is defined PD = {5p + d|0 ≤ p ≤ 8} and for each {pd1, pd2, pd3} subset in PD of
three elements, such that pd1 = 5p + d, pd2 = pd1 + 5 and pd3 = pd1 + 10. So, for a r ∈ R
room, a e ∈ E event, a d ∈ D day and a p ∈ P period with 0 ≤ p ≤ 6, it is defined in (12):

F2(s, So f t2) =

{
1, I f Z(s, X(e, Φ(t, r))) = 1, for each s ∈ {pd1, pd2, pd3}
0, In another way

(12)

The penalty of an occurrence F2(s, So f t2) = 1, it indicates that a student should not
have more than two classes in a row in continuous periods of the same day.

For the soft constraint Soft3, there will be a day d ∈ D, for each student s ∈ S, for each
day d ∈ D, it is defined in (13):

F3(s, So f t3) =

1, i f
nR
∑

r=1

nE
∑

e=1

8
∑

p=0
Z(s, X(e, Φ(5p + d, r))) = 1

0, In another way
(13)

When a penalty occurs for a student in F3(s, So f t3) = 1, it indicates that a student has
only one class per day.
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For a penalty not to occur in F3(s, So f t3) then it has to be ∑nR
r=1 ∑nE

e=1 ∑8
p=0

Z(s, X(e, Φ(5p + d, r))) > 1, which indicates that a student has more than one class in
one day.

3. Simulated Annealing with Cooperative Processes (SACP)

In this work, the simulated annealing metaheuristic (SA) is used due to the great
capacity it presents to obtain good local optimums through the procedure known as the
acceptance criterion that allows to improve the solution quickly, escaping from the local
optimum. Unlike population-based metaheuristics that require working with a population
of solutions to optimize through exploration of the solutions space, SA only requires
an initial solution to perform optimization through exploitation of the solutions space.
Because this metaheuristic presents an asymptotic convergence over time, in this work, a
cooperation of processes is applied to improve the obtaining of results in shorter times,
performing a search with exploitation and exploration procedures in the space of solutions.
Exploitation is carried out by applying local search to each SA and exploration is carried
out by generating a cooperation of distributed processes that executes each of the SA with
quenching-type restarts and cooperating with each other to direct the search toward a space
of good solutions. This section presents the simulated annealing (SA) metaheuristics with
processes cooperation.

Figure 2 presents a flow diagram of the algorithm. The algorithm generates a SA with
restart for each process i, so that in each term of an SA the cooperation between a pair of
solutions is carried out. This is the best solution TTSAi of SA obtained by the process i
vs. the best solution obtained by all processes, BTTi. The full explanation of the algorithm
is shown:

1. The algorithm begins its execution in process zero by reading the input file that
contains the instance information of the problem to be solved.

2. The information is stored in a data matrix represented in Figure 1.
3. The data types are defined below using the MPI protocol to be able to work with

n processes.
4. The information received in process i = 0 is sent to each one of the n processes

generated using collective communication through the MPI-Bcast function.
5. At the beginning, each process i generates a feasible random initial solution TTi. To

generate this feasible solution, the Constructive Approach Algorithm is used. This is
presented in [33]; this solution is passed to SA.

6. At the end of each process i in SA a solution optimized TTSAi is obtained and collected
in process i = 0 through each process i. The best solution bsi = f (TTSAi) obtained
by the cost function (Equation (1)) in SA, through an arrangement of best solutions,
BS = Set (bs0, . . . , bsn-1) and also the number of process npi = ranki that corresponds
to the bsi solution by means of a number of processes array, NP = Set(np0, . . . , npn−1).
Collective communication with MPI_Gather is applied to send the best cost value
bsi (best solution) of each process i, to the process i = 0 and thus obtain the BS array
located in process i = 0.

7. Applying collective communication with MPI_Bcast, the BS array containing the cost
of each solution and its Process Number NP, is sent to each process i.

8. On each process i the cost of the best global solution bgsi = min (BS) is located in BS,
which is the same in each process i. However, it is necessary to know in all processes
the best number of process bnpi = f (BS, NP), which contains bgsi, in order to evaluate
the Hamming distance in each process.

9. In the bnpi process, the best solution of all processes is found in the TTSAi array. This
solution is called Best Timetabling BTTi = f (bnpi, TTSAi).

10. Applying point-to-point communication with MPI_Send, the BTTi array is sent to the
process i = 0 and it is received with MPI_Recv.

11. In process i = 0, applying collective communication with MPI_Bcast, the best BTTi
solution is distributed to all the processes.
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12. In each process, the Hamming distance is calculated with d_h = d-Hamming (BTTi,
TTSAi), evaluating the difference between the two solutions BTTi vs. TTSAi. With
this, the processes cooperation is carried out because it is carried out by reducing
d-Hamming between the solution obtained in TTSAi vs. BTT.

