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Abstract: This work addresses an evolutionary algorithmic approach to reduce the surplus pieces
in selective assembly to increase success rates. A novel equal area amidst unequal bin numbers
(EAUB) method is proposed for classifying the parts of the ball bearing assembly by considering the
various tolerance ranges of parts. The L16 orthogonal array is used for identifying the effectiveness
of the proposed EAUB method through varying the number of bins of the parts of an assembly.
Because of qualities such as minimal setting parameters, ease of understanding and implementation,
and rapid convergence, the moth–flame optimization (MFO) algorithm is put forward in this work
for identifying the optimal combination of bins of the parts of an assembly toward maximizing
the percentage of the success rate of making assemblies. Computational results showed a 5.78%
improvement in the success rate through the proposed approach compared with the past literature.
The usage of the MFO algorithm is justified by comparing the computational results with the harmony
search algorithm.

Keywords: selective assembly; success rate; EAUB method; evolutionary algorithm; MFO algorithm

1. Introduction

Any manufacturing process revolves around product quality. In general, an assembly
is made up of two or more parts. The functionality of the end product is influenced by
the quality of the parts used in the assembly. Tolerance is critical to part quality because it
determines the fit between pairing parts. The precise assembly is more suitable for func-
tional requirements because the parts are built with tighter tolerances. The manufacturing
companies are still facing difficulty in producing precise assemblies because of differences
in part dimensions. The rejection of surplus parts that is due to dimensional variations will
increase assembly costs. Despite this, selective assembly is one of the effective strategies
for producing precise assemblies at a cheaper cost of production. Cheaper production
costs are due to the total elimination or decrease in the usage of secondary operations by
creating wide-tolerance parts. In general, the parts are organized into bins in selective
assembly using methods such as the uniform grouping method, equal probability approach,
or uniform tolerance method. The precise assemblies are built by randomly selecting parts
from the respective bins and pairing them according to the optimal requirement. Most of
the previous literature is focusing on the minimization of the objectives such as clearance
variation and/or surplus parts while making assemblies through the above-said parts’
pairing methods. Research works focusing on the usage of the equal area method in
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association with different bin numbers while creating linear and/or nonlinear assembly
is seldom found. This challenging environment can be viewed as an NP-hard problem
because different combinations of bins are possible. The relevant works of literature are
reviewed in the “Related Research” section to help readers comprehend the past works. In
addition, the “Related Research” section addresses the evolutionary algorithmic approaches
used by many researchers at different times for solving selective assembly problems. The
proposed work’s outline is explained in the “Work Outline” section. The “Case Study”
section contains information on the sample case, namely ball bearing assembly. The section
“Solution Methodology” discusses the EADB method selected for sorting out selective
assembly problems employing the ABC algorithm. In the section “Results and Discussion”,
the computational results are presented and discussed. The “Conclusion” section contains
the final remarks.

2. Related Research

During the product and process design phase, Kern (2003) [1] analyzed the prob-
lems and obstacles to manufacturing variability management and forecasting. He also
provided guidance by suggesting the tools and ways for overcoming these barriers. He
also devised closed-form statements to reduce clearance variations for a wide variety of
selective assembly approaches. Kannan et al. (2005) [2] put forward a de novo selective
assembly technique. By combining parts from various combinations of selective groups,
the minimal clearance variation was attained. This is accomplished through employing a
genetic algorithm. To examine and find the ideal combination, a radial assembly was used.
Kumar et al. (2007) [3] suggested using a genetic algorithm to find the ideal grouping of
parts in an assembly to cut down on surplus parts. An example situation with a gearbox
shaft assembly was presented to show how effective the suggested method is.

