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Abstract: In this paper, the authors, based on a case study of the Polish healthcare IT system being
deployed to the cloud, show the possibilities for limiting the computing resources consumption of
rarely used services. The architecture of today’s developed application systems is often based on the
architectural style of microservices, where individual groups of services are deployed independently
of each other. This is also the case with the system under discussion. Most often, the nature of the
workload of each group of services is different, which creates some challenges but also provides
opportunities to make optimizations in the consumption of computing resources, thus lowering the
environmental footprint and at the same time gaining measurable financial benefits. Unlike other
scaling methods, such as those based on MDP and reinforcement learning in particular, which focus
on system load prediction, in this paper, the authors propose a reactive approach in which any, even
unpredictable, change in system load may result in a change (autoscaling) in the number of instances
of computing processes so as to adapt the system to the current demand for computing resources as
soon as possible. The authors’ main motivation for undertaking the study is to observe the growing
interest in implementing FaaS technology in systems deployed to production in many fields, but
with relatively little adoption in the healthcare field. Thus, as part of the research conducted here,
the authors propose a solution for infrequently used services enabling the so-called scale-to-zero
feature using the FaaS model implemented by the Fission tool. This solution is at the same time
compatible with the cloud-agnostic approach which in turn helps avoid so-called cloud computing
vendor lock-in. Using the example of the system in question, quantitative experimental results
showing the savings achieved are presented, proving the justification for this novel implementation
in the field of healthcare IT systems.

Keywords: medical IT services; FaaS; Fission; cloud computing; Kubernetes; scale-to-zero

1. Introduction

The financial outlay incurred in the healthcare sector is increasing year by year [1].
At the same time, a growing share of information technology supporting the healthcare
sector can be observed. IT, in a positive sense, is breaking into more and more areas of
healthcare [2], such as, but not limited to:

• ERP;
• Treatment decision support systems;
• Diagnostic imaging;
• Telemedicine and telecare;
• Bioinformatics;
• PACS/RIS systems;
• ADT systems;
• Clinical data repositories.
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Each of the above applications of computer technology requires computing power that
is expensive and not without impact on the surrounding environment. Not surprisingly,
more and more IT systems, including those supporting healthcare, are being located in
specialized data processing centers called computing clouds, which due to their high
specialization and large scale are able to lower the total costs of ownership and at the same
time lower the environmental footprint compared with similar IT systems being deployed to
local, scattered, proprietary server rooms owned by individual medical facilities. Reducing
the cost of cloud computing is possible mainly due to the so-called economies of scale and
optimization of computing to reduce the consumption of electricity which is the subject of
active research [3]. However, just implementing a system in cloud computing does not yet
guarantee the optimal use of the resources a given cloud provides. Therefore, it is important
to first develop an architecture for such a system suitable for taking advantage of all the
benefits that cloud computing can offer. The first step may be to ensure compliance with the
concept of cloud-native, the use of which brings a number of advantages such as flexible
deployment options, or less effort for the development and operation of a given system.
Following cloud-native architecture can also provide longer-term benefits in the form of the
ability to fine-tune a system deployment variant after it has already been initially deployed.
An example here could be easily changing the class of the S3 object data store or moving
some of the services implemented as server based on the FaaS (i.e., Function-as-a-Service)
model. A good case study from the ground of the Polish healthcare sector of such an
architecture system evolution could be the solution responsible for recording and storing
medical records, which was presented in a former article [4]. The services of this solution
are primarily responsible for the safe storage of metadata and relevant medical documents
using PIK HL7 CDA level 3 standard (https://www.cez.gov.pl/HL7POL-1.3.1.2/plcda-1.
3.1.2/plcda-html-1.3.1.2/plcda-html-1.3.1.2/index.html, accessed on 13 April 2022). The
described system not only enables the creating and storing of medical documents, but
due to the integration with the system P1 (https://www.cez.gov.pl/pl/main-page-en,
accessed on 13 April 2022) (which indexes medical documents), it indirectly enables them
to be found and downloaded. The nationwide P1 system plays a role based on the service
locator architectural pattern for the CDR, i.e., it redirects registered medical entities to the
appropriate CDR service. Following cloud-native architecture can also provide longer-term
benefits in the form of the ability to fine-tune a system deployment variant after it has
already been initially deployed. An example here could be changing the class of the S3
object data store or moving some of the services implemented as server-based to the FaaS
(i.e., Function-as-a-Service) model.

