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Abstract: An effective path-planning algorithm in three-dimensional (3D) environments based on a
geometric approach for redundant/hyper-redundant manipulators are presented in this paper. The
method works within confined spaces cluttered with obstacles in real-time. Using potential fields in
3D, a middle path is generated for point robots. Beams are generated tangent to the path points, which
constructs a basis for preparing a collision-free path for the manipulator. Then, employing a simply
control strategy without interaction between the links, the motion planning is achieved by advancing
the end-effector of the manipulator through narrow terrains while keeping each link’s joints on
this path until the end-effector reaches the goal. The method is simple, robust and significantly
increases maneuvering ability of the manipulator in 3D environments compared to existing methods
as illustrated with examples.

Keywords: hyper-redundant manipulator; mobile robot; tight maneuvering; obstacle avoidance;
path-planning; snake robot; confined spaces; redundant robot; motion planning

1. Introduction

Redundant manipulators are known as having an infinite number of solutions to the
joint variables [1]. Although there are serious problems implementing and controlling
a redundant manipulator [2], they have great mobility resulting in collision-free path
planning among obstacles [3] as performing scrutiny, maintenance or rectifying tasks [4].
Redundant manipulators achieve such challenging tasks by means of extra degrees of
freedom (DOF) [5–7].

There are some useful definitions. If a goal point is given as a task to reach for the
end-effector, the path-planning problem is reduced to finding a feasible joint path array.
On the other hand, if the tool-tip path is already obtained beforehand, a feasible joint path
array is found by means of redundancy resolution [5]. Motion planning is considered in
two groups: high-level and low-level planning. Low-level planning is about collision-free
planning while high-level planning is about collision avoidance [8].

While potential fields, cell decomposition and roadmaps are well-known and well-
established motion planning methods, motion planning is addressed in different ways by
some path-planning methods [9–11]. These include methods utilizing kinematic or geomet-
ric representation of the manipulator [12] in which redundancy resolution is combined with
path-planning through finding a solution to a differential equation connecting task space
motion and the joint [5]. Although a systematic categorization of motion-planning meth-
ods is somewhat difficult due to wide variety in the literature [13], the motion-planning
methods could be considered in four groups: Geometric, curve based, Jacobian based and
path tracking [14].

A backbone curve is designed with the ability of mapping the continuous highly
redundant manipulator onto this curve. But the performance suffers with high number
of redundant links. Also, the method is unable to handle backbone curves with large
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curvature [15]. In [16], a method by means of numerical potential fields is developed
navigating the manipulator among obstacles in the absence of collision. The method
puts certain points on manipulator links, which creates virtual torque at the joints to
steer the manipulator. But it becomes slower when the number of control points on a
link increases. The potential field defined in the workspace is coupled with Lagrange’s
equations of motion providing paths avoiding obstacles for path-planning of a snake
robot [17]. There are also potential field based methods such as improved artificial potential
field method [18], generalized potential field method [19] and harmonic potential field
method [20] to plan the safe trajectory and avoid obstacle for hyper-redundant manipulators
in 3D environments. There also exist time-optimal trajectory planning methods for hyper-
redundant manipulators in 3D workspaces by reducing the problem to an optimization
problem [21,22]. The problem is solved via Genetic Algorithm (GA) in the proposed
methods. However, Hyper-Bump Surface concept is used for trajectory planning in [21]
while the kinematical constraints of the manipulator and the obstacles are considered
in [22]. It becomes more difficult to map a manipulator with relatively long link lengths
onto its curve, which results in colliding with the obstacles [23]. There are path-planning
methods using optimal techniques [24,25], sensory data [26], bump-surfaces notion [27] and
backtrack-free planning [28]. Another path-planning algorithm is proposed for a multi-arm
space robot which is capable of maneuvering on the exterior of a large space station. The
kinematics of the hyper-redundant manipulators are formulated and the joint trajectories
are calculated via a pseudoinverse solution [29].

A snake manipulator with links made of a Stewart platform is mapped onto serpenoid
curves. The platform with pneumatic cylinders is inherently heavy and only allows each
link to move by a small amount that results in poor curve matching [30]. A sort of mapping
utilizing sub-paths with the perimeter of a half ellipse is developed in [31] while swarm
optimization with proper waypoints exploits a fitness function for inverse kinematics [32].