12.1 The Hamming distance is obtained by comparing each timeslot (x, y, z) of both
solutions, see Figure 1.

12.2 If the same event is stored in the timeslot (x, y, z) of both solutions, then the
similarity of both solutions is the same in that timeslot.

12.3 If the same event is not stored in the timeslot (x, y, z) of both solutions, then
there is no similarity in that timeslot.

12.4 The comparison is made between each of the timeslots (x, y, z) of both solutions,
BTTi, TTSAi, and the degree of difference between both solutions is counted.

12.5 A large d-Hamming value indicates that the similarity between BTTi and
TTSAi is very little.

12.6 A small d-Hamming value indicates that the similarity between BTTi and
TTSAi is greater.

13. Figure 3 presents processes cooperation in the flow diagram. TTi = cooperation (BTTi,
TTSAi), brings the best BTTi solution of all processes closer to the best TTSAi solution
of each process by reducing its Hamming distance. Figure 4 presents a simple example
of how the processes cooperation is performed.

13.1 A segment segSAi <− random (di,pi,TTSAi) of TTSAi is taken randomly with
coordinates (x, y) = (di, pi) = (d2, p3). This segment includes the full depth of
the cube, that is (z1, . . . , zn) = (r1, . . . , rn), see Figure 4c.

13.2 The segSAi segment replaces the segBi segment that is located at the same
coordinates in the BTTi solution, so that all constraints for events in that
segment are maintained.

13.3 The replaced segment segBi of BTTi is presented in Figure 4d.
13.4 Although the segSAi replacement segment does not violate constraints in BTTi,

there are repeated events in the new BTTi <− replacement (segSAi, segBi,
BTTi) solution.

13.5 To return the feasibility in BTTi <− feasibility (BTTi), repeated events Rei
<− find_repeat_ev (segBi, segSAi), presented in the segments of replacement
segSAi and segBi are searched. In the example in Figure 4c,d, the event Rei = {2}
appears as repeated, and this indicates that event 2 will not appear repeated in
the new BTTi solution (Figure 4e).

13.6 The remaining events 7 and 10 of segSAi (Figure 4c) will appear repeated at
other coordinates in BTTi (Figure 4e).

13.7 Then, the procedure seeks to insert in BTTi (Figure 4e) in the position where
repeated events 7 and 10 (Figure 4e) are located, to the deleted events Lei = <−
find_lost_ev (segBi, segSAi). Figure 4d shows the lost events {3, 5} when its
segBi segment of BTTi was removed.

13.8 The deleted events Lei = {3, 5}, are tried to be replaced by the events 7 and
10 which are not inserted in Figure 4c. These events 7 and 10 are searched in
BTTi outside the segment inserted segSAi, which is defined as a tabu segment.
Lei events already inserted are proven to meet all constraints to obtain a
feasible solution in BTTi = feasibility (BTTi) when any of them do not meet any
constraints. The events are inserted anyway and an exchange that is feasible
with other events is sought randomly (minus the events of the segment inserted
segSAi which is tabu), until achieving the feasibility of BTTi. Tabu events are
not exchanged so as not to increase d-Hamming.

13.9 The previous cooperation procedure makes the new BTTi solution (Figure 4e)
more similar to TTSAi (Figure 4a). This procedure is performed with each
of the TTSAi solutions of each process i and the best BTTi solution obtained
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from all processes. Once the BTTi solution is feasible, it is assigned as the new
TTi = BTTi, solution to start with the next SA in process i.

14. Figure 2 shows cooperation between processes is repeated every time that ends a
restart with SA.

15. The algorithm counts the RSAi number of SA restarts (NR). If the total number NRi,
has already been reached, the algorithm ends its execution, otherwise the execution of
a new SA begins in process i with the new TTi = cooperation (BTTi, TTSAi) solution,
obtained by cooperation between processes. NRi is the stopping criterion of SACP
and is evaluated in each process i.
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Algorithm 1 presents the proposed simulated annealing algorithm that is applied in
SACP within each process i. Function SAi (TTi). The steps are explained below:

1. The SA algorithm always requires starting with a solution feasible of the TTi problem.
This feasible solution is evaluated with the objective function in (1) to obtain the bsci
cost. The best known bsi solution is initialized with the value of bsci.

2. SA input parameters, such as the control parameter Ti, the length of the Markov chain
MCL, the control coefficient α, that controls the decrease in the control parameter and
the final value control parameter, with the value Tf, which works as the SA stopping
criterion, are initialized.

3. Lines 3 and 4, the external cycle of SA is performed as long as T does not reach Tf. In
addition, T is decremented with α, see line 28.