The system of services described in 2021 provided functionalities in the field of handling
medical records for small- and medium-sized clinics (hundreds) and hospitals (several). Cur-
rently (first half of 2022), the system is additionally used by several hospitals, where a hospital
information system (HIS) is a client of services that handle either storing the medical documen-
tation or records of medical events. Additionally, the functionality of handling questionnaires
dedicated to the patients or staff of healthcare units is being introduced.

Several months of monitoring the services’ ecosystem allows us to conclude that
their load distribution over time varies significantly. For example, in the case of the
service of storing and sharing documentation, round-the-clock traffic is generated, but
with greater intensity during daily working hours. In turn, when it comes to the medical
event handling service, it is mainly fed with data during the day, but the load of the entire
system does not result from accepting requests but from the continuous batch processing
of them (data validation and successful data registration in the remote, independent P1
system). Therefore, we can talk about a large, fairly constant load on the system handling a
common queue of medical events. On the other hand, the survey service is characterized
by an unpredictable load distribution. We may observe the so-called usage peaks but also
significant and frequent periods of a lack of utilization.

For these three different types of services, it was, therefore, necessary to develop a
technical model of operation and an appropriate technological stack that would ensure

https://www.cez.gov.pl/HL7POL-1.3.1.2/plcda-1.3.1.2/plcda-html-1.3.1.2/plcda-html-1.3.1.2/index.html
https://www.cez.gov.pl/HL7POL-1.3.1.2/plcda-1.3.1.2/plcda-html-1.3.1.2/plcda-html-1.3.1.2/index.html
https://www.cez.gov.pl/pl/main-page-en
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sufficient performance and, at the same time, would be economically optimal in terms of
resource usage.

The average variability of the load (in the time scale of an hour or tens of minutes) of
the medical documentation storing service allowed for the economically optimal control
of the offered computational capacity by standard horizontal autoscaling mechanisms.
The HPA (https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale,
accessed on 13 April 2022) mechanism available as part of the Kubernetes infrastructure
allows for the achievement of satisfactory results. The medical events service has a high,
24/7, very slow-varying workload (in the timescale of hours) that is fairly predictable
in general. This allows the use of a slow-varying time-scheduling CRON-like scaling
mechanism (https://varlogdiego.com/schedule-pods-to-start-and-stop-in-kubernetes-
by-date-and-time, accessed on 13 April 2022). Optionally, it may be supported by the
aforementioned HPA mechanism to handle possible temporary overloads.

However, the time distribution of the utilization of the survey service is very un-
predictable. The load of the service is occasional, although some survey campaigns may
appear, which can generate a demand for increased performance. Therefore, it would
be useful to apply scaling mechanisms with a minimum number of instances of 0 (the
so-called scale-to-zero mechanism). The use case scenario of this service fits perfectly with
the FaaS concepts (i.e., scaling functions from zero to large values, with a low complexity of
functions). There are lots of such elements in the system in question which are compliant
with FaaS specificity, both when it comes to infrastructure (authentication and authoriza-
tion) and domain parts (defining questionnaires and submitting questionnaires). As the
services composing the described system are largely hosted by the Kubernetes platform
(specifically, by GKE (https://cloud.google.com/kubernetes-engine, accessed on 13 April
2022)—a managed orchestrator of containers with microservices) provided by a cloud ser-
vice provider (Google Cloud Platform), the functionalities to adapt to the FaaS processing
model should be technically compatible and integrated with K8s.

To sum up the problem statement, in this paper, the authors try to propose the new
system architecture for some occasionally used medical services to achieve a significant
reduction in cloud infrastructure resource consumption in a way to stay cloud-agnostic.
This could be fulfilled by a transition of services deployed as plain K8s pods to the FaaS
model but still hosted by the same Kubernetes environment, which was selected as the
execution environment for all medical cloud services of the system in question. Further, the
article justifies the selection of the concrete FaaS environment/framework, describes the
whole architecture of the solution, presents the assumptions for implementation (recom-
mendations for the technology stack) and shows the experimental results of the efficiency
of the proposed solution.

2. Related Work

For some time now, we have been witnessing an industrial revolution driven by the
development of technology. The healthcare field is part of this industry and its development
is not at all lagging behind. Based on successive paradigms, there is now talk of Industry
4.0 and 5.0 [5], and scientific research on the development of healthcare in these areas is
confirmed by numerous publications [6].