Asha et al. (2008) [4] originated a fresh selective assembly strategy to minimize
clearance variation and excess parts during the construction of complicated assemblies em-
ploying the piston and piston ring components. The optimal combination of the proposed
strategy was discovered using a nondominated sorting genetic algorithm. Kannan et al.
(2009a) [5] introduced a particle swarm optimization approach for determining selective
group combinations for mating part assembly. This strategy was found to reduce assembly
variance by nearly 80%. Kannan et al. (2009b) [6] proposed a new approach for selective as-
sembly based on the quality features of parts with skewness. This strategy’s main objective
was to get rid of surplus parts while reducing clearance variation. A genetic algorithm was
used to find out the number of components in the combinations of the selective group for a
defined clearance variation.

Wang et al. (2011) [7] proposed a novel method for selective assembly using a genetic
algorithm to minimize part clearance variations in a gear assembly with no surplus parts. To
optimize the number of excess components, Matsuura and Shinozaki (2011) [8] developed
optimal manufacturing mean design. The identical width method was used to separate the
parts with lower variance in dimensions in this manner. Raj et al. (2011) [9] developed a
genetic algorithm-based technique for determining the best grouping of all parts to reduce
dimensional variations. The length of chromosomes was determined by the number of
parts in this method.

Yue et al. (2014) [10] used a genetic algorithm to find the best combination of selective
groups for producing a hole and shaft assembly with the least amount of clearance variation.
When compared to earlier approaches, the clearance variation value of interchangeable
assembly using this method was just 30 µm. To find the best combination of selective
groups with the least amount of assembly tolerance variation and the lowest loss value
within the specification range, Babu and Asha (2014) [11] devised an artificial immune
system method. Taguchi’s loss function method was used to calculate the deviation from
the mean. They also looked into how to select the number of groups for selective assembly.

There is a lot of research work on selective assembly using reliable machines with
infinite buffer capacity. In practice, however, unreliable machines and finite buffers are
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common in many assembly systems. Ju and Li (2014) [12] investigated a two-part assembly
system that included unreliable Bernoulli machines and finite buffers. A two-level decom-
position approach was used to examine the system’s performance. Using the method de-
scribed above, high accuracy in performance evaluation was observed. Xu et al. (2014) [13]
developed a new selective assembly technique to increase profit by reducing part variation
in hard disc drive construction. To remove inferior parts before assembly and pick matching
pairs of parts, theories of discarding and binning were developed.

Lu and Fei (2015) [14] devised a selective assembly strategy based on a genetic al-
gorithm to increase assembly success rates by minimizing surplus parts. The goal was
achieved using a genetic algorithm and a specially built 2D chromosomal structure. The
proposed approach was better suited to assemblies using various dimension chains. Babu
and Asha (2015) [15] put forward a symmetrical interval-based Taguchi loss function to
analyze the assembly loss in this approach. An improved sheep flock heredity algorithm
was employed to determine a favorable mix of the selection group because of assembly
loss value and clearance variation. Ju et al. (2016) [16] considered unreliable machines
and finite buffers while producing the assemblies using a selective assembly method. The
powertrain production lines and battery pack assemblies from the automotive sector were
employed in this study. The Bernoulli machine reliability models were assumed. To assess
the system’s performance, a two-level decomposition approach was devised. Liu and Liu
(2017) [17] investigated selective assembly for engine re-manufacturing. In the proposed
study, the number of groups and the range of each group were both dynamic.

Chu et al. (2018) [18] developed a technique for selective assembly to satisfy the
RV reducer’s backlash specifications. A genetic algorithm was used to find a solution to
this issue. Asha and Babu (2017) [19] suggested a meta-heuristic method-based selected
assembly strategy for a ball bearing complex assembly to lessen clearance variation and
surplus parts. To reduce clearance variance, Aderiani et al. (2018) [20] created a multistage
technique for selective assembly with no extra pieces. The three-part linear assembly
and the two-part hole and shaft assembly were employed in this experiment. The entire
dimensional distribution of parts was taken into account. A genetic algorithm was used
to find the best combination of selective groups. When compared to earlier approaches, a
20% improvement in variation was realized. Hui et al. (2020) [21] employed a data-driven
modeling approach to assess the machine tool’s linear axis assembly quality. A synthetic
minority over-sampling technique and genetic algorithm were used to create a model for
evaluating assembly quality. The proposed data-driven modeling strategy was found to be
effective.