4. Lines 5 and 6, the internal cycle represents the cycle of Metropolis, and this is repeated
until MCL is met, see line 26.

5. Line 7, a disturbance is performed by applying the neighborhood structure that
exchanges a couple of randomly chosen events to assign each of them in a different
timeslot. The TTi feasibility is evaluated with the sets of constraints presented in
(2) to (6) of the optimization model, in case it is not feasible, then the pair of events
is returned to its initial position and tested with another pair of events until TTi is
feasible. The new feasible solution is stored in TTp.

6. Line 8, the bspc cost of the disturbed TTp solution is obtained with Equation (1).
7. Line 9, the costs of TTi and TTp solutions are compared. If a better cost of the disturbed

solution is obtained then online 10 and 11, TTp is accepted as the new TTi solution.
8. Lines 12 to 17, if the cost of bspc is less than or equal to that best solution obtained,

then TTp is stored in TTSAi as the best solution obtained.
9. Lines 18 to 23 evaluate the criterion of acceptance of SA. This applies when the bspc

cost obtained by the disturbance turns out to be greater than the cost of bsci.
10. Line 18, a random number ρ is generated uniformly distributed between zero and one.
11. Line 19, the Boltzmann function is applied to obtain the paccept probability to accept

a poor quality bspc solution.
12. Line 20, if paccept is greater than ρ, then the bspc solution is accepted as a new

solution to continue with SA.
13. The SA procedure is repeated as long as T does not reach Tf, see line 4.
14. When SA completes its execution, the best found TTSAi solution and its bsi cost are

returned as a result.

Algorithm 1. Simulated annealing with restart

1 bsci = f (TTi), bsi = bsci
2 Ti = 2, MCL = 400, α = 0.98, Tf = 0.001
3 T = Ti
4 while T >= Tf do
5 MC = 0
6 while MC < = MCL do
7 TTp <− perturbation (TTi)
8 bspc = f (TTp)
9 if bspc < = bsci then
10 bsci = bspc
11 TTi <− TTp
12 if bsci < bsi then
13 bsi = bsci
14 TTSAi <− TTi
15 end if
16 end if
17 else
18 ρ = random number between (0,1)
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19 paccept = e−(
bspc−bsci

T )

20 if ρ < paccept then
21 bsci = bspc
22 TTi <− TTp
23 end if
24 end else
25 MC=MC+1
26 end while
27 T = T*α
28 end while
29 return bsi; TTSAi

4. Computational Results

To perform the efficiency and efficacy tests of the metaheuristic with cooperative
processes SACP, a computational cluster, consisting of four nodes, each node with a moth-
erboard with two processors, Intel Xeon six core 3.06 GHz, with a total of 48 cores, 96 GB
RAM, Ethernet connection 100BASE-TX, 100 Mbs, O.S. Centos 5.5. MPI libraries GNU. The
instances of the university course timetabling problem are those presented by the Meta-
heuristic Network group [26]. These are the so-called small01, small02, small03, small04,
small05, medium01, medium02, medium03, medium04, medium05, large01 and large02.
Table 2 presents the characteristics of these instances, which can be downloaded from [42].
Computational experiments are limited to a few instances because they are the only ones
found in the literature for the optimization model that is presented in this work.

Table 2. Characteristics of the instances.

Instance Small Medium Large

Events 100 400 400
Rooms 5 10 10
Features 5 5 10
Approx_features_per_room 3 3 5
Percent_feature_use 70 80 90
Students 80 200 400
Max_events_per_student 20 20 20
Max_students_per_event 20 50 100
Periods 9 9 9
Days per week 5 5 5

To carry out the tests with SACP, a sensitivity analysis of the main SACP parameters
was performed. Table 3 presents the tuned values of the parameters by means of a sensitivity
analysis, where NP indicates the number of processes running in SACP. The sensitivity
analysis was applied according to the procedure presented in [43], which performs a sweep
of values for each parameter (Ti, Tf, MCL, α) in interval from a lower bound up to an
upper bound. These limits defined taking as the center of these intervals the value of the
parameter that is frequently applied to SA in optimization problems.

Table 3. Tuned simulated annealing values.

Parameter Tuned Value

Ti 2

Tf 0.001

MCL 400

α 0.98

NR 12

NP 48
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For the NR parameter, it was tuned according to the execution time limit defined
for SACP, and for the NP parameter, it was tuned according to the best results obtained
by SACP.

4.1. Landscape and Efficacy of SACP

An analysis of the UCTP landscape was performed for the two large-type instances.
The landscape is presented based on three variables, the OF objective function, the Ham-
ming distance and the elapsed time in the SACP execution, which is a function of the NR
that is executed in SACP. The execution time was about 8000 s.