Among the many developments in IT, technologies such as IoT, blockchain, AI and
cloud computing have become key drivers in recent years. This is also happening in the
healthcare field [7–9].

It has been less than eight years since AWS—one of the biggest players in cloud
computing—publicly released the first FaaS product. Since then, the popularity of this
model of conducting computations has gained many followers, found many practical
applications and become the subject of research conducted by many researchers. Quite
surprisingly, however, it seems that relatively few practical applications or research papers
are related to the healthcare sector, even broadly defined.

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
https://varlogdiego.com/schedule-pods-to-start-and-stop-in-kubernetes-by-date-and-time
https://varlogdiego.com/schedule-pods-to-start-and-stop-in-kubernetes-by-date-and-time
https://cloud.google.com/kubernetes-engine
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Serverless computing applications in the healthcare sector can be roughly divided into
several application areas. A strong group here is bioinformatics computing. For example,
one of the biggest challenges in the field of omics computing is the data sequencing
process itself, which is computationally very demanding. Executing such computations in
a standard model requires the reservation of computing power and the self-management
of virtual servers. However, research shows [10] that, using AWS Lambda, it is possible
to conduct the all-against-all pairwise comparison among all unique human proteins
in approximately 2 min, at a cost of less than USD 1, while performing the same task
on a typical laptop computer would take more than 8 h. An interesting application of
serverless computing is shown in paper [11], where building a high-quality annotation
corpus (MedTator) for biomedical and clinical research applications is described. Due to
involving a serverless approach, the authors develop the application with an intuitive
and interactive user interface that focuses on the core steps related to corpus annotation,
such as document annotation, corpus summarization, annotation export and annotation
adjudication. In other studies [12], the authors identify bottlenecks that stand in the way of
efficient omics data processing. In their view, it seems to become problematic to store data,
preprocess them or integrate data from multiple sources. To streamline the computational
process, they propose the use of the Amazon Serverless Lambda service and discuss the
benefits but also the risks of doing so. More information on applications of the FaaS model
for bioinformatics computing can be found in a dedicated literature review [13,14].

Another area of application in serverless computing, characterized by the possibility
of batch data processing, is the analysis of medical data, in particular imaging diagnostics.
Based on it, the authors of [15] present a serverless model for highly parallel file processing
applications. They also describe a middleware implementation that supports the execution
of customized execution environments based on Docker images on AWS Lambda. Their
results prove that the combination of a high-level programming model with the scalable
capabilities of AWS Lambda makes it easy for end-users to efficiently exploit serverless
computing for the optimized and cost-effective execution of loosely coupled tasks. Other
research [16] shows the concept of the serverless edge data analytics platform and appli-
cation model and discuss its main design requirements and challenges, based on real-life
healthcare use case scenarios. The authors hope that the proposed model will switch the
current view of centralized premise and cloud real-time analytics into more distributed,
edge, ubiquitous, real-time analytics, in which the data’s value will not be lost at the edge
and all computing layers will be used evenly.

Since the process of diagnosing patients is primarily data-driven, it is the issue of
medical data storage that makes up a large share of the overall scientific interest in the
health sector. For example, based on a case study of storage services to manage medical
imagery, the authors of [17] describe research which results in the development of a
storage mesh architecture to create and operate reliable, configurable and flexible serverless
storage services for heterogeneous infrastructures. The topic of the distributed file system
is also taken up by the authors of the article [18] which proposes a robust, available,
scalable and serverless solution structure for storing large amounts of data in the medical
field. Big data sets also pose challenges related to their efficient and effective searching.
Here, too, researchers [19] refer to the concept of serverless computing. They develop the
ScanMedicine module which is a new searching system dedicated to providing healthcare
professionals, patients and researchers with easy access to the intelligence underpinning
health technology innovations. Once again, the serverless part of the architecture assumes
the use of AWS Lambda services.

Proposals for serverless solutions can also be found in research on telemedicine-like
solutions. An example of this is a chatbot developed in India that helps people potentially
suffering from COVID-19 to find a vacancy in the hospital. However, for its development,
the authors of [20] do not use the classic FaaS approach, in which they could imperatively
program logic, but use a number of services from the Microsoft cloud, such as Power Virtual
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Agent or Power Automate. Another chatbot proposal [21], however, also created to limit the
spread of COVID-19, uses a more generic FaaS solution, namely Firebase Cloud Functions.

