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Abstract: Personal data security is a cybersecurity trend that has captured the world’s attention.
Governments, practitioners and academics are jointly building personal data security in various
communication systems, including IoT. The protocol that is widely used in IoT implementation is
MQTT. By default, MQTT does not provide data security features in the form of data encryption.
Therefore, this research was carried out on the design of Secure End-to-End Encryption MQTT with
Block Cipher-Based Lightweight Cryptography. The protocol is designed by utilizing the Galantucci
secret sharing scheme and a lightweight cryptographic algorithm based on a block cipher. The
algorithms used include AES-128 GCM mode, GIFT-COFB, Romulus N1, and Tiny JAMBU. We tested
the Secure End-to-End for MQTT protocol on the ARM M4 and ESP8266 processors. Our testing
results on NodeMCU board, Tiny JAMBU have an average encryption time of 313 µs and an average
decryption time of 327 µs. AES-128 GCM mode has an average encryption time of 572 µs and an
average decryption time of 584 µs. GIFT-COFB has an average encryption time of 1094 µs and an
average decryption time of 1110 µs. Meanwhile, Romulus N1 has an average encryption time of
2157 µs and an average decryption time of 2180 µs. On STM32L4 discovery, Tiny JAMBU had average
encryption of 82 µs and an average decryption time of 85 µs. AES-128 GCM mode has an average
encryption time of 163 µs and an average decryption time of 164 µs. GIFT-COFB has an average
encryption time of 164 µs and an average decryption time of 165 µs. Meanwhile, Romulus N1 has
an average encryption time of 605 µs and an average decryption time of 607 µs. Our experiment
shows that the fastest performance is produced by Tiny JAMBU, followed by AES-128 Mode GCM,
GIFT-COFB and Romulus N1.
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1. Introduction

The implementation of 5G is a catalyst in the growth of the Internet of Things (IoT).
Based on data from Ericson, the number of IoT devices connected to the internet network
will reach 14.6 billion devices in 2021 and will increase to 30.2 billion devices in 2027 [1]. The
McKinsey Global Institute also stated that the global IoT market could grow to 6.2 trillion
dollars by 2025. The IoT market share is dominated by devices from the healthcare sector,
which are worth 2.5 trillion dollars, and the manufacturing sector, which is worth around
2.3 trillion dollars [2,3]. By 2027, the 5G market potential for IoT devices will reach $297.8
billion [4]. The enormous IoT market also creates issues related to personal data protec-
tion [5–7]. Personal data protection is part of the goal of information security. Information
security is a long and continuous process, not an instant result [8]. The fulfillment of infor-
mation security services is a complex process that must be carried out carefully, starting
from the establishment, implementation, and evaluation of information security policy
compliance [9]. Effective information security must ensure a rational balance between
requirements and controls provided to operate optimally and adequately [10]. Information
security operates dynamically following technological developments, so it is necessary to
find new methods through research channels, both offensive and defensive methods, in
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accordance with applicable regulations [8]. This information security need must be met in
the IoT communication protocol.

The communication protocol that is widely used in IoT implementations is MQTT [11].
By default, this protocol is not equipped with a data security system, so a security mecha-
nism is needed for the protocol [12]. MQTT security can be achieved in the network [13],
transport [14], and application [15]. Security at the user data layer can be achieved by
encrypting the payload. In this research, a security design for the MQTT protocol is carried
out using a Secure End-to-End Encryption MQTT with Block Cipher-Based Lightweight
Cryptography. The use of end-to-end encryption is expected to be a data security solution
at the application layer even though it uses an untrusted infrastructure.

Research related to MQTT security includes MQTT security at the application layer
with the LBLOK, AES-128, PRESENT, Trivium, and Grain algorithms [16]. In addition,
there is research on MQTT/MQTT-SN security with the ChaCha20-Poly1305 algorithm
with AEAD mode [17] and MQTT security with a key delegation system for end-to-end
encryption communication [18]. Each protocol is an MQTT security solution at the applica-
tion layer.

In this study, Secure End-to-End Encryption on the MQTT protocol with Block Cipher-
based Lightweight Cryptography was designed and implemented using the Galantucci
secret sharing mechanism [19]. This secret sharing scheme is designed using multiple
XOR operations, which are suitable for low-power IoT devices. The Secure End-to-End
Encryption MQTT protocol design uses a lightweight cryptographic algorithm based on a
block cipher, namely GIFT-COFB [20], Romulus [21,22], and Tiny JAMBU [23]. This scheme
has several advantages:

1. Secure End-to-End Encryption on the MQTT protocol with Block Cipher-based Light-
weight Cryptography can be used for low power devices;

2. This scheme provides convenience in key communication management by using the
advantages of Galantucci secret sharing;

3. It can be implemented for brokers who do not support the use of SSL/TLS or
untrusted brokers.

The paper is structured as follows: Section 1 describes the introduction; Section 2
highlights related work; and Section 3 presents some of the literature reviews. Section 4
explains some experimental methods. Section 5 proposes the Secure End-to-End Encryp-
tion Scheme on the MQTT protocol with Block Cipher-based Lightweight Cryptography.
Section 6 shows experimental results and discussion. Section 7 discusses our conclusions.

2. Related Works

The IoT has grown significantly in the industrial era 4.0. The utilization of the IoT has
tremendous market potential, with an economic value of 5.5 trillion to 12.6 trillion dollars
in 2030 [24]. In addition, IoT is also widely used for lifestyle fulfillment, process efficiency,
and health. Privacy of data transmitted via IoT is of particular concern and handling [25].
Information security in transmission is an important aspect that must be considered.