Figure 5a presents the landscape for the instance large01 without applying cooperation
between processes. It is observed that, with greater distance Hamming, the behavior of
the solutions obtained as a function of time generates lower quality in the evaluation
of the objective function with Equation (1). In addition, similarly, a shorter Hamming
distance impacts on the behavior of the solutions obtained as a function of time generating
a higher quality in the evaluation of the objective function. However, there are solutions
that, despite having a large Hamming distance, the quality of their result is very good;
the same happens when the Hamming distance is small. It is observed that, between a
Hamming distance of 300 to 400, there is a path in which no peaks appear in the landscape.
The opposite occurs when the Hamming distance is less than 300 and greater than 500.
Figure 5b presents the landscape for the instance large02 without applying the cooperation
among processes. Here, there is no clear behavior depending on the distance. As in large01,
there are solutions that, despite having a large Hamming distance, the quality of their result
is very good. The same happens when the Hamming distance is small. It is also observed
that near to a Hamming distance of 400 there is a path in which no peaks appear in the
landscape. The opposite occurs when the Hamming distance is less than 300 and greater
than 500.
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Figure 6 presents the landscape for the instances large01 and large02 applying cooper-
ation between the processes.
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Figure 6a presents the landscape for instance large01 applying processes cooperation.
It is observed that, with greater distance Hamming, the behavior of the solutions obtained
as a function of time generates more clearly lower quality in the evaluation of the objective
function with the Equation (1), unlike when there is no processes cooperation. In addition,
at a shorter Hamming distance throughout the time interval, the behavior of the solutions
obtained as a function of time generates the highest quality in the evaluation of the objective
function. Moreover, if we compare Figure 6a,b, it can be observed that the value of the
objective function has better quality throughout the interval of time from the application
of the cooperation of processes that starts on the surface marked in blue (Figure 6b). It is
observed that the best solutions obtained with cooperation are presented when the value of
the Hamming distance is close to zero and in the SACP execution time limit.

Figure 6b presents the landscape for the instance large02 applying cooperation among
processes. It is observed that, with greater distance Hamming, the behavior of the solutions
obtained as a function of time generates more clearly lower quality in the evaluation of
the objective function with Equation (1), unlike when there is no processes cooperation. In
addition, at a shorter Hamming distance throughout the time interval, the behavior of the
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solutions obtained as a function of time generates the highest quality in the evaluation of
the objective function. It is observed that the best solutions obtained with cooperation are
presented when the Hamming distance value is close to zero and in the SACP execution
time limit. Moreover, when comparing Figures 5 and 6, it is observed that the value of the
objective function is of better quality throughout the time interval from the application of
the cooperation of processes that begins on a surface marked in blue (Figure 6).

Based on the analysis carried out of the landscape for large problems, it can be argued
that addressing the solutions provided by each SACP process toward a closer appearance
with the best solution obtained (the best of all obtained by all processes) on each SACP
execution time, allows to considerably improve the final result obtained when cooperation
amoung the processes is applied.

Figure 7 presents the effect of processes cooperation on time function for instances
large01 and large02.
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Figure 7a presents the effect of processes cooperation for the large01 problem, when
SAP (simulated annealing with processes) without processes cooperation and when SACP
with processes cooperation are applied. The graph presents infinity of points with blue
and red colors. Each point represents a result obtained from some of the 48 processes in
execution in SAP and SACP in the time interval of zero to 9000 s. It is observed that, at the
beginning when the initial solution is generated where there is no cooperation in SACP, the
results are similar as in SAP (0–700 s). When optimization starts with SA, both algorithms
improve their solutions, but it is observed that as the execution time progresses, SACP tends
to be better than SAP. Additionally, the SACP algorithm reaches an asymptotic convergence.

Figure 7b presents the effect of processes cooperation for the large02 problem, when
SAP processes cooperation is not applied (simulated annealing with processes) and when
SACP processes cooperation is applied. It is observed that, at the beginning when the initial
solution is generated where there is no cooperation in SACP, the results are similar to SAP
(0–700 s). When SA optimization is started, both algorithms improve their solutions, but it
is observed that as the execution time progresses, SACP tends to be better than SAP and
also presents an asymptotic convergence. In this graph, a greater separation is observed
between the SAP vs. SACP solutions in Figure 7b. The latter indicates that the processes
cooperation applied in SACP for the large02 problem works more efficiently by obtaining a
greater difference in SACP vs. SAP results.

Figure 8 presents the behavior of how the value of the objective function is minimized
vs. the Hamming distance for the instances large01 and large02.