Serverless computing is also applicable to more common medical transactional appli-
cations. A good example is the proposed system in [22] to support the delivery of drugs to
Indian villages. Although its architecture is documented only briefly, the authors declare
the implementation of backend services using AWS Lambda and Amazon API Gateway.
Serverless computing can be of particular interest in event-driven data processing. This is
undoubtedly the case in WBANS class systems (wireless body area networks). In their pub-
lication [23], the authors propose a system architecture for such applications, the backend
part of which is located in the computing cloud. They compare the services that would be
appropriate for the development of such a system from both the AWS and Azure clouds
and ultimately decide on the first one using, inter alia, the AWS Lambda service. A solution
also belonging to the WBAN class, implemented as a mobile application for monitoring
the heart rate, presented in another paper [24], uses Google Cloud services, in particular
Firebase Cloud Functions.

Last but not least, serverless computing can be applied for deep learning issues,
which was presented in the example of medical services for patient-specific arrhythmia
detection [25]. According to the authors, using AWS Lambda makes the serverless setup
orders of magnitude cheaper and more scalable than a dedicated host running 24/7.

As can be seen from the above review of the state of research on the use of serverless
computing in the field of healthcare, most applications concern cloud functions, which
means they use services provided by a specific cloud provider (most often it is AWS
Lambda). The authors of this paper decide to take a slightly different direction, namely to
use a solution based on the Kubernetes cluster to be more in line with the cloud-agnostic
approach. This is to avoid so-called vendor lock-in to a specific computing cloud and thus
enable its easy implementation at various cloud computing providers, without the need for
major changes in the proposed architecture of the solution.

3. Materials and Methods

The FaaS-based computing solutions for Kubernetes have been developed for many
years. The most popular ones are Fission, Kubeless and Riff (based on Knative) [26], among
other well-known products such as BlueNimble, FaaS, Fn, Funktion, Getsalt, IronFunc-
ton, Kubeless, OpenWhisk, Nuclio and RainBond, and some of them have lived to see
comparative analysis in the scholarly literature [27–31].

Among the solutions mentioned above, the Fission platform was selected. The reasons
for this choice are solution maturity and production readiness, detailed documentation,
ease of implementation and, above all, a high level of compliance with the core Kuber-
netes mechanisms.

Fission, for serving FaaS features, creates objects registered in the Kubernetes environ-
ment (so-called custom resource definitions, CRDs) and uses native Kubernetes resources
as well. Although it provides a command line tool for managing its own environment
(namely Fission CLI), it is possible and even more convenient to configure and manage the
entire Fission using the standard Kubernetes API (e.g., using only a basic command line
tool such as kubectl).

3.1. Fission—FaaS for Kubernetes

As has been mentioned, Fission is a Kubernetes-based framework, which enables
the implementation of computing in line with FaaS concepts but on the basis of the K8s
cluster, thus using all basic Kubernetes building blocks like Image, Container, Pod, Service,
Deployment, HPA, CRD, etc.

The operating system, runtime libraries and domain modules of the given service are
stored together as a so-called Docker Image. A Container is the entity hosting the processes
being executed and can be instantiated from a Docker Image.
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Kubernetes allows running so-called Pods which are the instances of at least one
Container (and most commonly of exactly one Container). Pods are the smallest processing
units being orchestrated by Kubernetes. To make it easier to handle the scaling of computa-
tion, Pods of the same type are grouped, and these groups are managed by Deployments.
Services provided by running Pods can be exposed (internally in the Kubernetes cluster
or externally) by Kubernetes Service resources, which define some network properties.
The number of running Pods can be constant or variable, and in the latter case it can be
controlled by Kubernetes resources, i.e., HPA—Horizontal Pod Autoscaler, which dynami-
cally adjusts the number of Pods depending on the current load (measured by mean CPU
utilization metric in pods).

To enable functional extensibility, Kubernetes allows one to define his/her own custom
kinds of resources (so-called CRD—Custom Resource De f inition). Although CRDs can
extend the functionality of the whole environment, they are still natively managed by
Kubernetes. That means that Kubernetes controls their lifecycles and makes them available
through standard management mechanisms (common HTTP RESTful API and CLI tools).

