
Citation: Jung, J.; Hong, J.-H.; Suk, J.;

Park, H.; Choi, B. Maximizing the

Productivity of Photolithography

Equipment by Machine Learning

Based on Time Analytics. Appl. Sci.

2022, 12, 8003. https://doi.org/

10.3390/app12168003

Academic Editors: Changhwan Choi,

Won Seok Chang, Moongyu Jang,

Dukhyun Choi and Junhong Min

Received: 5 July 2022

Accepted: 9 August 2022

Published: 10 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Maximizing the Productivity of Photolithography Equipment
by Machine Learning Based on Time Analytics
Juyoung Jung 1,2, Jin-Hwan Hong 3, Jeewoong Suk 1, Hyunsoon Park 1 and Byoungdeog Choi 4,*

1 Samsung Electronics Co., Ltd., 1, Samsungjeonja-ro, Hwaseong-si 18448, Korea
2 Department of Semiconductor and Display Engineering, Sungkyunkwan University, Suwon-si 16419, Korea
3 SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon-si 16419, Korea
4 Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon-si 16419, Korea
* Correspondence: bdchoi@skku.edu

Abstract: Maximizing productivity is one of the most critical factors for competitiveness in the
manufacturing industry. Needless to say, the semiconductor industry, in which the automation rate is
relatively high and the manufacturing process continues 24 h a day, requires high productivity to be
maintained. This paper is about a model that analyzes the cause of an increase in time needed for the
whole photolithography process and automatically classifies it in real-time by machine learning. The
time analytics model based on a k-means algorithm divides the processing time into four hundred
detailed time steps and classifies causes through normalizing and clustering processes. Further,
true/false measures of performance were employed based on the confusion matrix. To increase
the accuracy of the model, the classified cause becomes a source for creating a new algorithm that
can detect problems quickly and accurately. A small number of wafers that the system has failed
to classify has accumulated in the database to increase the frequency of occurrence. As a result of
evaluating the time analytics model in the photolithography extreme ultraviolet (EUV) equipment,
the model has classified 98.6% of the wafers that exceed the limitation. Continuous updates of new
phenomena that will be generated from advanced technologies will be more important than the
current classification ability. We are accumulating unclassified data for a sustainable system and will
continue to classify by synthesizing new phenomena. Data classified in real-time with high accuracy
become a steppingstone for maintaining high productivity. Production equipment and processes are
developed to enhance individual characteristics. Nevertheless, a data mining method that divides
the process time can also be widely used in manufacturing processes of other fields.

Keywords: time analytics; photolithography process; manufacturing; data mining; classification

1. Introduction

The intensifying global competition has made it imperative for manufacturing com-
panies to maximize their production volume. The overall equipment efficiency (OEE)
proposed by Nakajima presented a standard for quantitatively measuring the performance
of equipment, and numerous manufacturers have been using it to measure and improve
productivity [1–3]. In particular, the number of manufacturers using OEE is increasing in
large-scale automation for mass production [4–7]. Accurate performance data of equipment
is the crucial factor for success in maximizing productivity by maintaining and improving
manufacturing efficiency. OEE is a macroscopic method that measures how well equip-
ment is theoretically running compared to its full potential in the real world [8]. Even
though OEE is an effective way of measuring equipment efficiency, the biggest concern for
manufacturers is to instantly detect and improve the causes of efficiency degradation to
maintain maximum efficiency. Semiconductor production sites are attempting prediction,
classification, association analysis, and clustering using data mining methods. However,
the purpose of most of the research is to improve the quality of wafers based on the de-
fect map of the wafers. Very few studies are related to productivity improvement [9–12].
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Statistical process control (SPC) methods, and the widely used analytical methods therein,
have been commonly used with fault detection and classification data. SPC refers to a
statistical methodology that examines critical variables that must be placed within certain
specifications. However, the SPC has the limitation that only a few of the manufacturing
processes affected by hundreds of factors can be investigated and controlled. In addition,
since the SPC does not have clear criteria for distinguishing fault detection and classifi-
cation data, it may obtain results that are not related to factors, and it is impossible to
analyze in real-time. In this work, we created a time analytics model that classifies the
causes of efficiency degradation in real-time based on the ideal time required for each
process and the data provided by the equipment in the actual industry. The process time
is divided into approximately four hundred detailed steps, and the causes are classified
through normalizing and clustering processes based on a k-means algorithm [13–16]. Fur-
ther, true/false measures of performance were employed based on the confusion matrix.
The existing equipment required one decade to analyze the cause of increased process
time, but when applying the time analytics model, the cause of modern extreme ultraviolet
(EUV) equipment, which is more complex than the existing equipment, up to 98.6% can
be classified in real-time. Accurate and detailed classification of time will be the basis for
continuously maintaining maximum efficiency by reducing the time and effort spent on
detecting the cause of productivity degradation.