A highly redundant manipulator whose links are driven by electromagnetic energy in a
bi-stable way is suggested [33]. A common way of steering hyper-redundant manipulators
with discrete modules is to actuate it by cables [34–36]. There also exists a collision-free
path-planning algorithm called Swinging Search and Crawling Control to explore the
complex pipeline environments for snake-like redundant manipulators [37]. A modified
modal method which defines the spatial backbone of the manipulator via a mode function
is proposed to solve the mission-oriented inverse kinematics considering the mission
requirement and workspace [38].

In order to resolve the problem of angle constraint for hyper-redundant manipulators,
a Rapidly-Exploring Random Tree (RRT) based path planning algorithm is proposed and
applied to a cable-driven hyper-redundant manipulator with 17 degrees of freedom [39].
The actuation system and the control of hyper-redundant robots are simplified for under-
actuated snake robots [40]. Another approach is presented for the collision avoidance
of hyper-redundant manipulators in narrow spaces and applied to a hyper-redundant
manipulator consisted of four pairs of double Universal-Cylindrical-Revolute parallel
mechanisms [41].

A new approach is described in [42] based on a global path finding algorithm for the
manipulator using Laplacian potential fields along with a simple local geometrically based
algorithm featuring repelling obstacles, which maximizes the use of maneuvering space.

There are so many different ways of mapping manipulator links onto the path or path
following for planning purposes as documented above. However, mapping the manipula-
tor onto the path has a major drawback: if the link lengths compared with curvatures of the
curves of the path are longer, the robot is jammed amid obstacles even if huge free space
resides to maneuver. A solution is offered to this problem in [43] by joining the beams
in [44] and the middle points in [45], which leads to extraordinarily maneuvering com-
petence for redundant/hyper-redundant manipulators. In this paper, we come up with
a real-time algorithm that is capable of achieving path planning and obstacle avoidance
including 3D environments.
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The paper is organized as follows; Section 2 explains the generation of the middle
path as the benchmark environment is described in Section 3. The proposed algorithm
is presented in Section 4 in all aspects. In Section 5, exemplary computer simulations are
provided in 3D environments with illustrations. Discussions on the proposed algorithm
and future work are given in Section 6. Finally, conclusions are reported in Section 7.

2. Potential Fields: Generating the Global Middle Path

The algorithm presented here is developed by using the information gathered from the
global middle path from the robot tip to the goal point through obstacles. In other words, it
is not the path that the links of the manipulator follow in the proposed algorithm. It only
needs middle path points to place beam lines. The middle path may be generated by means
of any global path-planning methods. Despite the alternative methods in the literature,
numerical potential fields are a well-developed method without local minima. That is why,
the Laplace equation is used to have information on the workspace for navigation purposes
in developing the algorithm. Motion planning is carried out on top of that. For this reason,
the potential field method is used and briefly explained in this section.

A scalar potential driven by Laplace’s equation under Dirichlet boundary conditions
is expressed by

∇2u = 0 (1)

Equation (1) is on a domain Ω where the boundary of Ω consists of the boundaries
of all obstacles and the goal point. The goal point is given a very small number while the
obstacle points including boundary points excluded in the calculation. The workspace Ω is
represented by a grid of certain dimensions. The partial equation represents the Laplace
equation on equally spaced and connected grid as below.

u(i,j) =
u(i+1,j) + u(i−1,j) + u(i,j+1) + u(i,j−1)

4
(2)

where i and j are grid positions in the x and y directions, respectively. An iteration procedure
using Equation (2) is performed on the grid to calculate field values at all points. A handful
number of iterations are done to obtain field values at grid points. Following these values
results in reaching the goal. Nevertheless, the path obtained is coarse due to path points
placed on a discrete grid and is not very useful. For this reason, values within the square
grid need to be accessed via the linear interpolation. Then, the direction of the largest
descent α is calculated using Equation (3) as shown in Figure 1. Therefore it can be
reached from the point of pk to the point of pk+1 via vector Lk in a two-dimensional (2D)
environment. So, a collision-free path which is comprised of points for a point robot is
obtained [44].