3.2. Fission Architecture

Fission is based on a few custom resource definitions, and thus it is well integrated
with Kubernetes. The main components of Fission are: the Router, HTTP Trigger, Message
Queue Trigger, Timer, Controller, Executor, Builder Manager, Builder Pod and StorageSvr.
The Controller is responsible for creating Fission CRD objects. The functions available
through Fission can be invoked by the Router, Message Queue Trigger and Timer as a result
of incoming HTTP requests, messages delivered to a queue or a topic occurrence of a
time event (generated by a Kubernetes Cron job). Fission can work in two specific modes
(https://fission.io/docs/architecture/executor/, accessed on 13 April 2022):

• PoolManager;
• NewDeployment.

When operating in PoolManager mode, functions are available as archive packages
of source code (developed in Java, JavaScript, Go, etc.). The Builder Manager component
uses the Builder Pod to fetch file archives from StorageSvr and builds executable artifacts
and uploads them to a shared volume.

In response to some requests coming from the Router, the Executor should provide
the address of the Function (Figure 1) which is exposed by some Pod.

Figure 1. Sequence Diagram: Router to HTTP trigger and Router to Executor.

Those Pods may be already instantiated/available (a warm start of the Function) or
not (a cold start of the Function).

The PoolManager is responsible for holding a few so-called Generic Pods, whereas the
Executor has to provide a Function to the Router. This process performed by the Executor

https://fission.io/docs/architecture/executor/
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is named the specialization of one of the Generic Pods. The Executor injects a proper package
(the one previously prepared by the Builder Pod) into a running Pod and exposes it to
the Router.

This mode (i.e., Pool Manager mode) allows having one poll of Generic Pods for the
usage for any kind of Function, which is a big advantage. However, Pods should stay
available all the time (causing a significant utilization of memory), and (what is more
important) the process of Pod specialization takes a significant time (which may result in
unacceptable timeouts for clients).

Those above-mentioned weaknesses can be overcome by using the NewDeployment
mode. Here, the Executor spins up a dedicated Pod (or Pods) for the Function required
by the Router. The Executor creates/applies a Deployment, Pod, Service and HPA for a
needed Function (Figure 2). The number of Pods depends on HPA settings and can be
adapted to a current load of Function calls.

Figure 2. Cooperation Diagram of NewDeployment mode of Executor—scaling out from zero Pods.

3.3. Using Fission in Cloud Healthcare Services

Pods may be scaled from the number of 0, which is especially important from the
cost perspective. Because there is no Pod specialization (like in PoolManager mode), this
mode requires preparing a separate Docker Image with the appropriate Function injected.
For NewDeployment mode, Pod scaling out from 1 is fast (even faster than scaling out for
PoolManager mode). However, Pod scaling out from zero (the instantiation of the first
dedicated Pod from the dedicated Docker Image) is efficiently worse than Pod specialization
(in PoolManager mode). To mitigate this weakness, a Docker Image cache mechanism was
implemented. Due to applying the kube-fleged (https://github.com/senthilrch/kube-
fledged, accessed on 13 April 2022) module, the images originally stored only in a remote
Docker Image repository were also cached inside a Kubernetes cluster (on the persistent
disks of the cluster nodes). That allowed for shortening the time of instantiating a new
dedicated Pod for the required Function from the cached image significantly.

The functionalities of some parts of the system were refactored and adapted to work in
line with the FaaS model. Previously, the modules were prepared as classic microservices
developed for a standard JVM using Java and the spring-boot (https://spring.io/projects/

https://github.com/senthilrch/kube-fledged
https://github.com/senthilrch/kube-fledged
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
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spring-boot, accessed on 13 April 2022) framework or using the Kotlin programming language
and the Ktor (https://ktor.io, accessed on 13 April 2022) and Koin frameworks (https://insert-
koin.io/, accessed on 13 April 2022).

Taking into account the requirement of lightness for Function processing (in a sense of
desired low memory utilization) we decided to use a more memory-efficient technology
stack, i.e., to use Graal VM (https://www.graalvm.org, accessed on 13 April 2022) (in-
stead of a standard Java virtual machine) and the Qarkus framework (https://quarkus.io,
accessed on 13 April 2022) (instead of spring-boot or Ktor).

The authentication and authorization services (important parts of the ACS—access
control system [32]) and patient surveys of cloud healthcare services implemented for the
FaaS processing model were deployed using Fission. These modules were redeveloped in
the above-mentioned new technology stack (Graal VM + Quarkus).