In both instances in Figure 8a,b, the same behavior occurs, indicating that with a
shorter Hamming distance, the result is better; this is observed in SACP. In the case of SAP,
the result also improves without reducing the Hamming distance, but the result is of lower
quality than in SACP. It is also observed that, for both instances large01 and large02, the
best interval for the Hamming distance, in which the best solutions are found, is between
50 and 100.

Figure 9 presents the value of the soft constraints and their Hamming distance for the
best solution obtained by SACP for each of the 48 processes in execution, for the instances
large01 and large02.

Figure 9a shows that, for the large01 instance, the lowest values are always obtained
with the Soft3 constraint in the 48 processes. Then, the values obtained with the Soft1 con-
straint are placed as lowest values and, finally, the ones obtained with the Soft2 constraint.
This behavior is observed in all the processes. This indicates that SACP has more problems
optimizing the Soft2 constraint, and it is easier to optimize the Soft3 constraint. The longest
Hamming distance in a process does not exceed the value of 140.

Figure 9b shows that, generally, the lowest value is for the Soft1 constraint in 43 of
48 processes, and the Soft3 constraint follows and the Soft2 constraint is at the end. This
indicates that SACP has more problems optimizing the Soft2 constraint, and it is easier to
optimize the Soft1 constraint. The longest distance Hamming does not exceed the value
of 100. Optimizing soft constraints depends on the instance, because in large01 it is best
optimized in the order of Soft3 −> Soft1 −> Soft2, while in large02 it is best optimized in
the order of Soft1 −> Soft3 −> Soft2.

Table 4 presents the results obtained with SACP and SAP. Execution times and number
of executions in SACP and SAP are the same. For each problem size, the times are different
to be able to compare SACP (equal time in SAP) with other algorithms existing in the
literature and using the same instances (ACO, GA, ILS, TS, SA).

For small instances, the number of executions for each instance is 100, and for medium
and large instances, the number of executions for each instance is 30. For large problems,
the execution time limit is 9000 s; for medium problems, the execution time limit is 4000 s;
and for small problems, the recorded time is the time to obtain the global optimum. In all
small instances, the global optimum is obtained with SACP. For small03, SACP obtained
the optimum in 82 of 100 executions in the first iteration where processes cooperation is
not yet applied, and for the remaining 18 executions, only a second iteration of SACP was
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required to obtain the global optimum. For small04, SACP obtained the optimum in 91
of 100 executions in its first iteration where processes cooperation is not yet applied, and
for the remaining 9 executions, only a third iteration of SACP was required to obtain the
global optimum. For the other small instances, SACP only required the execution of a
single iteration to obtain the optimal solution; naturally the first execution of SACP does
not apply processes cooperation. In the case of SAP, the global optimum is also obtained in
all small instances, according to the mean, mode, median and standard deviation. The time
is similar and does not reach more than 10 s in both cases (SACP vs. SAP).
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In the case of medium and large instances, SACP is always better than SAP in obtaining
the best solution. The best mean and median value is for SACP; in the case of mode, SAP is
best only in medium02. In the standard deviation, SAP is best in all except medium02. The
execution time is a little longer for SACP because cooperation between processes is applied
in this algorithm, which is a little more time consuming, and in SAP there is no cooperation
between the processes.
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Table 4. Results of simulated annealing metaheuristic with cooperation of processes (SACP) and
simulated annealing metaheuristic with processes (SAP) but without cooperation.