2. Related Works
2.1. Statistical Process Control

Statistical process control (SPC) methods are commonly used in the manufacturing
industry [17]. A univariate SPC value is used to control an important single target value
so that it is within a specific range (Figure 1a). In the case where the SPC value is out of
the specific range (red dots), SPC reports a fault. SPC is generally a simple and effective
system that controls key factors related to quality. Whereas the time analytics model is a
simple and powerful system that not only controls process time but also checks the cause of
productivity degradation immediately. Figure 1b shows the wafer loading time in the time
analytics model. The control range is the normal distribution of the cluster closest to the
minimum time. The lower control limit (LCL) is the minimum wafer loading time (blue dot)
and the data only exceeding the upper control limit (UCL) are detected as a time-increased
wafer. The EUV equipment repeats the process of exposing the reticle pattern to the wafer
with the light source and loading the next wafer. The system categorizes the process time
into three categories (expose time, loading time, and lot interval) by combining the time at
the beginning and end of exposure and controlling each range (Figure 1c). This paper has
focused on loading times that have relatively large variations and require improvement.
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Figure 1. (a) Shows the general SPC trend. Red dots represent the outside of control range. (b) Shows
the loading time of each wafer in the control chart. A blue dot is the maximum ability of the
equipment, and it cannot be placed under LCL. (c) Shows the classification of process time. (P.S.:
Process Start, P.E.: Process End).
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2.2. Time Analysis of Two Equipment Makers

Two of the photolithography equipment makers have a time analysis system. The A
company created logic that analyzes the increased value of process time based on the log
generated by the equipment (Equation (1)). The equipment log, which is the information
data of the equipment that comes out as the process progresses, has high accuracy and
reliability. The C company expressed the process time as the length of the bar and the
wafer loading time as the interval between the bars based on the signal that the equipment
communicates with a server. The simple graphs and pictures have high visibility. Contrarily,
equipment makers are not allowed access to the information of the process layer with
numerous variables, which shows the limitations of the analysis. We employed the model
for normalizing and clustering data based on the information of the process layer. Process
layer information is an essential element for normalizing.

The quantity of increased process time = Log A − Log B − Constant (1)

3. Time Analytics Model in Photolithography Equipment
3.1. Overview

The time analytics model classifies the cause of the increase in process time using two
methods. First, cause classification uses a decision tree to classify time-increased wafers.
The decision tree has the same number of algorithms as the number of types of classified
causes. The simplest algorithm is made only with the same type of event code as AB-1234.
The most used types of algorithms are made by combining equipment logs or sensor
signals. Each algorithm is developed using the cross-industry standard process for data
mining (CRISP-DM). Algorithms created by detailed equipment logs have high accuracy
and currently classify 98.6% of time-increased wafers. Second, time classification classifies
the 1.4% of the time-increased wafers that cannot be classified in cause classification by the
machine learning method. Since there is no factor in classifying the cause, the process time
(average 21.6 s) of the single wafer is divided into four hundred steps. Detailed time steps
that affect the increase in the process time are detected through normalizing and clustering.
After analyzing the characteristics of the classified clusters, a new algorithm is created and
added to the decision tree. Figure 2 shows the flow of the time analytics system.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 3 of 8 
 

Figure 1. (a) Shows the general SPC trend. Red dots represent the outside of control range. (b) Shows 
the loading time of each wafer in the control chart. A blue dot is the maximum ability of the equip-
ment, and it cannot be placed under LCL. (c) Shows the classification of process time. (P.S.: Process 
Start, P.E.: Process End). 