4. Results

To confirm the advantages of applying the Fission solution to cloud healthcare services,
experiments of two kinds were conducted:

(A) The execution of a single HTTP request (with a long time interval between subsequent
executions);

(B) The application of a continuous variable load profile.

Both load profiles were used for testing the functionalities of authentication, autho-
rization, survey defining and survey submitting.

The results of experiment (A) allow for characterizing the behavior of the system
variants (classic and FaaS-based) of the system for scaling out from 0. The results of
experiment (B) show the acting of the autoscaling mechanism for the classic variant and
FaaS-based one of the system.

4.1. Results For Single-Request Experiments

The load profile (A) was generated by executing an HTTP request using the Post-
man (https://www.postman.com/use-cases/api-testing-automation/, accessed on 17 May
2022) tool. To describe the behavior of the system for such a test load, the authentication
functionality was considered. The criteria, such as the mean time of request executions
and the capacity of RAM used by a Pod, were taken into account. The experimental results
for the authentication functionality are presented in Table 1. They allow for comparing
the classic Kubernetes solution to the new one based on Fission with respect to the times
of execution.

Table 1. Experimental results for authentication functionality—duration of request executions.

Classic ACS FaaS ACS FaaS ACS FaaS ACS
No Microservice Warm Start Cold Start without Cold Start with

[ms] [ms] Image in Cache [ms] Cached Image [ms]

1 52 57 7360 3140
2 48 56 3150 4160
3 50 60 6180 3150
4 51 52 3170 4150
5 50 58 4160 3240
6 53 55 12,360 4180
7 51 65 11,250 4150
8 55 54 3540 3170
9 50 56 4540 4160

10 54 53 12,740 3170

mean 51.4 56.6 6845 3665
std 2.12 3.78 3885.61 518.31

https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
https://ktor.io
https://insert-koin.io/
https://insert-koin.io/
https://www.graalvm.org
https://quarkus.io
https://www.postman.com/use-cases/api-testing-automation/
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Applying Fission to cloud healthcare services allowed us to obtain the solution with
improvements in many areas. First, the scale-out from 0 feature was successfully imple-
mented, and it took only a few seconds for the cold start (mean 3.78 s) due to applying the
image caching mechanism. Another benefit is the significant decrease in memory consump-
tion. The volume of RAM used by standard Pods was 320 MB, while the dedicated Function
Pods (Fission variant) consumed only 19.4 MB. In addition, the time of the warm start of
service deployed as a function (56.6 ms) was very close in comparison to the response time
of plain Pods (51.4 ms). The Student’s t-test was used to confirm that there is no statistically
significant difference between the means for the assumed confidence level of 0.95. All of
that was achieved with compliance to Kubernetes technology and with the preservation of
cloud provider agnosticism.

It is worth mentioning that the mean time of the cold start of FaaS ACS provided from
the cached image was 6.8 s and was significantly lower than the mean time of instantiating
the classic ACS microservice, which was 61 s.

Similar beneficial conclusions regarding execution times and memory consumption
were obtained due to applying the FaaS approach based on Fission in implementing other
aforementioned functionalities, i.e., authorization and defining/submitting patient surveys.

4.2. Results For Experiments with Continuous and Variable Load Profile

In experiment (B), the following load profile (trapezoid shape) was used:

NoR(t) =



0 0 ≤ t < t1
NoRmax

t2−t1
(t − t1) t1 ≤ t < t2

NoRmax t2 ≤ t < t3
NoRmax

t3−t4
(t − t4) t3 ≤ t < t4

0 t4 ≤ t ≤ t5

describing the dependency between the number of requests per second (NoR) and time.
To generate the defined load profile, the Gatling (https://gatling.io/, accessed on 17 May
2022) tool was applied. A sample generated load for the following parameter values—
NoRmax = 50 rps, t1 = 15 min, t2 = t1+ 10 min, t3 = t2+ 10 min, t4 = t3+ 10 min and
t5 = t4+ 15 min = 1 h—is presented in Figure 3.

Figure 3. Sample trapezoid load profile—the course of the number of requests per minute.