From the inferences obtained from the literature survey, the success rate of selective
assembly mainly depends on factors such as the method of classification of the number of
bins for each part, the number of parts allotted to each bin either equally or unequally, the
tolerance range of each part, the assembly clearance variations, and surplus parts. These
factors are critically analyzed and discussed in the proposed work. Different authors had
solved the selective assembly problems using different approaches at different points of
time. However, the new problem environment is identified based on this detailed review
of related research works and the same is explained in the next section.

3. Problem Environment

The exact number of assemblies cannot be made by the manufacturing industries by
assembling the same number of individual parts because of the presence of surplus parts
that is due to their tolerance variation and their distribution. In this context, based on the
tolerance of the individual parts, the parts are classified into groups/bins for attaining the
maximum unit of assemblies by randomly selecting the parts from the bins and mating
them. Along with the manufacturing tolerance of the individual parts, the specification of
the required assembly, and the number of bins are the major factors that control the cost of
manufacturing of assembly by reducing the surplus parts. For the ease of handling this
issue, the parts are classified into bins based on different concepts such as equal area and
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equal width in the normal distribution of the parts with respect to their tolerance. However,
it is a time-consuming process to find the ideal combination of bins for various assembly
specifications after parts are fabricated. Acquiring the number of closer assemblies for each
bin number from the manufactured parts is also a time-consuming task. Hence, this work
addresses a novel method for improving the success rate of making assemblies by reducing
the surplus parts.

4. EAUB Method

Numerous research works had been done by researchers on selective assembly for
improving the success rate of making assemblies by classifying the parts into different
bins based on the tolerance variation. Mostly, in the previous literature, the classification
of parts was carried out by considering an equal number of bins based on the concept
of either equal width or equal area of the normal distribution of parts with respect to
tolerance variation. However, Lu and Fei (2015) [14] classified the parts into bins based on
the unequal group numbers of different parts of a ball bearing assembly. The success rate
of making assemblies through this method was 81.3%. The difference in the success rate
was only 0.63% compared to the previous literature. Still, an effective method is required to
improve the success rate to a further extent. In this context, it is proposed to identify the
effect of the equal area method of classification of parts with unequal bin numbers. Hence,
a novel method, namely equal area with unequal bin numbers (EAUB), is introduced in
this work to classify the parts into bins as a single stage. The positive and negative skewed
distributions and both normal and not-normal distributions of parts have been considered
in this work. The number of appearances of bin numbers is decided based on the number
of parts available in that bin with the total number of parts to be assembled. Length of bin
combinations is achieved by considering the maximum bin number with which the parts
are classified. The stepwise procedure in the evaluation of the percentage of the success
rate of making assemblies is described below.

Step 1: Arrange the number of parts manufactured (TPi) for each part of an assembly
in ascending order of its dimension.

Step 2: Fix the number of bins of each part (Gi).
Step 3: Select the arbitrary constant value (E) between 0 and 3.
Step 4: Compute the length of the combination of bins using Equation (1).

L = (nc ∗ max
i=1 to nc

Gi)− E (1)

Step 5: Determine the number of parts that fall into each bin using Equation (2) based
on the EAUB method. Partition the NPij number of parts of each part into its corresponding
bin based on its dimension, arranged as per step 1.

NPij =
NPi
Gi

(2)

Step 6: Determine the duplication of bin numbers using Equation (3).

RGij = L ∗
NPij

TPi
(3)

Step 7: Construct the combination of the bin for each part by filling the repetition of
group numbers. For example, if part A is divided into three partitions with E as 0, then
the combination of the bin is 111,222,333. There are nine permutations and combinations
possible. For example, the bin combination (CBi) 121,332,121 is one such example of the
above.