Problem
SACP

Min Max Mean t s σ Mode Median

Easy01 0 0 0 6 0 0 0

Easy02 0 0 0 8 0 0 0

Easy03 0 0 0 5 0 0 0

Easy04 0 0 0 6 0 0 0

Easy05 0 0 0 5 0 0 0

Medium01 44 60 50.69 4049.36 4.80 50 50

Medium02 48 56 51.5 4004.90 3.06 54 51

Medium03 57 77 57 3967.19 8.54 57 55

Medium04 47 62 51.7 3979.48 5.54 52 52

Medium05 7 20 11.8 3651.59 3.77 12 11.5

Large01 321 411 377.7 8354.97 32.51 407 379

Large 02 285 390 346.5 8656.48 32.93 390 358

Problem
SAP

Min Max Mean t s σ Mode Median

Easy01 0 0 0 7 0 0 0

Easy02 0 0 0 8 0 0 0

Easy03 0 0 0 7 0 0 0

Easy04 0 0 0 5 0 0 0

Easy05 0 0 0 5 0 0 0

Medium01 53 60 55.8 3899.92 2.44 57 55.5

Medium02 48 62 52 3954.85 7.29 46 52.5

Medium03 58 65 60.9 3885.50 4.07 65 61

Medium04 48 59 53.6 3901.92 3.66 54 54

Medium05 16 25 21.8 3560.87 3.43 22 22

Large 01 410 504 478.22 8339.55 22.98 488 484

Large 02 450 528 500.33 8617.84 22.79 507 507

Table 5 presents a comparison of the best results obtained with SACP and other
algorithms present in the literature. In the case of small problems, the best and worst result
is presented in each algorithm. As can be seen for small01, in 100 executions, SACP always
finds the global optimum (0–0) and, for example, in 100 executions, GA (0–19) finds the
global optimum but not always, so the worst value found is 19. The value presented in the
table in parentheses is the average rank and, as it can be seen, SACP always achieves first
place in all the revised instances. In some cases, some algorithms presented in the literature
do not find a solution for large instances, this is represented with * (ACO, GA and SA),
which does not happen in SACP because it always finds solutions for any instance.
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Table 5. Comparison of results obtained by the SACP metaheuristic with other results obtained by
other metaheuristics at a time limit of 9000 s for large problems, 900 s for medium problems and 90 s
for small problems.

Problem
Metaheuristics

SACP ACO GA ILS TS SA

Easy01 0–0(1) 0–7(4) 0–19(5) 0–5(3) 0–34(6) 0–3(2)

Easy02 0–0(1) 0–15(4) 1–30(6) 0–10(3) 0–27(5) 0–6(2)

Easy03 0–0(1) 0–12(4) 0–22(5) 0–7(3) 0–29(6) 0–4(2)

Easy04 0–0(1) 0–7(4) 0–21(5) 0–6(3) 0–24(6) 0–5(2)

Easy05 0–0(1) 0–5(3) 0–13(5) 0–6(4) 0–21(6) 0–1(2)

Medium01 48(1) 182(6) 181(5) 120(3) 172(4) 71(2)

Medium02 49(1) 194(6) 170(4) 121(3) 183(5) 70(2)

Medium03 73(1) 252(6) 246(5) 171(3) 226(4) 111(2)

Medium04 49(1) 168(6) 148(4) 107(3) 163(5) 65(2)

Medium05 36(1) 176(4) 208(5) 142(3) 238(6) 55(2)

Large01 321(1) * (6) * (6) 900(2) 1170(3) * (6)

Large02 285(1) 705(3) 1010(5) 690(2) 1000(4) * (6)

Average
ranking 1 4.7 5 2.9 5 1.8

4.2. Statistical Analysis

The test data are the values obtained by each algorithm (SACP, ACO, GA, ILS, TS, SA)
with respect to its objective function (Table 5). For small instances, all algorithms find the
global optimum solution, and for the statistical analysis purposes, the worst value obtained
by each algorithm is used in order to know if there are differences in the effects of each type
of algorithm in the worst of the results obtained. For the other medium and large instances,
the statistical analysis uses the best value obtained in each algorithm.

The null hypothesis, H0 in Equation (14), indicates that the means of the results are
equal. The alternative hypothesis, Equation H1 in (15), points out that the means are not
equals or at least one is different. Statistical analysis tests whether the null hypothesis is
true. If the null hypothesis is true, then there will be no difference in the effects of the
analyzed algorithms.

H0 : X1 = X2 = . . . = Xr (14)

H1 : Not all are the same (15)

For conducting the statistical analysis, both data normality and homoscedasticity are
first verified. Figure 10 presents the normality of the data of each algorithm. The results
show that there is no normality in the data of any algorithm since the points are not located
on the diagonal of the graphs.

The homoscedasticity analysis for SACP, ILS and TS for the same number of data is
performed graphically with the boxplot. Figure 11 shows that the boxes are not the same,
since there is a greater dispersion of data in the TS box, and ILS follows and, finally, the
least dispersion has SACP. TS presents the greatest variance and SACP is the one that
has the smallest variance of the three algorithms. Therefore, a common variance cannot
be admitted. It indicates that there is no homoscedasticity between the three algorithms.
Applying the Bartlett test with the Bartlett-test function of R [44], the p-value = 0.001169
is found (0.001169 < 0.05), this shows that there are different variances; therefore, it is
confirmed that there is no homoscedasticity when having a small p-value.
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The homoscedasticity analysis for SACP, ACO and GA for the same number of data is
performed graphically with the boxplot. Figure 12 shows that the boxes are not the same,
since a greater dispersion of data is observed in the ACO and GA boxes and the lower dis-
persion is presented in SACP. SACP is the algorithm that has the least variance. Therefore,
a common variance cannot be admitted, which indicates that there is no homoscedasticity.
Applying the Bartlett test with the Bartlett-test function of R [44], the p-value = 0.002409 is
found (0.002409 < 0.05), this shows that there are different variances; therefore, there is no
homoscedasticity when having a small p-value.
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The homoscedasticity analysis for SACP and SA for the same number of data is
performed graphically with the boxplot. Figure 13 shows that the boxes are not the same
since a greater dispersion of data is observed in the SA box and the lower dispersion is
presented by SACP. The greatest variance is observed in SA, while SACP has the smallest
variance. So, a common variance cannot be admitted so there is no homoscedasticity.
Homoscedasticity is analyzed with the Bartlett test, applying the Bartlett-test function of
R [44]. The p-value 0.3233 > 0.05 indicates that there are very similar variances; therefore,
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the Bartlett test indicates that there is homoscedasticity when having a p-value that exceeds
the significance level of 0.05.
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In order to know if there are significant differences in the behavior of the objetive
function values obtained by the algorithms, it is required to analyze the results obtained by
the six algorithms. As there are not both assumptions of normality and homoscedasticity
of the data provided by the six algorithms, and also because the number of data analyzed
by each algorithm is small, Kruskal–Wallis non-parametric method, proposed by William
Henry Kruskal and Whallen Wallis [45], will be applied. The Kruskal–Wallis test requires
that the observations of each algorithm, which must be different, be presented in ranges.
The Equation (16) presents the Kruskal–Wallis test. If there are observations with equal
values, then Equation (16) is divided by the relation (17), where H is the value of the
contrast statistic, C is the number of the algorithms to analyze (in this case there are six
algorithms), ni is the number of observations in the ith algorithm (number of results of each
algorithm), N = ∑ni is the total number of results of all algorithms and Ri is the sum of the
ranges in the ith algorithm.