α = arctan 2

(
u(i,j−1) − u(i,j+1)

u(i−1,j) − u(i+1,j)

)
(3)

Having obtained the path points, a much smoother path is attained by means of a
numerical calculation method called windowing.

Calculating potential field in 3D environment is similar to calculating in 2D environ-
ment. L is the length of the cube representing the length of the side of the environment and
N is the number of sections of this length. Grid values of the potential field are given below.

dx = dy = dz = h = L/N
ui,j,k = u(xi, xj, xk) : i, j, k ∈ [0, N]

ui,j,k =
ui−1,j,k + ui+1,j,k + ui,j−1,k + ui,j+1,k + ui,j,k−1 + ui,j,k+1

6
∂2

∂x2 u(xi, yj, zk) ≈
ui−1,j,k − 2ui,j,k + ui+1,j,k

h2

(4)
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Using Gauss-Seidel method, Equation (5) is obtained as follows;

um+1
i,j,k =

1
6
(um

i−1,j,k + um
i+1,j,k + um

i,j−1,k + um
i,j+1,k + um

i,j,k−1 + um
i,j,k+1) (5)

where i, j and k are grid positions in the x, y and z directions, respectively and m is the
iteration number.

Figure 1. The largest descent in 2D.

Calculation of the direction of the largest descent is also similar for 3D environments.
In addition to α value, β value is required from newly obtained line of pkd and the line
of pk+1d which is the difference of the potential field in the direction of z as shown in
Figure 2. Therefore it can be reached from the point of pk to the point of pk+1 via vector L
in a 3D environment.

Figure 2. Parameters needed for determining a path point in 3D environment.

The potential value at any point between the grid points can be easily calculated
with the 3D linear interpolation formula given in Equation (6). Thus, smoother paths are
obtained by using the values (V) on the cube as shown in Figure 3.

Vxyz = V000(1− x)(1− y)(1− z) + V100x(1− y)(1− z) + V010(1− x)y(1− z) + V001(1− x)(1− y)z+
V101x(1− y)z + V011(1− x)yz + V110xy(1− z) + V111xyz

(6)
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Figure 3. Interpolation in 3D environment.

3. Benchmark Environment

The maneuvering capability expressed mathematically via a benchmark workspace
in [44] is shown in Figure 4. Index l in Equation (7) gives a measure about the maneuver-
ing ability where lmax represents geometrically possible maximum link length while llink
represents the link length. The maximum value of l is 1.0.

l =
llink
lmax

(7)

Figure 4. Benchmark environment.

4. The Algorithm
4.1. Obtaining the Global Middle Path and the Beams

Using the potential field, a global path consisting of points in the middle of the free
space from the start point to the goal point through obstacles is generated. It is essential
to smooth this path, which is done by means of windowing. Figure 5 shows a portion of
this smooth path numbered as 2 and positioned in the middle of the free space. In this
figure, the obstacles are numbered as 1 and the right beams are numbered as 3 and the left
beams are numbered as 4. This path contains all the data required for the path planning of
the manipulator.
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Figure 5. Global path generated in the middle of the workspace and basic definitions.

Having the path, the beams are generated. Each beam starts from its path point and
ends at the obstacle border. The angle between the beam and the path is 90◦. In Figure 6, a
right beam is shown. The same procedure is applied to the left beams. If the beam reaches
its maximum length before reaching an obstacle border, it ends at that length. Especially
critical regions generate short beam lengths. As seen in Figure 5, the area the beams cover is
free space where the manipulator must be confined. However, since the tight maneuvering
is required, only some portions of this free space must be used.

Figure 6. Beam definitions.

4.2. Determining Critical Regions

The right and the left beam lengths and their curvatures are obtained for each path
point. Critical regions are formed from the path points whose right or left beam lengths are
under a predefined magnitude and whose curvatures are above a predefined magnitude.
For example, in Figure 7, there are three critical regions. The first critical region is the region
numbered as 2 on the right starting from the point numbered as 1 and ending at the point
numbered as 3. The second critical region is the one numbered as 8 on the left starting from
the point numbered as 7 and ending at the point numbered as 9. The last critical region is
the one numbered as 12 on the left starting from the point numbered as 11 and ending at
the point numbered as 13.