Step 8: Step numbers 1, 2, 5, 6, and 7 are repeated for each part.
Step 9: Each part (k) from the corresponding bin available in the location of bin

combinations (l) is selected randomly and assembled to make an assembly (Ak) until the
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minimum value of NPij. The assembly clearance (CLl) is calculated using Equation (4) and
verified using Equation (5) with the known lower (LL) and upper limit (UL) value specified
by the manufacturer, which decides whether the assembly is accepted or rejected. The
left-out/surplus parts have been used if the same bin number is available in the remaining
location of the combination of bins. The minimum number of parts (min(NPij)) available
in bins mentioned in each location of the combination of bins is the maximum possible
number of assemblies (NAl). It is mentioned in Equation (6).

CLlk =
nc

∑
i=1

±Dij=lk (4)

Ak—Assembly index for successful/unsuccessful assembly
=1 if LL < CLlk < UL (successful assembly)
=0 otherwise (unsuccessful/rejected assembly)

Ak = 1 i f LL ≤ CLlk ≤ UL else 0 (5)

NAl =

min(NPij)

∑
k=1

Ak (6)

Step 10: For the entire length of the combination of the bin, the above step is carried
and total assemblies (TA) are produced, which is expressed in Equation (7).

TA =
L

∑
l=1

NAl (7)

Step 11: Compute the percentage of success rate (SR) using Equation (8).

SR = 100 ∗ TA
TP

(8)

The algorithmic approach used in this work and the numerical illustration is discussed
in the next section.

5. Algorithmic Approach

The calculation of the percentage of the success rate of making assemblies is very
simple when the number of bins of the parts of an assembly is fixed. However, in line
with the improvement in the percentage of success rate, it is necessary to see the effect
of varying the number of bins of different parts. Upon calculating the permutations and
combinations of varying the number of bins, the problem may be treated as an NP-hard
problem. Hence, an algorithmic approach is necessary to provide a solution for this
problem environment. Due to its characteristics, such as few setting parameters, being easy
to understand and implement, and having fast convergence, the moth–flame optimization
(MFO) algorithm as stated by Mirjalili (2015) [22] is selected in this work. The maintaining
of population diversity and good calculation efficiency are the added advantages of using
the MFO algorithm when compared with the other popular algorithms such as the genetic
algorithm (Li et al., 2015 [23]), animal migration optimization algorithm (Li et al., 2014 [24]),
and differential evolution algorithm (Li et al., 2011 [25] and 2017 [26]). Furthermore, the
efficiency of the MFO algorithm is compared with the results obtained through the standard
algorithm, namely the harmony search (HS) algorithm. The pseudocodes for these two
algorithms are given in Figure 1. The parameters and its values of MFO and HS algorithms
are presented in Table 1.
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Figure 1. Pseudocode of MFO and HS algorithms.

Table 1. Parameters and their values used in MFO and HS algorithms.

MFO Algorithm HS Algorithm

Parameter Value Parameter Value

Position of moth close to the flame (t) −1 to −2 Harmony Memory Size 40
Update mechanism Logarithmic spiral HMCR 0.75
No. of moths (N) 30 PAR 0.35

6. Numerical Illustration

The calculation of the percentage of success rate is numerically illustrated in this
section. The ball bearing assembly considered by Lu and Fei (2015) [14] is taken for this
work. The assembly consists of three parts, namely the outer race (A), inner race (B), and
ball (C). The specifications of these parts are stated below.

Diameter o f A = 50+0.012
−0.000 mm

Diameter o f B = 35+0.000
−0.012 mm

Diameter o f C = 7.5+0.000
−0.006 mm

The range of clearance is being kept as 18–24 microns. The tolerance of dimensions of
P1, P2, and P3 are directly taken from Lu and Fei (2015) [14]. The dimensional specifications
of the ball bearing assembly considered in this work are shown in Figure 2.
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Figure 2. Ball bearing assembly (Lu and Fei (2015) [14]).