H =
12

N(N + 1)

C

∑
i=1

R2
i

ni
− 3(N + 1) (16)

In relation 17, the sum is over all groups of repeated data and T = t3 − t is for each
group of repeated data. Where t is the number of repeated results in the group.

1− ∑ T
N3 − N

(17)

From Table 5, the first ten data, which are the results for small and medium problems,
are taken from each algorithm in order to make a comparison of all the algorithms. The
Kruskal–Wallis test is applied with the Kruskal-test function of R [44] to obtain the p-
value. The contrast statistic H is 26.304 and the p-value is 7.79 × 10−5 < 0.05; therefore,
the null hypothesis of equality of the effects of algorithms is rejected. This indicates that
there are differences in the effects of algorithm types by having a p-value lower than their
significance level.
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Post Hoc Comparisons

Since the Kruskal–Wallis test is significant, it implies that at least two groups of
algorithms from among those compared are significantly different, but does not indicate
which ones. To find out, it is necessary to make a comparison between them. Comparison
is made with the results obtained from SACP metaheuristic vs. results obtained by each
metaheuristic presented in Table 5 (metaheuristic 1 vs. metaheuristic 2) as follows SACP vs.
ACO, SACP vs. GA, SACP vs. ILS, SACP vs. TS and SACP vs. SA, with the Mann Whitney
Wilcoxon method [46] represented by Equations (18)–(20), where n1 is the number of results
obtained by metaheuristic 1, n2 is the number of results obtained of metaheuristic 2, R1 is
the sum of the ranges in metaheuristic 2.

H = min(H1, H2) (18)

H1 = n1n2 +
n1(n1 + 1)

2
− R1 (19)

H2 = n1n2 +
n2(n2 + 1)

2
− R2 (20)

The Mann Whitney Wilcoxon test is applied between each pair of algorithms with
the Wilcox-test function of R [44] with the first 5 data from each algorithm to obtain the
p-value in small problems. Table 6 presents the results of the Mann Whitney Wilcoxon test.
It is observed in the SACP comparison with each of the other algorithms that there are
differences in the effects between each pair of algorithms compared because the p-value
does not exceed the significance level which is 0.05. Moreover, in Table 6, it is observed that
SACP has the best average rank and TS the worst.

Table 6. Post hoc test and average ranking for multiple p-values comparisons between SACP vs.
other algorithms taking only data from small instances.

Algorithm Average
Rank

SACP p-Values

Post Hoc
Wilcoxon–Mann–Whitney

SACP 1 -

SA 2 0.005346

ILS 3.2 0.005189

ACO 3.8 0.005189

GA 5.2 0.005346

TS 5.8 0.005346

Again, the Mann Whitney Wilcoxon test is applied between each pair of algorithms
with the Wilcox-test function of R [44] with the following 5 data from each algorithm to
obtain the p-value in medium problems. Table 7 presents the results of the Mann Whitney
Wilcoxon test. It is observed in the comparison of SACP with each of the other algorithms
that there are differences in the effects between each pair of algorithms compared because
the p-value does not exceed the level of significance that is 0.05. Moreover, in Table 7, it is
observed that SACP has the best average rank and ACO the worst. In the case of p-value
with SA, it exceeds the significance value of 0.05; however, SACP has a better average
rank and also SA does not obtain results for any of the large problems. In the case of
SACP, in all the executions carried out of the algorithm, feasible results are obtained for the
large problems.