2.2. Time Analysis of Two Equipment Makers 
Two of the photolithography equipment makers have a time analysis system. The A 

company created logic that analyzes the increased value of process time based on the log 
generated by the equipment (Equation (1)). The equipment log, which is the information 
data of the equipment that comes out as the process progresses, has high accuracy and 
reliability. The C company expressed the process time as the length of the bar and the 
wafer loading time as the interval between the bars based on the signal that the equipment 
communicates with a server. The simple graphs and pictures have high visibility. Contra-
rily, equipment makers are not allowed access to the information of the process layer with 
numerous variables, which shows the limitations of the analysis. We employed the model 
for normalizing and clustering data based on the information of the process layer. Process 
layer information is an essential element for normalizing. The quantity of increased process time = Log A − Log B − Constant (1) 

3. Time Analytics Model in Photolithography Equipment 
3.1. Overview 

The time analytics model classifies the cause of the increase in process time using two 
methods. First, cause classification uses a decision tree to classify time-increased wafers. 
The decision tree has the same number of algorithms as the number of types of classified 
causes. The simplest algorithm is made only with the same type of event code as AB-1234. 
The most used types of algorithms are made by combining equipment logs or sensor sig-
nals. Each algorithm is developed using the cross-industry standard process for data min-
ing (CRISP-DM). Algorithms created by detailed equipment logs have high accuracy and 
currently classify 98.6% of time-increased wafers. Second, time classification classifies the 
1.4% of the time-increased wafers that cannot be classified in cause classification by the 
machine learning method. Since there is no factor in classifying the cause, the process time 
(average 21.6 s) of the single wafer is divided into four hundred steps. Detailed time steps 
that affect the increase in the process time are detected through normalizing and cluster-
ing. After analyzing the characteristics of the classified clusters, a new algorithm is created 
and added to the decision tree. Figure 2 shows the flow of the time analytics system. 

 
Figure 2. Time analytics model flow chart. Time classification is used to construct a new cause clas-
sification algorithm. 

3.2. Typical and Atypical Time-Increased Wafers 
We have defined the types of time-increased wafers outside the control range as two 

types: typical and atypical. Figure 3a shows the wafer loading time of each wafer in chron-
ological sequence. Durations are clustering around 7 s (red dots). The same duration gen-
erally indicates the same cause. We have defined clustered time-increased wafers as a typ-
ical form. Contrarily, time-increased wafers that do not form clusters have been defined 
as an atypical form. The atypical form has characteristics of large dispersion and low fre-
quency of occurrence. The ratio of atypical time-increased wafers is 9.1% of the total wa-
fers, and some atypical time-increased wafers also have the same duration as typical time-

Figure 2. Time analytics model flow chart. Time classification is used to construct a new cause
classification algorithm.

3.2. Typical and Atypical Time-Increased Wafers

We have defined the types of time-increased wafers outside the control range as two
types: typical and atypical. Figure 3a shows the wafer loading time of each wafer in
chronological sequence. Durations are clustering around 7 s (red dots). The same duration
generally indicates the same cause. We have defined clustered time-increased wafers as a
typical form. Contrarily, time-increased wafers that do not form clusters have been defined
as an atypical form. The atypical form has characteristics of large dispersion and low
frequency of occurrence. The ratio of atypical time-increased wafers is 9.1% of the total
wafers, and some atypical time-increased wafers also have the same duration as typical
time-increased wafers, resulting in a decrease in the accuracy of the classification. The study
has assumed that external factors are likely to be atypical. The transport of materials (wafer
and photomask) is one of the external factors. The photolithography process requires the
transport of 4000 wafers and 100 photomasks per day. There is a possibility that supply will
be delayed due to several reasons during transportation. As a result of analyzing ten signals
related to wafer transport, it could be defined as a polynomial with three independent
variables. Equation (2) shows the delay of the transporting wafer from the outside, and
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Equation (3) shows the delay of transporting the wafer to the outside. The constants T1
and T2 are the minimum times of the difference between the two signal occurrence times
of each equation. In cases when the interval between the occurrences of the two signals is
greater than the minimum time (T1, T2), the transport delay of the wafer can be calculated.
In addition, transportation delays could be classified by analyzing the transport signal
of the photomask. Equation (4) shows the delay in receiving the photomask. As a result
of the experiment, the time-increased wafer due to the delay in material supply, which
is an external factor, had an atypical form, and by classifying it, the ratio of unclassified
time-increased wafers could be lowered from 9.1% to 1.4%. The classification of material
supply delays reduced 85% of atypical time-increased wafers and was able to increase
the accuracy of typical data. In addition, by accumulating data on unclassified atypical
time-increased wafers, it was possible to detect clusters with a low frequency of occurrence.