The dimensional distributions of the different parts of the ball bearing assembly are
given in Figure 3. It is understood from Figure 3 that each part’s distribution of ball bearing
assembly is a mixture of positively and negatively skewed distribution and normal and
non-normal distribution. The existing methods proposed in the past literature are not
suitable to make a greater number of assemblies for this type of distribution. Hence, the
novel EAUB method proposed in this work is tried out to attain a high success rate in
making assemblies.

Figure 3. Cont.
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Figure 3. Dimension distribution of parts of ball bearing assembly. Part (A)—negatively skewed
normal distribution; Part (B)—positively skewed normal distribution; Part (C)—negatively skewed
non-normal distribution.

For demonstration purposes, it is assumed that parts A, B, and C are partitioned into
4, 4, and 3 groups, respectively. The length of the combination of bins (L) is calculated
using Equation (1) as 12 by assuming a zero arbitrary constant (E) value. Table 2 represents
the number of parts available in each bin. The dimension of each part available in the bin
numbers is listed in Tables 3–5 for parts A, B, and C, respectively.

L = (3 ∗ max(4, 4, 3))− 0 = 12

Table 2. Number of parts in each bin.

Bin No. NPAj NPBj NPCj

1 12 12 16
2 12 12 16
3 12 12 16
4 12 12
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Table 3. Dimensions details of Part A in each bin.

k DA1k DA2k DA3k DA4k

1 50.001 50.004 50.006 50.007
2 50.002 50.005 50.006 50.007
3 50.003 50.005 50.006 50.008
4 50.003 50.005 50.006 50.008
5 50.003 50.005 50.007 50.008
6 50.003 50.006 50.007 50.008
7 50.003 50.006 50.007 50.008
8 50.004 50.006 50.007 50.008
9 50.004 50.006 50.007 50.009
10 50.004 50.006 50.007 50.009
11 50.004 50.006 50.007 50.009
12 50.004 50.006 50.007 50.009

Table 4. Dimensions details of Part B in each bin.

k DB1k DB2k DB3k DB4k

1 34.99 34.993 34.994 34.995
2 34.991 34.993 34.994 34.995
3 34.991 34.993 34.994 34.995
4 34.991 34.993 34.994 34.996
5 34.991 34.993 34.994 34.996
6 34.992 34.993 34.994 34.996
7 34.992 34.993 34.994 34.996
8 34.992 34.993 34.994 34.996
9 34.992 34.993 34.994 34.996
10 34.992 34.994 34.994 34.996
11 34.992 34.994 34.994 34.997
12 34.992 34.994 34.995 34.997

Table 5. Dimensions details of Part C in each bin.

k DC1k DC2k DC3k

1 7.495 7.497 7.497
2 7.495 7.497 7.497
3 7.495 7.497 7.498
4 7.496 7.497 7.498
5 7.496 7.497 7.498
6 7.496 7.497 7.498
7 7.496 7.497 7.498
8 7.496 7.497 7.498
9 7.496 7.497 7.498
10 7.496 7.497 7.498
11 7.496 7.497 7.498
12 7.496 7.497 7.498
13 7.496 7.497 7.498
14 7.497 7.497 7.498
15 7.497 7.497 7.499
16 7.497 7.497 7.499

The duplication of bin numbers for each part is calculated using Equation (3). For
demonstration purposes, the duplication of bin number 1 for part A is calculated and it is
given below. The combination of bins for each part is constructed by filling the number of
duplications of bin numbers and it is presented in Table 6.

RGA1 = 12 ∗ 12
50

= 3
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Table 6. Construction of combination of bins.