The trapezoid test profile was used for load testing either classic Pods or FaaS ones.
In the described solution, a classic ACS Pod has a value of RAM limit set to 1 GB. A FaaS
ACS Pod has a value of RAM limit set to 64 MB. The classic solution is not scaled-in to 0.
Moreover, it supports a high availability property (fault tolerance) so there are at least two
Pods of ASC in a namespace. In the current version of the cloud healthcare service, 10 was
taken (inherited assumption) as a value of the maximum number of classic Pods that can be
instantiated by HPA during autoscaling. That means that the number of classic Pods may
change from 2 to 10. That also means that the maximum for the sum of the RAM limits
of running classic Pods is equal to 10 × 1 GB = 10 GB. Maintaining the assumption that
the maximum memory limit for classic ACS Pods is 10 GB RAM, the maximum (for HPA)
number of FaaS ASC Pods is 10 GB / 64 MB = 160.

https://gatling.io/
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The classic and FaaS solutions were compared using some quality indicator (QI) based
on a total size of allocated memory measured as a sum of the limits of instantiated Pods. QI
is an integrated sum of memory limits (SML) for all instantiated Pods along the time of the
experiment divided by the time of the whole experiment (Tmax):

QI =
1

Tmax

∫ Tmax

0
SML(t) dt

A similar quality indicator for estimating the cost of a system (but based on the integration
of the number of processing units such as virtual machines or Pods) is used in [33].

The experiment consists of a series of one-hour loads defined by the described trape-
zoid test profile (NoRmax = 50 rps , t5 = 1 h).

Tmax was assumed to be 10 h, which means 10 times the usage of the one-hour load
test profile.

In the following part of this subsection, the results of the load testing of authorization
functionality based on the introduced quality indicator are presented.

The proposed method of evaluation used some constraints according to the assumed
service level agreement (SLA). For the considered system, the SLA was based on a high
order of quantile for the times of request execution. In accordance with the business clients
of cloud healthcare services, it was assumed that the 95th-order quantile of execution times
for an authentication request should be less than 200 ms. The resulting time statistics are
presented in Figure 4a (FaaS solution) and Figure 4b (classic one).

Figure 4. Statistics for times of request executions for FaaS solution (a) and classic one (b).

In addition, the distributions of the times of an execution are shown as histograms for
both solutions in Figure 5a (FaaS solution) and Figure 5b (classic one).

Figure 5. Histograms describing distributions of times of request executions (response times) for
FaaS solution (a) and classic one (b).

We can confirm satisfying the mentioned SLA criterion by both solutions—both values
of 95th columns are less than 200 ms in Figure 4.

Statistics such as means, medians and other quantiles are smaller for FaaS. In addition,
the dispersion of the values of times (measured by standard deviation—Figure 4—or by
the length of the support of the domain of histograms—Figure 5) is smaller for FaaS. All
this indicates certain advantages of the FaaS solution over the classic one.
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Empirically, we found the throughput limit defined as the maximum value of Cnt/s
under two assumed constraints (the value of the 95th quantile of response times should
be less than or equal to 200 ms and the fraction of successful responses should be equal
to or greater than 95). For this purpose, we used the load range defined by the values of
NoRmax = 50, 60, 100 reqs/s. The resulting throughput limit for the classic version was
20 requests per second. For the considered load range, the two mentioned limits were
always met for the FaaS variant (the limit was not reached). This makes the FaaS variant
superior in terms of throughput limit.

Further observations about the courses of memory allocation are particularly impor-
tant in terms of cost.

Sample courses of SML(t) during a one-hour interval for the FaaS solution and the
classic one are presented in Figures 6 and 7. All courses were rendered using the user
interface Grafana’s (https://grafana.com, accessed on 17 May 2022) monitoring tool, which
visualizes the monitoring data collected by Prometheus (https://prometheus.io, accessed
on 17 May 2022).

Figure 6. Sample course of sum of memory limits (SML) for FaaS solution during the one-hour experiment.

Figure 7. Sample course of sum of memory limits (SML) for classic solution during the one-hour experiment.