MQTT is an IoT communication protocol that plays an important role in sending
messages from publishers to subscribers. MQTT security can be done at the network,
transport, and application levels. Research that has been done related to data security in
the MQTT protocol at the application layer, among others, is the study of Peniak et al. [16]
about secure communication models for IoT and MQTT. This research uses a symmetric key
algorithm, namely PRESENT, LBLOK, AES-128, Trivium, and GRAIN. The use of symmetric
keys, especially LWC in this study, is due to the consideration of limited memory usage on
embedded devices [16].

A similar study was conducted by Sadio [17], regarding the end-to-end security
scheme of the MQTT protocol using the ChaCha20-Po1y1305 algorithm with AEAD mode.
The choice of this algorithm is due to the limitations of devices that do not support the use
of TLS at the transport layer. ChaCha20-Po1y1305 is a popular lightweight stream cipher
for devices with limited memory [17].
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Research related to end-to-end encryption on MQTT was also carried out by Kumar
et al. [18], who proposed an IoT security design in the form of Joining Encryption and
Delegation for IoT (JEDI). This scheme allows for end-to-end encryption with a key delega-
tion system on each principal. Another feature that JEDI has is that it allows the encryption
to be implemented in a decentralized key system, with decoupled communication and a
tiered encryption system using the identity-based encryption algorithm with wildcard key
derivation (WKD-IBE) [18].

Our research proposes a secure end-to-end encryption design for IoT communica-
tion protocols, especially MQTT, using a secret sharing scheme and a block cipher-based
lightweight cryptography algorithm, i.e., AES-128 GCM mode, GIFT-COFB, ROMULUS N,
and Tiny JAMBU. The secret sharing scheme used is secret sharing with the XOR model
proposed by Galantucci et al. [19]. Table 1 describes the comparison of our research with
previous research.

Table 1. Comparison with Previous Researchs.

No Research Author Algorithm

1 Extended Model of Secure Communication for Embedded
Systems with IoT and MQTT Peter Peniak et al. LBLOK, AES-128, PRESENT, Trivium

dan Grain

2 Lightweight Security Scheme for MQTT/MQTT-SN Protocol Ousmane Sadio et al. ChaCha20-Poly1305

3 JEDI: Many-to-Many End-to-End Encryption and Key
Delegation for IoT Sam Kumar et al. WKD-IBE

4 Secure End-to-End Encryption on the MQTT protocol with
Block Cipher-based Lightweight Cryptography Our Research Secret Sharing, AES-128 GIFT-COFB,

Romulus, dan Tiny JAMBU

3. Background Theory

Section 3 will relay the background theory related to MQTT, Eclipse Mosquitto, Ad-
vanced Encryption Standard (AES), Lightweight Cryptography, BAN logic, and Secret Sharing.

3.1. Message Queuing Telemetry Transport (MQTT)

Message Queuing Telemetry Transport (MQTT) is an Internet of Things (IoT) protocol
standard issued by OASIS [26]. MQTT is designed by carrying a publish/subscribe protocol
that is lightweight and requires small bandwidth [27]. MQTT has been widely implemented
in various industrial sectors, such as manufacturing, automotive, sports, energy, military,
telecommunications, and health [28].

3.2. Eclipse Mosquitto Sebagai MQTT Broker

Eclipse Mosquitto is an open-source project that aims to provide client and server
implementation features according to the MQTT standard. Mosquitto was developed
by Roger A. Light with the aim of implementing IoT with the needs of light messaging,
low-power devices, and limited network resources based on the MQTT protocol [29]. The
development of Mosquitto is under the Eclipse Foundation.

Eclipse Mosquitto has been widely implemented in the academic world and in real
life. Mosquitto can be used as a means of evaluating the MQTT protocol on railway bridge
monitoring systems [30], data convergence in the electricity industry [31], and evaluating
the performance of the publish-subscribe protocol on the IoT [32].

3.3. Advanced Encryption Standard (AES)

AES is a standard algorithm issued by NIST as a replacement for the Data Encryption
Standard (DES). AES is designed as a symmetric key algorithm that manages messages
in the form of blocks, often called block ciphers. NIST began announcing AES as a new
standard starting from 26 November 2001 [33]. The algorithm chosen for AES is Rijndael,
which was designed by Joan Daemen and Vincent Rijmen [34]. Rijndael was chosen as the
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winner of a contest for the encryption standard algorithm held by NIST for 5 years. AES
is designed to process data in blocks of 128 bits. AES has three key variations that can be
used, namely AES-128, AES-192, and AES-256 [35].

Structurally, AES has a simple structure so that the encryption and decryption process
can use the same structure. The AES process can be divided into three phases, namely
the initial round, the main round, and the final round. In the initial round phase, the
algorithm processes messages with the add round key function, namely the process of
XORing messages with keys. In the next phase, AES process messages with the functions
of sub bytes, shift rows, mix columns, and add round key. Meanwhile, the final round
performs the same function as the main round but eliminates the mix column function [36].
The AES algorithm above has four main components, namely sub bytes, shift rows, mix
columns, and add round key [37].

3.4. Lightweight Cryptography Final Candidate

Lightweight cryptography is an algorithm designed to meet the needs of cryptography
in limited conditions that are not supported by current cryptography. In August 2018,
NIST held a competition for the creation of lightweight cryptography standards. In the
first round of the competition, there were 56 algorithm proposals submitted by researchers
and practitioners. The algorithms were selected by NIST and became 32 algorithms in the
second round and became 10 algorithms in the final round, which was announced in March
2021. The finalist candidates for lightweight cryptography included ASCON, Elephant,
GIFT-COFB, Grain128-AEAD, ISAP, Photon- Beetle, Romulus, Sparkle, Tiny JAMBU, and
Xoodyak. Of the 10 algorithms, there are three algorithms based on block ciphers, i.e.,
GIFT-COFB, Romulus, and Tiny JAMBU.