Name of the Part Combination of Bins

A 1 1 1 2 2 2 3 3 3 4 4 4
B 1 1 1 2 2 2 3 3 3 4 4 4
C 1 1 1 1 2 2 2 2 3 3 3 3

The permutations and combinations of the above are considered as a population of
moth–flame and one such moth–flame representation is shown in Table 7.

Table 7. Combination of bins.

CBi
Bin Number in lth Position

1 2 3 4 5 6 7 8 9 10 11 12

CBA 3 4 1 1 1 4 2 1 1 1 2 3
CBB 1 4 1 2 3 1 2 1 1 4 3 1
CBC 3 2 1 3 1 2 1 1 1 3 2 1
NAl 12 12 0 0 8 0 8 0 0 0 3 0

For demonstration purposes, the assemblies are made using the first part available in
the first position’s bin numbers (3, 1, and 3) in the combination of bins, which is shaded in
Table 6. The number of parts and the dimension of parts A, B, and C for the corresponding
bin numbers 3, 1, and 3 are presented in Table 8. For each part A, B, and C, the part is
selected randomly from the bin number, and assemblies are made. The clearance value of
the assembly (CLk) is calculated using Equation (4). The known lower and upper assembly
clearance values are 0.018 and 0.022 mm, which are specified by the manufacturer. The
calculated clearance value of 0.022 mm by assembling the first part is within the specified
limits. Hence, the value of Ak will be assigned as 1. The entire CLk value for all the parts
in the bin number 3, 1, and 3 of parts A, B, and C are calculated similarly and the same is
presented in Table 8.

CL11 = DA31 − DB11 − 2DC31 = 50.096 − 34.99 − 2 ∗ 7.497 = 0.022 mm

Table 8. Calculated clearance value for the first position bin numbers.

k Value DA3k DB1k DC3k CLlk Ak

1 50.006 34.99 7.497 0.022 1
2 50.006 34.991 7.497 0.021 1
3 50.006 34.991 7.498 0.019 1
4 50.006 34.991 7.498 0.019 1
5 50.007 34.991 7.498 0.02 1
6 50.007 34.992 7.498 0.019 1
7 50.007 34.992 7.498 0.019 1
8 50.007 34.992 7.498 0.019 1
9 50.007 34.992 7.498 0.019 1
10 50.007 34.992 7.498 0.019 1
11 50.007 34.992 7.498 0.019 1
12 50.007 34.992 7.498 0.019 1

NAl 12

The number of assemblies made by matching the parts corresponding to the bin
numbers in the combination of the bin is shown in Table 9. The total number of assemblies
made for the combination of bins mentioned in Table 7 is calculated using Equation (7) as
43. The percentage of the success rate is calculated using Equation (8) and it is 86%.

TA = 12 + 12 + 0 + 0 + 8 + 0 + 8 + 0 + 0 + 0 + 3 + 0 = 43
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SR = 100 ∗ 43
50

= 86%

Table 9. Number of assemblies.

NA
Bin Number in lth Position

1 2 3 4 5 6 7 8 9 10 11 12

NAl 12 12 0 0 8 0 8 0 0 0 3 0

The above-calculated percentage of assembly success rate is made by considering the 4,
4, and 3 bins of the parts A, B, and C, respectively. However, further analysis is mandatory
to see the effectiveness of the proposed EAUB method when the number of bins of parts
A, B, and C is varied. Hence, the L16 orthogonal array is used to vary the bin numbers of
parts A, B, and C appropriately while making assemblies. The MFO and HS algorithms
are implemented to identify the best combination of the number of bins of the parts A, B,
and C for maximizing TA and the percentage of SR. The results are given in Table 10. The
maximum SR value obtained through these algorithms is also highlighted. The results
showed that the MFO algorithms yielded better results compared to the HSA.

Table 10. L16 orthogonal array.