Appl. Sci. 2022, 12, 8882 7 of 18

Figure 7. Path preparation definitions.

Note that the unused beams are not drawn in the figure for the sake of clarity. The
critical region numbered as 2 is on the right side while the next critical region numbered as
8 on the left side. To put it another way, these critical regions are in the opposite directions.
Therefore, a direction change is mandatory here. This is one of the two crucial steps
developing the algorithm. See Figure 7, the direction change occurs in the middle of the
distance numbered as 5 between the two regions numbered as 4 and 6. Since the distance
between the points 3 and 7 is very short with respect to the link length, the direction change
should be at the midpoint of the distance numbered as 5. However, there are more than one
point that works around the point 5. Another matter here is that switching from one array
to another makes programming more difficult. Hence, the right array values are copied to
the left array values or vice versa, which results in all the values being in a single array.

Recalling Figure 7, consider the second critical region numbered 8 and the third critical
region numbered 12. Since they are both at the left side, no direction change is entailed
at the point 10. The last direction change in the figure takes place at the point 14. One
more thing: when the distance between critical regions is longer than the link length, the
direction change occurs earlier, not in the middle of the distance. Again, it is possible to
choose a direction change value out of possible several values.

4.3. Determining the Path for the Manipulator

After determining critical regions and switching points, the path for the manipulator
is obtained as shown in Figure 8 with thick green lines. In the same figure, there are also
four manipulator links whose end points are mapped onto the path points are shown.

Figure 8. Path generated for the manipulator.
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4.4. Control Strategy

Since the proposed algorithm has a simple control strategy, it does not need a flowchart.
All the work that is necessary for path planning has been prepared so far. The only thing
left is to use this work in accordance with the statement below.

“While advancing the end-effector of the manipulator, keep each link’s end points on
the path constructed from the left and right beams’ far ends until the end-effector reaches
the goal”.

Keeping the end points of the links on the path is accomplished by means of a simple
numerical procedure in real-time. Consider Figure 9, there are three successive links to be
mapped on the curve. Suppose that the proximal end of ith link is moved to the point 4 on
the path. The distal end of ith link is searched starting from the point C backward towards
the point 3. When the distance between the point 4 and the point searched is approximately
equal to the link length, the search is stopped and the link is mapped between these points.
For the example given, the mapping is done between the points 4 and 3. In a similar
manner, a search is performed for each link. In Figure 9, for (i −1)th and (i − 2)th links,
searches are done from the point B to the point 2 and from the point A to the point 1 and
new endpoints of these links are found at the points 2 and 1. Therefore the points that these
three links are mapped onto the path are the ones 3, 2 and 1.

Figure 9. Mapping the manipulator onto its path.

4.5. Beams in 3D

So far, all the work has been carried out in 2D workspace. When it comes to work in
3D space, the first task is to generate the potential field in 3D, then to find the middle path
for a point robot from the start point to the goal point as seen in Figure 10.

Figure 10. Generating potential field in 3D environment (Obstacles are not shown).
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Sending beams in 3D is not as easy as in 2D. The left and right beams in 2D cover all
the free space which the robot moves within. On the other hand, sending just a couple of
beams shown in Figure 11a barely covers the free space. Therefore, it cannot be used in
3D as in 2D. To cover the free space, it is possible to send beams in various directions at
90◦ angles to the line tangent to the middle path. The more couples included, the more
space is covered. In Figure 11, there are 1,2,3 and 4 couples shown. Although increasing
the number of couples makes the resolution higher, not only it causes high computational
costs but also it does not contribute to the maneuvering ability of the manipulator.

(a) (b) (c) (d)

Figure 11. Beam couples. (a) One couple. (b) Two couples. (c) Three couples. (d) Four couples.