3.4.1. GIFT-COFB

The GIFT-COFB algorithm is a lightweight cryptography algorithm designed based
on the GIFT block cipher algorithm with COMBined FeedBack (COFB) mode. The GIFT
algorithm is an algorithm of the Substitution Permutation Network (SPN) type, which has
two variants, namely GIFT 64-128 and GIFT-128-128. The two variants have differences in
the length of the message block that is processed and the number of rounds. GIFT 64-128
can process 64-bit message blocks with a 128-bit key with 28 block iterations. Meanwhile,
GIFT-128-128 can process 128-bit message blocks with 128-bit keys with 40 block iterations.
In the GIFT-COFB algorithm, the variant used is GIFT-128-128 [20].

The COFB mode in the lightweight cryptography algorithm was designed by
Chakraborti et al. with the aim of providing an authenticated encryption scheme. The
COFB algorithm is an improvement algorithm of iCOFB to make it more efficient [38].

3.4.2. Tiny JAMBU

Tiny JAMBU was one of the finalists in the lightweight cryptography algorithm selec-
tion contest organized by NIST. Tiny JAMBU is designed based on the JAMBU block cipher
by providing data authentication features. Tiny JAMBU has three key variants, namely
128-bit (Tiny JAMBU-128), 192-bit (Tiny JAMBU-192), and 256-bit (Tiny JAMBU-256). Tiny
Jambu was designed by Hongjun Wu and Tao Huang by adding security parameters in the
form of a 64-bit tag and a 96-bit nonce [23].

3.4.3. Romulus

Romulus is a lightweight cryptography mode AEAD algorithm based on Skinny
128/384+ Tweakable Block Ciphers. Romulus is designed to be optimally implemented
on hardware with a security claim of 128-bit provable security [21,22]. Romulus has four
variants, namely Romulus-N, Romulus-M, Romulus-T, and Romulus-H for hash functions.
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3.5. BAN Logic

Burrows–Eternal–Needham (BAN) Logic is a formal testing method used to test
protocols so that users can determine the security and trustworthiness of the information
exchanged. This makes BAN logic often referred to as the logic of belief. BAN logic
testing is carried out with the assumption that every exchange is carried out on an insecure
medium and is susceptible to eavesdropping [39,40].

3.6. Secret Sharing

In this study, the use of secret sharing is aimed at supporting key management in
the secure MQTT protocol. Secret sharing is a protocol scheme that supports multi-user
communication by sharing sensitive information or a secret key into several parts. Such
information can be recovered by a combination of part or all of the entity with a specified
mechanism [41]. Secret sharing was first introduced by Adi Shamir with the aim of
providing a solution for sharing secret keys in cryptographic communication [42].

Secret sharing protocols are widely used in our daily lives, such as in crypto currency
wallets, for key management in vault by Hashicorp, and on Amazon Cloud HSM.

Secret sharing research has developed both in terms of method and efficiency. In
2012, Yi Sun et al. designed a secret sharing to simplify the reconstruction process without
involving other entities [43]. In 2017, Kenko and Iwamura conducted a study to increase
the efficiency of proactive secret sharing schemes in reducing communication traffic [44].
Another research project related to secret sharing was also carried out by Galantucci et al.
regarding secret sharing with the XOR model, which is intended for distributed systems
with many users [19]. This secret sharing scheme proposes a formal method, multiple
XOR-ED secret sharing approach, and One Time User Key.

4. Method

The research flow used in the research includes problem identification, literature study,
design and implementation, testing and analysis, and conclusion. Our research flow can be
seen in Figure 1.
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Figure 1. Research Flow.

We designed a secure end-to-end encryption for IoT communications by leveraging
Galatucci’s secret sharing as a key management scheme for generation and rekeying. The
algorithm used in the design is a final candidate for lightweight cryptography based on
block ciphers. Implementation is carried out at the communication stage on ARM M4 and
NodeMCU.

The lightweight algorithm performance test was carried out on WiFi networks. Perfor-
mance testing parameters include encryption, decryption, and publication of messages to
the MQTT broker.

5. Secure End-to-End Encryption for Iot Communication Scheme

The design of the secure MQTT protocol aims to provide information security guar-
antees in the form of data confidentiality and authentication. This design can be applied
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to hardware devices that do not support SSL/TLS so that they can communicate securely
even through the internet. The general design of the protocol can be seen in Figure 2.
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Figure 2 provides an explanation of the working system of the Secure End-to-End
Scheme on the MQTT Protocol. Here is the explanation:

1. The dealer sends a seedG via Galatuncci’s secret sharing as a component in calculating
the group key KG;

2. Each device that receives the seedG can compute the group key KG. Each device that
is registered and has the same license will have the same group key KG;

3. Each device that has the same KG group key can communicate with the session key
KC derived from the group key KG. The cryptographic algorithm used in communi-
cation is lightweight cryptography (LWC), which provides data confidentiality and
authentication features.

Secure end-to-end MQTT with lightweight cryptography designed based on Galatuncci’s
secret sharing scheme [19] and lightweight cryptography. The secure end-to-end MQTT
protocol was designed with the aim of providing encryption for message payloads sent
over the MQTT protocol. The secret sharing scheme used is intended to make it easier for
dealers to generate group keys, device management, and key updates. Updates are made if
there is an addition or deletion of devices.