Run No. A B C
TA SR

MFO HSA MFO HSA

1 3 3 3 34 32 68 64
2 3 4 4 32 33 64 66
3 3 5 5 31 31 62 62
4 3 6 6 32 26 64 52
5 4 3 4 34 32 68 64
6 4 4 3 43 36 86 72
7 4 5 6 30 30 60 60
8 4 6 5 29 28 58 56
9 5 3 5 32 30 64 60

10 5 4 6 33 33 66 66
11 5 5 3 36 28 72 56
12 5 6 4 29 29 58 58
13 6 3 6 32 31 64 62
14 6 4 5 32 32 64 68
15 6 5 4 28 28 56 56
16 6 6 3 30 30 60 60

The analysis of variance (ANOVA) is carried out on the results of the MFO algorithm
using Minitab v19 software for the SR value, and the details are given in Table 11. The
ANOVA analysis infers that the p-value of linear, square, and two-way interaction models
is less than 0.05 for SR.
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Table 11. ANOVA analysis for SR obtained using MFO algorithm.

Source DOF Adj SS Adj MS F-Value p-Value

Model 7 163.335 23.334 7.74 0.005
Linear 3 105.225 35.075 11.64 0.003

A 1 9.113 9.113 3.02 0.120
B 1 32.513 32.513 10.79 0.011
C 1 63.600 63.600 21.11 0.002

Square 3 57.687 19.229 6.38 0.016
A*A 1 14.063 14.063 4.67 0.063
B*B 1 10.562 10.562 3.51 0.098
C*C 1 33.063 33.063 10.97 0.011

2-Way Interaction 1 36.410 36.410 12.09 0.008
A*B 1 36.410 36.410 12.09 0.008

Error 8 24.102 3.013
Total 15 187.438

* Interaction.

The significance of the number of bins of each part to maximize the number of assem-
blies is thoroughly analyzed using the following statistical analyses. The Pareto chart and
residual plot are given in Figure 4a,b, respectively. The influence of the number of bins of
different parts on making the number of successful assemblies is clearly understood from
these figures. From the spatial distribution (Figure 4c), it is concluded that the range of
the number of bins for each part is appropriately selected. The probability plot is given in
Figure 4d. It is used to verify the statistical significance of the number of bins of parts A, B,
and C in increasing the success rate of making assemblies. The surface plots indicating the
relationship between the number of total assemblies (TA) and the number of bins of parts A,
B, and C are given in Figure 5. It is understood from Figure 5a that the TA value is gradually
increased when increasing the number of bins of part A. However, when increasing the
number of bins of part B, the TA value is gradually decreased. Figure 5b depicts that the TA
value is slightly increased initially and then decreased while increasing the number of bins
of part A. However, when increasing the number of bins of part B, the TA value is gradually
decreased and then increased. The same kind of pattern is also observed in Figure 5c as
in Figure 5b. Furthermore, the statistical analyses on the results of the HS algorithm are
presented in Figure 6.

Figure 4. Cont.
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Figure 4. Statistical analyses of the results of the MFO algorithm.

Figure 5. Surface plots.
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Figure 6. Statistical analyses of the results of the HS algorithm.

Furthermore, the quadratic type multiple linear regression model (MLRM) for the
number of assemblies is formulated using Minitab™ software based on the relation between
the number of bins of parts A, B, and C and the output response as success rate. The MLRM
is given in Equation (9).

N = 7.5 + 16.92 A + 15.19 B − 15.94 C − 0.937 A ∗ A − 0.812 B ∗ B + 1.437 C ∗ C − 2.034 A ∗ B (9)

Furthermore, in view of analyzing the statistical difference between the results of the
MFO and HS algorithm, the paired t-test is conducted using Minitab software. The results
such as descriptive statistics, estimation of paired difference, and the testing of significant
difference are presented in Tables 12–14, respectively. The p-value from this test is less than
0.05, which stated the significant difference between MFO and HS algorithm.

Table 12. Descriptive statistics.