4.6. Determining Critical Areas and Switching Directions

As in 2D, using the points on the middle path, left and right beams’ coordinates are
calculated for the first and second couples. Then, the critical points are determined using
the same criterion applied in 2D case. In other words, all the critical areas are determined
separately for each couple. For example, in Figure 12, the critical regions and three points
between these critical regions are shown. In the figure, the first critical region’s last beam is
shown with green sphere while the second critical region’s first beam is shown with blue
sphere. The middle point between the points is shown with yellow sphere and the path
points are shown with consecutive green points. These points are used to determine the
switching points on the robot path. As can be seen from the figure direction switching
occurs at the middle point which is shown with yellow sphere.

Figure 12. Critical regions and points for one beam couple.

4.7. Determining Beam Couple Switching Points and the Manipulator Path

In the regions, one couple may have a critical region while another couple may not
have. In such a situation, it is necessary to switch from one couple to another one. Note
that this switching process is different from the switching process mentioned in Section 4.2
in such a way that previous switching process is implemented within only a couple while
the switching process in this section is implemented between couples.
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As seen in Figure 13, while the critical regions numbered as 1 and 2 belong to the first
couple, the critical region numbered as 3 belongs to the second couple. The path points are
shown with consecutive green points and the beam switching occurs at the point 9 which
is the middle point of the end points numbered as 7 and 8 of successive critical regions.

Figure 13. Critical regions and points for two beam couples.

Once the manipulator path is determined in 3D as described above, it is an easy
process to move the end points of the manipulator links on the robot path points. Therefore,
the manipulator navigates successfully in a 3D environment cluttered with many obstacles
having tight maneuvering corners.

5. 3D Simulations

The computer program has been created in C# and executed on a laptop computer with
United States of America (USA) Intel Corporation 6th Generation 2.60 GHz Core Processor
called i7-6700HQ Central Process Unit (CPU) and 16 GB Random Access Memory (RAM).
Graphics are managed with the Windows Presentation Foundation (WPF) development
framework including Helix Toolkit which is available in a GitHub repository at https:
//github.com/helix-toolkit, accessed on 3 August 2022.

There are two examples given in this section. The first example is discussed in detail
while the second is mentioned briefly for the sake of the paper length.

The workspace of the first example is shown in Figure 14 consisting of many different
and narrow passages connected. Although the obstacles populated in the workspace
consist of mainly rectangular-shaped obstacles rather than having various shapes, this
arrangement represents the most difficult navigation strategies for the manipulator. In
other words, if the manipulator navigates successfully through such obstacles, it is easy
for the manipulator to navigate in the workspaces cluttered with many small and/or large
obstacles. Actually, there is no significant difference for the potential fields to find a middle
path between two types of workspaces.

Figure 14. Workspace for the first example.

At the place near to the origin of the workspace, there is a manipulator with 35 links
placed on a mobile robot. There are also moving and stationary obstacles outside of the
main obstacle structure, which is situated at the far side of the workspace.

https://github.com/helix-toolkit
https://github.com/helix-toolkit
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As seen from Figure 15, the manipulator is carried to the front of its entrance on a
mobile robot navigating through both moving and stationary obstacles.

Figure 15. Manipulator maneuvering through obstacles on a mobile robot.

Then, it starts to maneuver through obstacles. Note that only related part of the
workspace is shown whenever suitable since the workspace is very large. Considering
the workspace includes narrow passages in 3D, it is quite difficult to show the navigation
process. That is why, some obstacles are hidden to show the manipulator motion through
obstacles. Note that the snapshots of the manipulator navigating and auxiliary elements
such as beams are taken from different angles in Figure 16. In the figure, it is seen that the
manipulator has reached the goal point maneuvering through immensely narrow regions
successfully in a 3D environment. To be able to help to visualize how the method works, some
more figures are included. In Figure 17, the beam couples and manipulator path are shown.

(a) (b)

(c) (d)

(e) (f)

Figure 16. Snapshots of the manipulator motion from different angles. (a) Start of the motion.
(b) Switching beam couple. (c) Tight maneuvering with auxiliary elements. (d) Tight maneuvering
without auxiliary elements. (e) Reaching the goal while tight maneuvering. (f) End of the motion.
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Figure 17. Beam couples and manipulator path.