The secure end-to-end MQTT design is divided into three stages, i.e., registration and
key generation, communication, and rekeying.

5.1. Registration and Key Generation

The registration process for the secure end-to-end MQTT protocol is the initial phase
to register devices that communicate in the MQTT protocol. This phase is controlled by
a factory key (KF) and a subscription key (KS). The factory key in the protocol is used
for communication between dealers or third parties with IoT devices in a secret sharing
scheme to generate group key seeds. Meanwhile, the subscription key functions as the
master key in generating the group key in combination with the group key seed seedG.

The registration phase of the secure end-to-end MQTT protocol is designed based
on the secret sharing protocol developed by Galantucci et al. [19]. This protocol was
chosen because it supports multi-user communication using light operations because it
uses XOR operations. This scheme also has advantages in several key management schemes.
Implementation of Galantucci’s secret sharing scheme can be intended for several uses,
including one time keys, groups of valid keys, and dealer key management.
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The pre-registration phase aims to encrypt the channel before the registration as shown
in the following process:

1. Set-up environment:

a. Dealers store information on salt values, factory key hashes, and device sub-
scription keys.

b. Each device has a factory key and a subscription key and can access salt infor-
mation.

c. The dealer and each device have the functions, Ω and ω, which satisfy Galan-
tucci’s secret sharing rule [19].

2. Encrypted Channel Creation Process

a. The dealer creates a one time user key for the IoT device and himself. One time
user keys (OTUK) of IoT devices can be generated from the hash value of the
factory key and device salt stored at the dealer.

b. Dealers generate communication keys and encrypted channels from dealer
OTUK and OTUK IoT devices.

3. Process on IoT Device

a. The IoT device creates a device OTUK from the factory key and salt provided
by the dealer.

b. IoT devices can communicate securely with encrypted channels created by
dealers.

c. Through this encrypted channel, the device can exchange information or key
seeds securely with the dealer.

The proposed registration scheme for Galantucci’s secret sharing is as a secure end-to-
end MQTT registration scheme as shown in Figure 3.
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Figure 3. Group Key Generation Phase.

At this registration stage, each IoT device group key (KG) is the same to communicate
in the MQTT protocol.

5.2. Communication

This phase is an important part of the protocol in the communication process between
devices in the MQTT network. In this phase, all IoT devices that have the same group key
(KG) can communicate and exchange information securely. The following is the proposed
communication protocol:
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1. Set-up environment:

a. Device A and Device B have Key Group KG
b. Device A generates a Nonce to generate a session key KC as communication key

2. Encrypted Channel Creation Process

a. Calculates the session key ( KC) used for communication. KC = KG ⊕ Nonce
b. Calculating the S signature to check the validity of the communication key KC:

S = hash (Nonce||hash(KG)128)
c. Device A sends an encrypted message C to B via MQTT Broker: EKC{M, tA}, S,

Nonce

3. Device B receives encrypted messages from Device A via the MQTT broker. Device B
does calculate the following:

a. Calculating the Signature S′ with the nonce information sent and KG held:
S′ = hash (Nonce||hash(KG)128)

b. If S′ 6= S, the message is not processed. However, if S′ 6= S, then go to step c.
c. Performs session key calculations for communication with received nonce

information. KC = KG ⊕ Nonce
d. Decrypt the message with KC calculated to get the message. DKC{EKC{M, tA}}
e. Device B gets messages M and tA, the information tA is used to check the

freshness of the received message.

The protocol in the communication phase above can be visualized with a communica-
tion scheme as shown in Figure 4.
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5.3. Rekeying

The key update process is a control in key management on the protocol in the use
and renewal of group keys (group key). This phase makes it easy for the system to update
the key when there is an addition or deletion of devices connected to the communication
scheme. The key update scheme in this protocol takes advantage of the easy key man-
agement of the secret sharing scheme designed by Galantucci et al. [19]. The key update
scheme for secure end-to-end on the MQTT protocol is as follows:

• The system is experiencing an increase or decrease in the number of IoT devices.
• Dealers update legitimate devices connected to the network
• The dealer updates the encrypted channel data and seed to generate the group key

( KG ) with the mechanism in Section 5.1.
• The dealer sends the seed to the legitimate device.
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• Each legitimate device receives the seed and recalculates KG as the group key to
communicate.

6. Results

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

6.1. BAN Logic Test

Our testing for the design of the secure MQTT protocol was carried out using the BAN
logic method. The test is carried out based on the rules that apply in BAN logic, namely
the message meaning rule, the non-verification rule, and the jurisdiction rule. The stages
carried out in the BAN logic test consist of four steps, namely:

• Changing the protocol in its ideal form;
• Making assumptions from the ideal protocol;
• Explain each step in the ideal protocol;
• Carry out protocol evaluation with BAN logic rules.

The communication protocol for secure end-to-end encryption on the MQTT protocol
has the following form:

A→ B : EKC{M, NonceA}, S, Nonce (1)

The steps that must be taken in testing the BAN logic in the secure MQTT design are:

1. Changing the protocol in the ideal form:

M1 A→ B :
{(

A
Kab↔ B

)
, NA

}
Kab

, ]
{

A
Kab↔ B

}
Kab

(2)

2. Making assumptions from the ideal protocol:

P1 A |≡ A
Kab↔ B (3)

P2 B |≡ A
Kab↔ B (4)

P3 B |≡ A⇒ A
Kab↔ B (5)

P4 B |≡
(

A⇒ ](A
Kab↔ B)

)
(6)

P5 A |≡ ](NA) (7)

3. Explain each step in the ideal protocol:

P6 B C {NA}Kab
(8)

4. Carry out protocol evaluation with BAN logic rules.

After M1
This test aims to prove that party B believes in the key to the communication between

A and B, as well as the novelty of the key used.