Appl. Sci. 2022, 12, 542 26 of 30

Table 7. Post hoc test and average ranking for multiple p-values comparisons between SACP vs.
other algorithms taken only data from medium instances.

Algorithm Average
Rank

SACP p-Values

Post Hoc
Wilcoxon–Mann–Whitney

SACP 1 -

SA 2 0.074910

ILS 3 0.008816

GA 4.6 0.008816

TS 4.8 0.008816

ACO 5.6 0.008816

Figure 14 presents the p-values in pairs of algorithms that were compared with SACP
for small and medium instances. Figure 14a presents the p-values between a pair of
algorithms that were compared with SACP for small instances. It is observed that among
eight pairs of them, there is also a difference in the effects of the types of algorithms by
having a lower p-value at its significance level, such as ACO vs. TS, ACO vs. SA, ACO vs.
GA, ILS vs. TS, ILS vs. SA, ILS. However, also between two pairs of them, there are no
differences in the effects of the types of algorithms, as these have a p-value greater than
their level of significance, such as ACO vs. ILS with a p-value of 0.2873 and GA vs. TS with
a p-value of 0.1425.

The average rank is presented in the box for each algorithm, which classifies the
best algorithm in terms of its results, with SACP being the best average rank. Figure 14b
presents the p-values between a pair of algorithms that were compared with SACP for
medium instances. It is observed that, among seven pairs of them, there are also differences
in the effects of algorithm types by having a p-value lower at its significance level, such
as ACO vs. SA, ACO vs. ILS, ILS vs. TS, ILS vs. GA, ILS vs. SA. However, also between
three pairs of them, there are no differences in the effects of the types of algorithms as they
have a p-value greater than their level of significance, such as ACO vs. TS with a p-value
of 0.754, ACO vs. GA with a p-value of 0.754 and GA vs. TS with a p-value of 0.754. The
average rank is presented in the box for each algorithm, which classifies the best algorithm
in terms of its results, with SACP being the best average rank.

4.3. SACP Efficiency

Figure 15 presents the efficiency of SACP evaluated for large instances. It can be seen
that, up to 21 processes, efficiency presents a superlinear speedup above the ideal. This is
because the first 12 processes in SACP are executed on a single node of the computational
cluster and does not require communication with the other three nodes of the cluster. From
21 processes onwards, efficiency begins to decrease considerably. This is due to two things.
First of all, that communication between nodes is performed with an Ethernet 100BASE-TX,
100 Mbs connection, which slows down the sending of messages from SACP between nodes.
Second, that SACP carries out cooperation between processes, which implies that in each
iteration there is always communication between all the processes that are executed at all
nodes of the cluster, applying collective communication and point-to-point communication.
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5. Conclusions

It is concluded that applying processes cooperation in SACP, through addressing of
the solutions of each process using the Hamming distance in each iteration of the algorithm,
allows improving the final result obtained.

Optimizing values in the soft constraints with SACP for large problems has a different
complexity since the degree of difficulty in optimization increases in the order of Soft3 −>
Soft1 −> Soft2 for large01 and in the order of Soft1 −> Soft3 −> Soft2 for large02.

The efficacy of SACP is the highest compared to five heuristics proposals found in
the literature, ACO, GA ILS, TS and SA. SACP always achieves first place in all revised
instances (average ranking). Furthermore, in some cases, some algorithms in the literature
do not find a solution for large instances (ACO, GA and SA), which does not happen in
SACP because it always finds solutions for any instance.

Statistical analysis shows that, in the SACP comparison with each of the other algo-
rithms, there are differences in the effects of SACP with the other algorithms compared
because the p-value does not exceed the significance level of 0.05. In the case of the p-value
obtained with respect to SA, it exceeds the significance value of 0.05 for very little. Added
to this, SACP has a better average rank than SA and SA also does not obtain results for any
of the large problems. In the case of SACP, in all the executions carried out by the algorithm,
feasible results are obtained for the large problems. SACP efficiency is very good when
using a single node in the cluster, but it is quickly reduced by having to use more than
one node in the cluster, further added to the communication between processes that each
iteration of the algorithm requires to apply processes cooperation.

The limitations found for this work were that no more test instances were found for
the presented optimization model with which more results could be presented, nor were
other works found that will present other optimization methods to compare the efficacy
of SACP.

In future works, the aim will be to improve the speedup by applying better commu-
nication between cluster nodes with the infinband network. A better and more efficient
compiler such as INTEL will also be used instead of the free GNU compiler.

Some future needs are the elaboration of new test instances of the optimization model
and the development of heuristics of populations that present results for the optimization
model presented in this work with which more robust comparative tests can be carried out.
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