In Figure 18, the critical regions are shown in addition to the ones shown in Figure 17.

Figure 18. Critical regions.

In Figure 19, the manipulator path on which the ends of the links of the manipulator
are kept while maneuvering is shown in green. The great efficiency of the method owes its
success to this path.

Figure 19. Tight maneuvering in 3D environment.
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For the example, the distance between two successive points on the path (dp) is
16 pixels. It produces 6564 beams. The potential field is calculated in 13,022 milliseconds
(ms) with 600 iterations. The reason for the high iteration number is actually the large
workspace cluttered with so many obstacles. Because the potential field should be relaxed
enough to realize the portions of the path away from the goal point. After having the path
in the middle, calculations of the start and end coordinates of the beams are completed in
15,738 ms. The path for the manipulator is calculated in 117 ms, which is surprisingly short
for a 3D environment. The manipulator reaches the goal in 14,623 ms. A simulation of the
example is given without auxiliary elements in Video S1 and with auxiliary elements in
Video S2.

The number of the beams affects navigation time. When dp value is taken as 8 pixels,
the number of the beams becomes 13,128. The potential field is calculated in 13,280 ms
with 600 iterations. After having the path in the middle, calculations of the start and
end coordinates of the beams are completed in 32,500 ms, the path for the manipulator is
calculated in 281 ms and navigation of the manipulator takes 30,251 ms.

As mentioned before, if the manipulator navigates successfully through such obstacles
as in the first example, it is easy for the manipulator to navigate in the workspaces cluttered
with many small and/or large obstacles. In order to show the proposed algorithm is a
generalized algorithm, motion of the manipulator in a different environment which has
small-sized obstacles is simulated.

The workspace of the second example is shown in Figure 20a. As seen from
Figure 20b,c, the manipulator navigates through the obstacles and reaches the goal without
any collision. Motion of the manipulator is given in Figure 20d without showing the
obstacles. In addition, a simulation of the example is given without auxiliary elements in
Video S3 and with auxiliary elements in Video S4 for the dp value of 16 pixels.

Potential field is calculated with 650 iterations in the second example. For two different
value of the distance between two successive points on the path (dp), number of the beams
(nB), calculation time of the potential field (tPFC), calculation time of the beam couples (tBC),
calculation time of the manipulator path (tMPC) and navigation time of the manipulator
from the start to the goal point (tN) are given for the both examples in Table 1.

(a) (b)

(c) (d)

Figure 20. Tight maneuvering in the second example. (a) General view of the workspace and start of
the motion. (b) Tight maneuvering. (c) Reaching the goal. (d) The whole part and auxiliary elements
(Obstacles are not shown).
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Table 1. Number of the beams and the calculation times of the proposed algorithm.

Example dp = 8 (pixels) dp = 16 (pixels)

nB
tPFC
(ms) tBC (ms) tMPC

(ms) tN (ms) nB
tPFC
(ms) tBC (ms) tMPC

(ms) tN (ms)

First 13,128 13,280 32,500 281 30,251 6564 13,022 15,738 117 14,623
Second 14,592 14,722 32,763 123 39,264 7296 13,822 15,124 56 29,578

6. Discussion and Future Work

In the benchmark environment shown in Figure 4, the lengths of l1, llink and lmax
in pixels are 200, 350, and 440, respectively. It results in an index value of 0.8 for 3D
environment. The maneuvering ability resulting in an index value of 0.8 means that it
wastes almost no maneuvering space as long as it is physically attainable to maneuver.

As seen in Figure 21, if the middle path is followed or the manipulator links are
mapped onto the middle path generated by the potential fields, the collision with obstacles
are inevitable with the larger link lengths. In the proposed algorithm in this paper, this
problem is solved by mapping the manipulator links onto a new path consisting of the end
points of the beams in real-time.

The method is able to drive manipulators in a wide range: from few number of links
to a huge number of links. The method’s complexities drive up almost linearly with the
number of links.

Figure 21. Collision with obstacles when manipulator is following the middle path.