• Jurisdiction rule

B |≡ A⇒ (A
Kab↔ B), B |≡ A |≡ (A

Kab↔ B)

B |≡ (A
Kab↔ B)

(9)
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B |≡
(

A⇒ ](A
Kab↔ B)

)
, B |≡ A

(
A |≡ ](A

Kab↔ B)
)

B |≡ ](A
Kab↔ B)

(10)

After B trusts the communication key between A and B, BAN logic proves that the
message sent is a new message through the trust nonce sent by A.

• Message meaning rule

B |≡ A⇒ A
Kab↔ B, B C {NA}Kab

B |≡ A |∼ NA
(11)

• Nonce Verification rule

A⇒ ](NA), B |≡ A |∼ NA
B |≡ A |≡ NA

(12)

• Jurisdiction rule

B |≡ A⇒ NA, B |≡ A |≡ NA
B |≡ NA

(13)

In the BAN logic test, the two entities can trust each other. Party B believes that party
A has the same access rights and group key. Party B believes that the message sent by B is a
fresh message.

6.2. Performance on ESP 8266 and ARM M4

The process of implementing secure end-to-end encryption on the MQTT protocol
is carried out on two hardware devices, namely STM32L4 Discovery (ARM M4) and
NodeMCU (esp 8266). Both hardware are low-power microcontrollers that are suitable
for IoT applications. In the implementation of the protocol, it is only carried out at the
communication stage.

At the design stage, the package sent from publisher to subscriber is EKC{M, NonceA},
S, Nonce. At the implementation stage, S and Nonce are ignored to check the performance
of the implemented cryptographic algorithms. The implemented communication design
can be seen in Figure 5.
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In the process of implementing secure end-to-end encryption, the MQTT protocol
utilizes a lightweight cryptographic algorithm that has features that can guarantee the con-
fidentiality and authenticity of data. Lightweight cryptographic algorithms implemented
in this study include AES-128 GCM mode, GIFT COFB, ROMULUS N, and Tiny JAMBU.



Appl. Sci. 2022, 12, 8817 11 of 19

These four algorithms are the final candidates in the lightweight cryptographic algorithm
competition organized by NIST.

Testing the performance of the lightweight cryptography algorithm on STM32L4 and
ESP8266 is done by setting several test parameters, namely encryption time, decryption
time, and the time required for packet delivery. The test is carried out on a WiFi network
with specifications as shown in Table 2:

Table 2. Test Parameters.

No Parameter Description Value

1 WiFi
Download Speed 43.49 Mbps

Upload Speed 46.73 Mbps

2 Messages
80 bit (10 Char) hello eqmx

120 bit (10 Char) hello eqmx dear
160 bit (10 Char) hello eqmx dear agus

Based on Figure 5, encrypted messages are sent with base64 and encoded so that the
encrypted messages are not changed during transmission from publisher to subscriber.
Sending encrypted messages without base64 has the potential that the message cannot be
decrypted because the encrypted message can be in the form of special Characters that can
affect the transmission process, such as Null, Delete, or Enter Characters. The MQTT server
used in this simulation is Eclipse Mosquitto version 2. This MQTT server supports MQTT
version 5. In this study, the QOS used by the publisher is QOS0. The results of testing the
secure MQTT protocol are presented in Sections 6.2.1 and 6.2.2.

6.2.1. Node MCU

The performance test of the lightweight encryption algorithm using anonymous
and registered accounts on the MQTT server was carried out on the WiFi network. The
registered account used for testing is “winarnolab” with the password “loop1206”. The test
was carried out with three different message lengths, namely 10, 15, and 20 Characters.

• Anonymous Account

The results of the tests carried out on the WiFi network as anonymous users can be
seen in Tables 3–5 and Figure 6. Testing is done by sending messages with a length of 80
bits (10 Characters), 120 bits (15 Characters), and 160 bits (20 Characters).
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Figure 6. Lightweight Cryptographic Performance on NodeMCU on WiFi Network Used Anonymous
Account. (a) Encryption Time; (b) Decryption Time; (c) Message Publication Time to MQTT Server.
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Table 3. Lightweight Cryptographic Encryption and Decryption Performance on NodeMCU with
10 Characters Messages used Anonymous Account.

No LWC Algorithm Encryption Time
(µs)

Decryption Time
(µs)

Publication Time
(µs)

1 AES-128 GCM 558 570 690
2 GIFT-COFB 1066 1087 674
3 Tiny JAMBU 306 317 545
4 Romulus-N1 2052 2075 728

Table 4. Lightweight Cryptographic Encryption and Decryption Performance on NodeMCU with
15 Characters Messages used Anonymous Account.

No LWC Algorithm Encryption Time
(µs)

Decryption Time
(µs)

Publication Time
(µs)

1 AES-128 GCM 560 571 704
2 GIFT-COFB 1066 1090 699
3 Tiny JAMBU 315 332 557
4 Romulus-N1 2053 2077 689

Table 5. Lightweight Cryptographic Encryption and Decryption Performance on NodeMCU with
20 Characters Messages used Anonymous Account.