Sample DoF Mean Standard Deviation Mean of Standard Error

TA—HS algorithm 16 30.563 2.476 0.619
TA—MFO algorithm 16 32.313 3.535 0.884

Table 13. Estimation for paired difference.

Mean Standard Deviation Mean of Standard Error 95% CI for
µ_Difference

−1.750 2.769 0.692 (−3.225, −0.275)
µ_Difference: mean of (TA-HAS—TA-MFO).

Table 14. Testing of significant difference.

T-Value p-Value

−2.53 0.023

The convergence plot for both the MFO and HS algorithms based on the SR value is
presented in Figure 7. From the plot, it is concluded that the MFO algorithm is quickly
converged with a greater SR value when compared to the HS algorithm.
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Figure 7. Convergence plot—MFO vs. HSA.

Furthermore, the performance of these algorithms is compared through the Friedman
test. The test results are given in Table 15. The sum of ranks of the MFO algorithm through
the Friedman rank test is higher than the HS algorithm. Furthermore, the p-value obtained
through Friedman’s ANOVA table is less than 0.05. The details are presented in Table 16.
Hence, from these results, it is concluded that the MFO algorithm outperformed the HS
algorithm.

Table 15. Friedman rank details.

Exp. No.
Friedman Rank

MFO HSA

1 2 1
2 1 2
3 1.5 1.5
4 2 1
5 2 1
6 2 1
7 1.5 1.5
8 2 1
9 2 1
10 1.5 1.5
11 2 1
12 1.5 1.5
13 2 1
14 1.5 1.5
15 1.5 1.5
16 1.5 1.5

Sum of ranks 27.5 20.5

Table 16. Friedman’s ANOVA table.

Source SS df MS Chi-sq Prob > Chi-sq

Columns 1.53125 1 1.53125 5.44 0.0196
Error 2.96875 15 0.19792
Total 4.5 31

The optimal combinations of bins obtained through the MFO and HS algorithms as
per the set of the number of bins (4, 4, 3) stated in Table 10 are given in Table 17.
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Table 17. Optimal combinations of bins.

Particular MFO HSA

A 3 4 1 1 1 4 2 1 1 1 2 3 4 1 3 3 1 4 2 1 1 2 1 1
B 1 4 1 2 3 1 2 1 1 4 3 1 1 2 1 3 4 4 2 1 1 3 1 1
C 3 2 1 3 1 2 1 1 1 3 2 1 3 1 1 2 1 2 3 1 1 3 1 2

NA 12 12 0 0 8 0 8 0 0 0 3 0 12 12 0 12 0 0 0 0 0 0 0 0

TA 43 36

SR 86 72

7. Conclusions

In view of improving the percentage of the success rate of the ball bearing assembly, a
novel approach called equal area and unequal bin (EAUB) numbers method was introduced
in this work. The specification and tolerance value of the parts A, B, and C of the ball
bearing assembly were taken from Lu and Fei (2015) [14]. To verify the effectiveness of the
proposed EAUB method, the number of bins of parts A, B, and C were varied based on
the L16 orthogonal array. The MFO and HS algorithms were used to identify the optimal
combination of bins of the parts A, B, and C for maximizing the percentage of the success
rate of making ball bearing assemblies. The paired t-test was conducted to evaluate the
statistical difference between the results of the MFO and HS algorithms. The percentage of
the success rate of making ball bearing assemblies was improved from 81.3% to 86% by
using the MFO algorithm. From these results, it was concluded that the MFO algorithm
outperformed the HS algorithm. This is because of good calculation accuracy, maintaining
population diversity, and the quick convergence of the MFO algorithm. The convergence
plot between the MFO and HS algorithms was also confirmed to be the same. Furthermore,
the performance of these two algorithms was compared through the Friedman test. The
optimal combination of bins of parts A, B, and C of ball bearing assembly obtained using
the MFO algorithm was 4, 4, and 3, respectively.
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