The method is extensible since adding new features to the method has little influence
on existing features consisting of a number of “if-else” statements. The method does not
deal with the manipulator position using a kind of a propagation procedure between the
links. On the contrary, the method in this paper handles the control in a simpler manner. It
does not need to determine each link’s position by means of being tangent and it is capable
of dealing with the tight maneuvering by reducing the control strategy to keeping the links’
end points on the manipulator path.
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As mentioned before, the obstacles’ shapes are rectangular in the first example without
tiny or different shaped obstacles scattered in the workspace. The crucial point to present in
the paper is to show high maneuvering ability of the manipulator and the arrangement of
the workspace with rectangular-shaped obstacles is the best to show this ability. However,
in the second example small-sized obstacles are used.

One issue is shown in Figure 22a. Although the algorithm finds the middle path, the
critical regions and the path for the manipulator perfectly well, there is no way that the
manipulator passes through the obstacles. Since the piece of the middle path in that region
is too short with respect to the link length. Figure 22b shows the subsequent configura-
tions of the links trying to maneuver in vain, the collisions can be seen clearly. Recalling
Figure 22a, there is actually large free space seen on the left-hand side of the middle path.
If the middle path is modified to accommodate this space, collision-free navigation can be
done easily.

The real-time method presented here is a very efficient and robust with respect to
maneuvering in a tight workspace cluttered with many obstacles. Since the proposed
method has special cases, it is not a complete method which means that being successful all
the time if it is physically possible. As a future work, there is a need for further exploration
to be able to have a complete algorithm. We think that we are very close to having a com-
plete algorithm. Regarding redundant/hyper-redundant manipulators, existing navigation
methods in the literature are quite limited when it comes to utilizing redundancy of the
manipulator [9–11,18–20,22,24,25,29,34,35,37,38]. Since there are few or no quantitative
values with respect to robot, obstacle and workspace dimensions, comparing methods are
a bit difficult. However, inspecting visually the figures in the papers reveals that there is
ample free space in the workspace among obstacles including robots having unnecessarily
high number of links with relatively simple navigation tasks. As a result, navigating in such
a workspace with so many short link lengths leads to inefficient use of resources, On the
other hand, the method presented in our paper significantly increases maneuvering ability
of redundant/hyper-redundant manipulators utilizing narrow spaces through obstacles
by using fewer number of DOFs while being simple, robust and without restriction on the
number of links used.

(a)

(b)

Figure 22. (a) Special case. (b) Subsequent configurations of the links.
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7. Conclusions

In this paper, a simple novel robust real-time algorithm is presented for path planning
of redundant/hyper redundant manipulators within narrow terrains cluttered with ob-
stacles in 3D environments. Using potential fields, a global path consisting of points in
the middle of the free space from the start point to the goal point through obstacles is ob-
tained. Having the path, two beam couples start from its path point and end at the obstacle
border is generated. Critical regions consisting of critical corners that are formed from the
path points whose beam couples satisfy certain criteria are obtained. Then, considering
maneuvering direction of the manipulator for each critical region, path switching points
on the same beam couple are determined as the middle point of the end point of the first
critical region and the start point of the second critical region if the maneuvering direction
changes between these consecutive critical regions. After determining critical regions and
switching points for the selected beam couple, the beam switching points are determined
considering the critical regions presence on both beam couples. Finally the path for the
manipulator is obtained and the manipulator becomes ready to move. While advancing
the end-effector of the manipulator, each link’s end points are kept on the path until the
end-effector reaches the goal. Compared to navigation methods in the literature utiliz-
ing redundancy of hyper-redundant manipulators, it is seen that the method presented
in our paper significantly increases maneuvering ability of redundant/hyper-redundant
manipulators utilizing narrow spaces through obstacles by using fewer number of DOFs.
The method is simple and robust. While it almost uses the minimum number of links
physically required for the task, there is no restriction on the number of links used. The
exemplary computer simulations with detailed figures embody the noticeable advantage
of the proposed method while verifying the effectiveness of it.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/app12178882/s1. Video S1: A simulation of the first example without auxiliary elements.
Video S2: A simulation of the first example with auxiliary elements. Video S3: A simulation of the
second example without auxiliary elements. Video S4: A simulation of the second example with
auxiliary elements.
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