No LWC Algorithm Encryption Time
(µs)

Decryption Time
(µs)

Publication Time
(µs)

1 AES-128 GCM 596 612 713
2 GIFT-COFB 1146 1156 700
3 Tiny JAMBU 321 338 553
4 Romulus-N1 2381 2391 625

From Table 3, it can be seen that Tiny JAMBU can encrypt messages with a time of
306 µs and decryption of 317 µs, for messages with a length of 10 Characters. AES-128
GCM mode can perform encryption and decryption of 558 µs and 570 µs, respectively.
GIFT-COFB takes 1066 µs and 1087 µs for encryption and decryption. Meanwhile, Romulus
N1 is capable of encrypting 10-character messages for 2052 µs and 2075 µs and message
publication to the MQTT server takes 728 µs.

Table 4 shows the results of testing the secure end-to-end encryption on the MQTT
protocol by sending a 15-character message on a WiFi network as an anonymous user on
the MQTT server. Tiny JAMBU produces an excellent lightweight cryptographic algorithm
with an encryption time of 315 µs, a decryption time of 332 µs, and a message publication
time of 557 µs. Meanwhile, the AES-128 GCM is still tight with an encryption time of
560 µs and a decryption time of 571 µs and a publication time of 704 µs. This is followed
by GIFT-COFB with an encryption time of 1066 µs and a decryption time of 1090 µs and
Romulus N1 with an encryption time of 2053 µs and a decryption time of 2077 µs with a
message publication time of 689 µs.

Table 5 shows the results of testing secure end-to-end encryption on the MQTT protocol
by sending messages of 20 Characters long on the WiFi network as an anonymous user on
the MQTT server. In the results of this test, the highest performance is still produced by
Tiny JAMBU, with an encryption time of 321 µs and a decryption time of 338 µs.

Based on the results of testing secure end-to-end encryption on the MQTT protocol
on the WiFi network as an anonymous user of the MQTT server, it was discovered that
sending messages of 10 to 20 Characters can be done in less than 1 ms and the fastest
performance is produced by Tiny JAMBU, as can be seen in Figure 6.

• Registered account
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Testing of secure end-to-end encryption on the MQTT protocol on a WiFi network as a
registered user of the MQTT server can be seen in Tables 6–8 and Figure 7. Testing is done
by sending messages with a length of 80 bits (10 Characters), 120 bits (15 Characters) and
160 bits (20 Characters).

Table 6. Lightweight Cryptographic Encryption and Decryption Performance on NodeMCU with
10 Characters Messages used Registered Account.

No LWC Algorithm Encryption Time
(µs)

Decryption Time
(µs)

Publication Time
(µs)

1 AES-128 GCM 559 569 679
2 GIFT-COFB 1066 1084 674
3 Tiny JAMBU 305 317 541
4 Romulus-N1 2051 2071 664

Table 7. Lightweight Cryptographic Encryption and Decryption Performance on NodeMCU with
15 Characters Messages used Registered Account.

No LWC Algorithm Encryption Time
(µs)

Decryption Time
(µs)

Publication Time
(µs)

1 AES-128 GCM 559 572 697
2 GIFT-COFB 1066 1090 688
3 Tiny JAMBU 315 332 543
4 Romulus-N1 2052 2078 680

Table 8. Lightweight Cryptographic Encryption and Decryption Performance on NodeMCU with
20 Characters Messages used Registered Account.

No LWC Algorithm Encryption Time
(µs)

Decryption Time
(µs)

Publication Time
(µs)

1 AES-128 GCM 596 608 693
2 GIFT-COFB 1146 1160 705
3 Tiny JAMBU 321 334 545
4 Romulus-N1 2365 2391 689
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Figure 7. Lightweight Cryptographic Performance on NodeMCU on WiFi Network Used Registered
Account. (a) Encryption Time; (b) Decryption Time; (c) Message Publication Time to MQTT Server.

From Table 6, it can be seen that Tiny JAMBU is able to encrypt messages with a time
of 305 µs and decryption of 317 µs for messages with a length of 10 Characters. GIFT-COFB
takes 1066 µs and 1084 µs for encryption and decryption. AES-128 GCM mode can perform
encryption and decryption with a time of 559 µs and 569 µs. Meanwhile, Romulus N1 can
encrypt 10-character messages for 2051 µs and 2071 µs.

Table 7 provides an overview of the performance of lightweight cryptographic algo-
rithms on secure MQTT on a WiFi network. The test results show tiny JAMBU has the



Appl. Sci. 2022, 12, 8817 14 of 19

fastest performance, with encryption and decryption times of 315 µs and 332 µs, respec-
tively. Meanwhile, the lowest performance was produced by Romulus-N1, 2053 µs for
encryption and 2078 µs for decryption.

Table 8 shows that tiny JAMBU and AES-128 GCM Mode can perform encryption and
decryption in less than 1 ms. Tiny JAMBU can encrypt for 315 µs and decrypt for 332 µs.
AES-128 GCM mode requires 596 µs for encryption and 612 µs for decryption. Meanwhile,
GIFT-COFB and Romulus-N1 can perform encryption and decryption in 1 ms and 2 ms,
respectively.

Figure 7 provides information that sending messages of 10 to 20 Characters in the
secure MQTT test on a WiFi network as a registered user of the MQTT server can be carried
out in less than 1 ms and the fastest performance is produced by Tiny JAMBU with a time
of 545 µs.

6.2.2. STM32L4 Discovery

The performance test of the lightweight encryption algorithm using an anonymous
and a registered account on the MQTT server was carried out on WiFi network. The
registered account used for testing is “winarnolab” with the password “loop1206”. The test
is carried out with three different message lengths, namely 10, 15, and 20 Characters.