Wafer receive delay = (Signal A − Signal B)− T1 (2)

Wafer give delay = (Signal C1 − SignalC2)− T2 (3)

Reticle receive delay = (Signal D − Signal E)− T3 (4)
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3.3. Time Classification Based on Machine Learning

The cause classification classified the typical time-increased wafer (90.9%) and the
material supply delay (7.7%). Unclassified time-increased wafers (1.4%) are characterized
by not easily clustering due to the low frequency of occurrence. To increase the frequency
of occurrence, we have expanded the data collection period and target equipment for
the time-increased wafer. The collected time-increased wafers have been classified by
generalizing and clustering. This classification method by machine learning was defined
as time classification. Most algorithms of cause classification are created through time
classification clustering. Hence, the order of the two-classification methods cannot be
clearly figured out. Time classification has the following flow: In the photolithography
EUV process, the process of a single wafer is divided into 400 detailed processes for 30 s.
The average duration of the detailed process is 75 milliseconds. Figure 3b shows the max
increased time (Xi) of the detailed process and the increased time (Yi) of the total process.
Groups G1, G2, and G3 have similar values of Xi and have the same process name tag.
In contrast, the values of Yi are generally different. Increased time of the total process
has a large dispersion due to the characteristic of the equipment. EUV equipment has
twin chucks. While the previous wafer exposes the pattern on one chuck, the next wafer
performs measurements on the other chuck, which is the previous step of exposure. Most
wafers have a longer exposure time than measurement time. Hence, it has a waiting time
after measurement and has different correction factors (Ti) due to the different process
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times of each layer. Normalizing is an essential step for clustering as a method to remove
the characteristics of the process layer (Equation (5)). Figure 3c shows the results of the
normalization of nine layers. Normalized data are clustered by the k-means algorithm,
which is one of the clustering methods.

F(Xi, Ti) = α (Xi + Ti) (5)

precision =
TP

TP + FP
, recall =

TP
TP + FN

, accuracy =
TP + TN

TP + FN + FP + TN
(6)

4. Results

The time analytics system has various types of input data. The event log of the equip-
ment, one of the most commonly used data, provides accurate information and detailed
time and provides approximately 200 pieces of information per wafer. Hence, the perfor-
mance of the model was evaluated as a wafer transport delay classification with relatively
little accuracy. Sensor signals only provide second-by-second resolution and on/off data.
Performance was evaluated via three items (precision, recall, and accuracy) based on the
confusion matrix (Equation (6)) (Table 1). Classification evaluation metrics using precision,
recall, and accuracy are used to measure the performance of the classification by the ma-
chine learning model [18,19]. The ratio of time-increased wafers is approximately 12% of
the total wafers, and the ratio of time-increased wafers due to transportation delay is less
than 1%. Since the number of targets is extremely small, we have limited the evaluation
target to time-increased wafers. The trueness/falseness was determined by analyzing the
equipment on the other side of the wafer transportation. The cross-validation test was
performed with the 5-fold dataset. Table 2 shows the results of the experiment. The result
showed more than 90% precision, 96% recall, and 99% accuracy. Fold 4 has a higher number
of false positives and a lower precision than other folds. As a result of equipment analysis,
we have confirmed that the sensor signal of this equipment is delayed.

Table 1. True positive (TP), false positive (FP), false negative (FN), and true negative (TN) are defined
based on the confusion matrix.

Actual

True False

Predict True TP FP

False FN TN

Table 2. Cross-validation test result.

Wafers TP FP FN TN Precision (%) Recall (%) Accuracy (%)

Fold 1 5120 452 22 11 4635 95.36 97.62 99.36

Fold 2 5034 320 18 9 4687 94.67 97.26 99.46

Fold 3 4825 351 12 8 4454 96.69 97.77 99.59

Fold 4 5244 414 42 10 4778 90.79 97.64 99.01

Fold 5 4151 337 16 13 3785 95.47 96.29 99.30

To verify the performance of cause classification, we have applied the system for
three months to six EUVs currently being mass-produced. Table 3 shows the ratio of
time-increased wafers for each piece of equipment and the classification ratio of each
classification model. The proportion of time-increased wafers in the total wafers has been
classified from 7.4% to 23.5%, and the cause classification has been classified at an average
of 98.6%. Table 4 shows the number of occurrences for each cause classified by cause
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classification. The distribution of classification provides a lot of information to engineers.
First, cause 7 has a high number of occurrences in all equipment. It shows the possibility
that it is a structural issue or an essential process. Second, most causes are equipment
dependent. Each cause has a large number of occurrences in a specific piece of equipment.
The distribution of causes shows both problems and solutions for each piece of equipment.
Finally, the time analytics model not only defines the number of occurrences and the
amount of time delay by cause in real-time, but also suggests the solution and amount of
productivity improvement.