According to the knowledge about the memory limits (classic—1 GB ; FaaS—64 MB)
we can observe:

• When the system is not under load (for example, when 0 < t < t1): two Pods are
instantiated by the classic solution (2 GB of SML / 1 GB of memory limit = two
instances);

https://grafana.com
https://prometheus.io
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• When the system is not under load: zero Pods are instantiated by the FaaS solution;
• When the system is under maximal load (for example, when t2 < t < t3): SML equals

10 GB for the classic solution;
• When the system is under maximal load: 10 Pods are instantiated by the classic

solution (10 GB of SML/ 1 GB of limit = 10 instances). HPA is in a saturated state—the
maximum number of Pods for the classic solution is achieved,

• When the system is under maximal load: SML equals only 704 MB for the FaaS solu-
tion;

• When the system is under maximal load: 11 Pods are instantiated by the FaaS solution
(704 MB of SML / 64 MB of limit = 11 instances), which is a significantly smaller value
than 160—the maximum number of Pods for HPA for the FaaS solution.

The final cost evaluation was based on the values of the quality indicator (OI) for the
experiment lasting Tmax = 10 h. The QI for the classic solution equaled 5944.3 MB. The QI
for the FaaS solution equaled 264.9 MB which is a significant improvement (QI 22.5 times
smaller) compared to the QI of the classic solution.

5. Conclusions

For many years now, cloud computing has filled the bulk of the computing infrastructure
landscape for the public, research and commercial sectors. The advantages of this type of
computing create immeasurable opportunities for the scaling, securing and instant deployment
of services and thus make computing more common, cost-effective and less taxing on the envi-
ronment. However, the mere fact of locating computing in the cloud does not yet guarantee the
achievement of cost optimization. Cloud computing offers a whole range of services dedicated
to different applications and different natures of workloads. Therefore, when deploying their
own services, one should consider their load profile and adjust the system architecture and the
use of cloud computing services of the appropriate type to it.

In the case of the case study described in this paper, the healthcare IT system consisted
of a number of domain-specific services originally implemented in a homogeneous manner
as plain pods deployed to the managed K8s cluster. However, we found that the production
workload profiles of the various service groups differed greatly, making the use of cluster
resources suboptimal. Particularly problematic was the medical survey service, which was
not used at all most of the time, but there were unpredictable moments of increasing peaks
of requests.

Ultimately, we decided to redevelop the cloud-based medical services in question
using the Fission tool, and we noted a significant decrease in the RAM requirements of
this part of the system. This allowed a more general finding to be drawn that there are
services deployed to production with a specific workload profile for which the use of a
FaaS approach can bring a reduction in the need for the cloud system infrastructure.

Among the other findings corroborated by the research conducted within the scope of
this article, there are some interesting and particularly practically useful insights.

It is important to note that the resulting solution, which provides a lower consumption
of computing resources, especially RAM, is at the same time a cloud-agnostic solution,
which means that its use does not force the use of services specific to a particular cloud
provider. This leads us to think about the reasonableness of the existence of FaaS-class
solutions provided natively from the level of individual clouds (so-called cloud functions).
Since a double benefit was achieved by implementing the Fission platform, can other
benefits be achieved by relying on cloud functions (e.g., AWS Lambda)? It turns out that
the creators of individual cloud functions prioritize ease of use in their solutions, while the
implementation of the described functionalities based on Fission was not at all trivial either
in terms of configuration or implementation, so it is precisely this type of additional cost
that one must expect if one wants to remain independent of a specific cloud provider.

Another interesting observation is that it is sufficient to have a K8s cluster to implement
the solution in question. It is worth noting that one of the most popular directions of cluster
implementation is the building of the entire infrastructure of enterprises under the control of
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a single control plane—that is, within one logical K8s cluster. Having such an aggregation of
computing resources (in the form of combining all computing nodes of the cluster into a single
ecosystem) and then partitioning them vertically (e.g., different business areas) and horizontally
(e.g., development, test, stage and production environments) allows for particularly efficient
utilization. Implementing FaaS solutions based on a K8s cluster setup in such a model seems
particularly reasonable.

Finally, it is worth noting that, despite achieving the highly desirable scale-down-to-
zero option (since it practically does not allocate computing resources when the services in
question cease to be used in a given period), it is possible to switch the services deployed
based on Fission to an operating model based on classic Pods K8s with relatively little effort
when their load profile becomes more regular and continuous.

The functional groups selected for implementation in the FaaS model in this case
study were so sporadically used that the advantages of moving them to the FaaS model
are indisputable. However, in the general case, it would be valuable to develop a general
decision framework, taking into account the consumption profile of RAM, other comput-
ing resources and workload, to support the selection of individual microservices worth
transforming to the FaaS model. This could be the subject of future authors’ research.
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