• Anonymous Account

The results of the tests carried out on the WiFi network as anonymous users can be
seen in Tables 9–11, and Figure 8.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 19 

1 AES-128 GCM 559 572 697 
2 GIFT-COFB 1066 1090 688 
3 Tiny JAMBU 315 332 543 
4 Romulus-N1 2052 2078 680 

Table 8. Lightweight Cryptographic Encryption and Decryption Performance on NodeMCU with 
20 Characters Messages used Registered Account. 

No LWC Algorithm 
Encryption Time 

(𝛍𝐬) 
Decryption Time 

(𝛍𝐬) 
Publication Time 

(𝛍𝐬) 
1 AES-128 GCM 596 608 693 
2 GIFT-COFB 1146 1160 705 
3 Tiny JAMBU 321 334 545 
4 Romulus-N1 2365 2391 689 

From Table 6, it can be seen that Tiny JAMBU is able to encrypt messages with a time 
of 305 μs and decryption of 317 μs for messages with a length of 10 characters. GIFT-
COFB takes 1066 μs and 1084 μs for encryption and decryption. AES-128 GCM mode 
can perform encryption and decryption with a time of 559 μs and 569 μs. Meanwhile,
Romulus N1 can encrypt 10-character messages for 2051 μs and 2071 μs. 

Table 7 provides an overview of the performance of lightweight cryptographic algo-
rithms on secure MQTT on a WiFi network. The test results show tiny JAMBU has the 
fastest performance, with encryption and decryption times of 315 μs and 332 μs, respec-
tively. Meanwhile, the lowest performance was produced by Romulus-N1, 2053 𝜇𝑠 for
encryption and 2078 μs for decryption. 

Table 8 shows that tiny JAMBU and AES-128 GCM Mode can perform encryption 
and decryption in less than 1 ms. Tiny JAMBU can encrypt for 315 μs and decrypt for 332 μs. AES-128 GCM mode requires 596 μs for encryption and 612 μs for decryption. Mean-
while, GIFT-COFB and Romulus-N1 can perform encryption and decryption in 1 ms and 
2 ms, respectively. 

Figure 7 provides information that sending messages of 10 to 20 characters in the 
secure MQTT test on a WiFi network as a registered user of the MQTT server can be car-
ried out in less than 1 ms and the fastest performance is produced by Tiny JAMBU with a 
time of 545 μs. 

6.2.2. STM32L4 Discovery 
The performance test of the lightweight encryption algorithm using an anonymous 

and a registered account on the MQTT server was carried out on WiFi network. The reg-
istered account used for testing is “winarnolab” with the password “loop1206”. The test 
is carried out with three different message lengths, namely 10, 15, and 20 characters. 
• Anonymous Account 

The results of the tests carried out on the WiFi network as anonymous users can be
seen in Tables 9–11, and Figure 8. 

(a) (b) (c) 

0

100

200

300

400

500

600

700

800

10 15 20
Messages Length (Char)

Encryption Time  

AES-128 GCM

GIFT-COFB

ROMULUS N1

Tiny JAMBU

0

100

200

300

400

500

600

700

800

10 15 20
Messages Length (Char)

Decryption Time  

AES-128 GCM

GIFT-COFB

ROMULUS N1

Tiny JAMBU

1000

1050

1100

1150

1200

1250

1300

1350

10 15 20
Messages Length (Char)

AES-128 GCM

GIFT-COFB

ROMULUS N1

Tiny JAMBU

Publish Times (μs)

tim
e 

(μ
s)

tim
e 

(μ
s)

tim
e 

(μ
s)

Figure 8. Lightweight Cryptographic Encryption and Decryption Performance on STM32L4 on
WiFi Network Used Anonymous Account. (a) Encryption Time; (b) Decryption Time; (c) Message
Publication Time to MQTT Server.

Table 9. Lightweight Cryptographic Encryption and Decryption Performance on STM32L4 with
10 Characters Messages Used Anonymous Account.

No LWC Algorithm Encryption Time
(µs)

Decryption Time
(µs)

Publication Time
(µs)

1 AES-128 GCM 153 151 1201
2 GIFT-COFB 149 151 1202
3 Tiny JAMBU 75 78 1119
4 Romulus-N1 549 549 1203

Table 10. Lightweight Cryptographic Encryption and Decryption Performance on STM32L4 with
15 Characters Messages Used Anonymous Account.

No LWC Algorithm Encryption Time
(µs)

Decryption Time
(µs)

Publication Time
(µs)

1 AES-128 GCM 152 156 1261
2 GIFT-COFB 152 150 1265
3 Tiny JAMBU 82 85 1168
4 Romulus-N1 550 550 1262
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Table 11. Lightweight Cryptographic Encryption and Decryption Performance on STM32L4 with
20 Characters Messages Used Anonymous Account.

No LWC Algorithm Encryption Time
(µs)

Decryption Time
(µs)

Publication Time
(µs)

1 AES-128 GCM 189 189 1304
2 GIFT-COFB 189 191 1295
3 Tiny JAMBU 87 92 1226
4 Romulus-N1 718 722 1305

From Table 9, it can be seen that Tiny JAMBU can encrypt messages with a time
of 75 µs and decryption of 78 µs, for messages with a length of 10 Characters. AES-128
GCM can perform encryption and decryption with 153 µs, and 151 µs. GIFT-COFB takes
149 µs and 151 µs for encryption and decryption. Meanwhile, Romulus N1 can encrypt
10-character messages for 549 µs and 549 µs and message publication to the MQTT server
takes 1203 µs.

Table 10 shows the results of testing the secure end-to-end encryption on the MQTT
protocol by sending a 15-character message on a WiFi network as an anonymous user on
the MQTT server. Tiny JAMBU produces an excellent lightweight cryptographic algorithm
with an encryption time of 82 µs, a decryption time of 85 µs, and a message publication
time of 1168 µs.