Table 3. Ratio of time-increased wafers in total wafers and ratio of cause and time classification.

Equipment. 1 Equipment. 2 Equipment. 3 Equipment. 4 Equipment. 5 Equipment. 6

Time-increased wafer (%) 23.50 9.94 8.30 17.45 7.85 7.39

Cause classification
ratio (%) 98.65 97.89 98.16 98.72 99.32 99.07

Time classification
ratio (%) 1.35 2.11 1.84 1.28 0.68 0.93

Table 4. Cause classification result shows the frequency of occurrence by each cause.

Equipment. 1 Equipment. 2 Equipment. 3 Equipment. 4 Equipment. 5 Equipment. 6

Cause 1 3738 445 0 0 1 68

Cause 2 42 21 307 67 95 113

Cause 3 2029 1475 652 435 1113 824

Cause 4 53 20 87 477 18 20

Cause 5 771 1354 817 2744 785 756

Cause 6 7853 1697 150 3433 2 0

Cause 7 4989 6925 6507 6238 7856 7891

Cause 8 94 384 9 13 2546 2

Cause 9 116 117 123 633 77 35

Cause 10 245 79 2297 3878 43 231

Cause 11 184 743 24 3902 6 2175

Cause 12 0 13 1 0 0 1

Unclassified 276 286 206 282 86 114

Time-increased wafers (1.4%) that are not classified by the cause classification are
classified by time classification. Time classification classifies time-increased wafers through
normalizing and clustering processes. We found a system defect in the normalizing process
during the experiment. Figure 4a shows an example of clustering without a normalizing
process. The CT unstable DTRA, one of the causes, has been clustered after the target
equipment and data collection period was extended because the occurrence rate was
only 0.09%. Since it belongs to the wafer loading time, it was required to be normalized.
Nevertheless, clustering was completed without normalizing. We have been able to find
the solution in the definition of the wafer loading time (Equation (7)). To analyze all the
time of the equipment, the system defined the time between the wafer exposure as the
wafer loading time. Contrarily, there are other detailed processes between wafer loading
and exposure start. The detailed processes after the actual wafer loading are not affected
by the waiting time and do not require normalizing. Hence, the normalizing method has
been modified. Figure 4b,c are examples of a cause that required normalizing and could
classify clusters only after normalizing was completed. Three layers have similar max
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increased time of the detailed process (Xi) and a different increased time of total process
(Yi). The normalizing process of correcting the waiting time (Ti) for each layer is essential
in mass production. In the case of SOSI_fallback, the probability of occurrence is only
0.9%. In addition, approximately thirty process layers have different waiting times (Ti) in
mass production. Hence, the system recognizes the probability of occurrence of the cause
as 0.03% and cannot complete clustering. We have been able to generalize more data by
correcting the waiting time (Ti), which is characteristic of the equipment and process layer.
In the future, the classification ratio of time-increased wafers is expected to be higher than
the current 98.6%.

Wa f er loading time
= previous wa f er exposure end
−next wa f er exposure start

(7)
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Figure 4. (a) Shows clustering without normalization, and (b,c) show before and after normalization
of SOSI fallback, which is a specific process.

5. Conclusions

The time analytics model analyzes the increase in process time and classifies the
increased causes through normalizing and clustering based on a k-means algorithm. Classi-
fied clusters are made into a more accurate algorithm through analysis. Based on the model,
we classified the current increase in process time of EUV equipment as 98.6%. In addition,
we introduced a process to obtain correlations of unclassified data with large dispersion
using the algorithm and true/false as measures of performance based on the confusion
matrix. A normalization method that compensates for the waiting time by accounting for
the equipment structure and process layer characteristics has made it possible to classify the
various causes of the wafer loading time. This paper focuses on providing an accurate and
detailed classification of the time analytics model in real-time. In addition, the ultimate goal
is to continuously increase and maintain the efficiency of semiconductor manufacturing
through the system. Furthermore, research on new types of normalizing or clustering
methods will enhance the model and increase the probability of classification. The time
analytics model is an effective and sustainable model that combines knowledge technology
and machine learning methods, and the simplicity of classifying time will not be an obstacle
to using it in other types of processes and industries.
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