Meanwhile, the AES-128 GCM is still tight with an encryption time of 152 µs and a
decryption time of 156 µs and a publication time of 1261 µs. This is followed by GIFT-COFB
with an encryption time of 152 µs and a decryption time of 150 µs and Romulus N1 with
an encryption time of 550 µs and a decryption time of 550 µs with a message publication
time of 1262 µs.

Table 11 shows the results of testing secure end-to-end encryption on the MQTT
protocol by sending messages of 20 Characters long on the WiFi network as an anonymous
user on the MQTT server. In the results of this test, the highest performance is produced by
Tiny JAMBU with an encryption time of 87 µs and a decryption time of 92 µs.

Based on the results of testing secure end-to-end encryption on the MQTT protocol
on the WiFi network as an anonymous user of the MQTT server, it was discovered that
sending messages of 10 to 20 Characters can be done in less than 1.4 ms and the fastest
performance is produced by Tiny JAMBU, as can be seen in Figure 8.

• Registered Account

Testing of secure end-to-end encryption on the MQTT protocol on a WiFi network as
a registered user of the MQTT server can be seen in Tables 12–14 and Figure 9. Testing is
done by sending messages with a length of 80 bits (10 Characters), 120 bits (15 Characters),
and 160 bits (20 Characters).
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Table 12. Lightweight Cryptographic Encryption and Decryption Performance on STM32L4 with
10 Characters Messages Used Registered Account.

No LWC Algorithm Encryption Time
(µs)

Decryption Time
(µs)

Publication Time
(µs)

1 AES-128 GCM 151 151 1208
2 GIFT-COFB 149 151 1204
3 Tiny JAMBU 75 78 1105
4 Romulus-N1 549 548 1199

Table 13. Lightweight Cryptographic Encryption and Decryption Performance on STM32L4 with
15 Characters Messages Used Registered Account.

No LWC Algorithm Encryption Time
(µs)

Decryption Time
(µs)

Publication Time
(µs)

1 AES-128 GCM 153 152 1257
2 GIFT-COFB 151 155 1265
3 Tiny JAMBU 81 85 1171
4 Romulus-N1 549 551 1266

Table 14. Lightweight Cryptographic Encryption and Decryption Performance on STM32L4 with
20 Characters Messages Used Registered Account.

No LWC Algorithm Encryption Time
(µs)

Decryption Time
(µs)

Publication Time
(µs)

1 AES-128 GCM 189 189 1291
2 GIFT-COFB 193 195 1319
3 Tiny JAMBU 88 92 1247
4 Romulus-N1 717 722 1298

In Table 12, it can be seen that Tiny JAMBU is able to encrypt messages with a time
of 75 µs and decryption of 78 µs for messages with a length of 10 Characters. GIFT-COFB
takes 149 µs and 151 µs for encryption and decryption. AES-128 GCM mode can perform
encryption and decryption with a time of 151 µs and 151 µs. Meanwhile, Romulus N1 can
encrypt 10-character messages for 549 µs. and 548 µs.

Table 13 provides an overview of the performance of lightweight cryptographic al-
gorithms on secure MQTT on a WiFi network. The test results show tiny JAMBU has the
fastest performance with encryption and decryption time of 81 µs and 85 µs, respectively.
Meanwhile, the lowest performance was produced by Romulus-N1, 549 µs for encryption
and 551 µs for decryption.

Table 14 shows that tiny JAMBU can perform encryption and decryption in less than
0.1 ms. Tiny JAMBU can encrypt for 88 µs and decrypt for 92 µs. AES-128 GCM and
GIFT-COFB can perform encryption and decryption in less than 0.2 ms. AES-128 GCM
requires 189 µs for encryption and 189 µs for decryption. GIFT-COFB requires 193 µs for
encryption and 195 µs for decryption Meanwhile, Romulus-N1 can perform encryption
and decryption in 717 µs and 722 µs.

Based on the results of testing secure end-to-end encryption on the MQTT protocol
on a WiFi network as a registered user of the MQTT server, information is obtained that
sending messages of 10 to 20 Characters can be done from 1.1 ms to 1.3 ms and the fastest
performance is produced by tiny JAMBU with a publication time of 1105 µs to 1247 µs, as
can be seen in Figure 9.
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7. Conclusions

MQTT Secure End-to-End Encryption Design with Lightweight Cryptography Based
on Block Cipher is designed by utilizing Galantucci’s secret sharing, which makes it easy to
perform key and user management and uses multiple XOR operations that are compatible
with low-power IoT devices.

The performance of Secure End-to-End Encryption MQTT with Block Cipher-Based
Lightweight Cryptography is performed on two development boards, i.e., NodeMCU and
STM32L4 Discovery. The result of our testing in NodeMCU, the Tiny JAMBU algorithm
can perform encryption for 313 µs and decryption for 327 µs. AES-128 GCM mode can
encrypt for 572 µs and decrypt for 584 µs, while GIFT-COFB can encrypt for 1094 µs and
decrypt for 1110 µs. Meanwhile, Romulus N1 has an encryption time of 2157 µs and a
decryption time of 2180 µs. In STM32L4 Discovery, the Tiny JAMBU algorithm can perform
encryption for 82 µs and decryption for 85 µs. AES-128 GCM mode encrypts for 163 µs and
decrypts for 164 µs. GIFT-COFB can encrypt for 164 µs and decrypt for 165 µs. Romulus
N1 encrypts for 605 µs and decrypts for 607 µs.
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