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Abstract: Intraoperative neurophysiological monitoring (IONM) is being applied to a wide range
of surgical fields as a diagnostic tool to protect patients from neural injuries that may occur during
surgery. However, several contributing factors complicate the interpretation of IONM, and it is labor-
and training-intensive. Meanwhile, machine learning (ML)-based medical research has been growing
rapidly, and many studies on the clinical application of ML algorithms have been published in recent
years. Despite this, the application of ML to IONM remains limited. Major challenges in applying
ML to IONM include the presence of non-surgical contributing factors, ambiguity in the definition of
false-positive cases, and their inter-rater variability. Nevertheless, we believe that the application
of ML enables objective and reliable IONM, while overcoming the aforementioned problems that
experts may encounter. Large-scale, standardized studies and technical considerations are required
to overcome certain obstacles to the use of ML in IONM in the future.

Keywords: intraoperative neurophysiological monitoring; artificial intelligence; machine learning;
deep learning

1. Introduction

Intraoperative neurophysiological monitoring (IONM) is an essential diagnostic tool
for the improvement of patient safety via detection of neurological changes during surgery.
IONM is currently being applied in various types of surgery, such as open cranial surgery,
spinal decompression, head and neck surgery, and peripheral nerve surgery [1–3]. The
most prominent advantage of IONM is its use to confirm functional integrity in real
time during surgery. When a warning sign occurs, an immediate rescue intervention
can be performed in the operating room, minimizing neural injuries and enabling rapid
postoperative treatment [4].

However, despite its advantages, some limitations exist in interpreting IONM. In
particular, several factors complicate the real-time interpretation of multimodal signals
during IONM. In interpreting neurophysiological changes related to surgical factors, a
multidisciplinary approach between surgeons and physiatrists is essential, and substantial
information sharing between them is vital for accurate interpretation [5]. Further, non-
surgical factors, such as anesthesia, the general condition of the patient, and mechanical
defects, have to be considered simultaneously with surgical factors [6]. Another hurdle in
interpreting IONM is that experts may interpret the same results differently [7]. Therefore,
the performance and interpretation of IONM require a substantial level of training to
minimize inter-rater variability. Lastly, to respond sensitively to neural deterioration that
occurs during surgery, the expert must maintain high concentration even during long
operations. Consequently, IONM is a complicated, labor-intensive, and expensive process
(Figure 1) [8].
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Figure 1. Schematic illustration of intraoperative neurophysiological monitoring (IONM). A multi-
disciplinary approach between the surgeon, physiatrist, and anesthesiologist is necessary throughout
the process. Several confounding factors, such as surgical, anesthesiologic, and mechanical factors, as
well as the patient’s condition and inter-rater variability complicate the interpretation of IONM.

The use of machine learning (ML) in medical research and clinical practice is rapidly
expanding [9]. In particular, ML is increasingly being used for diagnosis and progno-
sis [10,11], as well as for disease classification, replacing existing methods [10]. Moreover,
ML can execute proxy decision-making at the level of medical experts [12] and can readily
and efficiently handle a large number of samples and variables [13]. Artificial intelligence
(AI) models have the additional benefit of continuously improving themselves by learning
from additional data and by applying more advanced techniques [14]. Although their
performance depends on data quality and learning algorithms, in general, ML models have
yielded promising results in clinical medicine [10,15].

In this narrative review, we focus on ML and its application in the field of IONM. We
first summarize studies in which ML algorithms have been applied to IONM and then
present a comprehensive review of ML algorithms. Furthermore, we discuss the limitations
that should be considered in the application of ML to IONM. Finally, we conclude by
pointing out the scope for future research to enable ML-based technologies to support
human experts and cover the shortcomings of IONM.

2. Literature Review
2.1. Search Protocol

We searched articles from 2016 to 2022 with the following search terms: (“machine
learning” OR “deep learning” OR “artificial intelligence”) AND (“intraoperative neuromon-
itoring” OR “intraoperative neurophysiological monitoring”). We searched the literature
from the Cochrane Library, MEDLINE, and EMBASE and conducted a hand search of suit-
able manuscripts. We selected only original articles with human participants. In addition,
we only included articles written in English. Finally, we excluded imaging or morphological
research and anesthetic research (Figure 2).
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Figure 2. Flow chart of article selection.

2.2. Related Studies

Table 1 summarizes studies on the application of ML algorithms to IONM.
Jamaludin et al. [16] presented k-nearest neighbors (KNN)- and bagged trees-based

ML models to predict positive outcomes after lumbar surgeries in 55 patients. The positive
outcome was defined as a motor improvement after the surgery. They compared ML-based
prediction methods with pre-existing criteria (50% of transcranial motor evoked potential
improvement). In their work, the ML-based method showed a relatively higher sensitivity
(87.5%) but lower specificity (33.3%), which was inferior to the pre-existing criteria for
predicting postoperative motor improvement. Consequently, they suggested that their
proposed method had more room to advance with a large-scale study.

Agaronnik et al. [17] developed a deep learning-based automated detection system
for neuromonitoring documentation. They first identified operative reports containing
neuromonitoring documentation by rule-based natural language processing. Subsequently,
they applied a deep learning-based natural language processing model to identify events
indicating a change in status, difficulty in establishing baseline signals, and a stable course,
from the reports of 993 patients who underwent spinal surgery. For detection of a change
in status, they achieved an area under the receiver operating characteristic curve (AUROC)
of 1.0 and an F1 score of 0.80 (discussed further below). Their results suggest that deep
learning-based natural language processing models can identify medical documentation of
IONM from a large volume of reports in a validated and timely manner.

Kortus et al. [18] predicted electromyography (EMG) signal characteristics during
thyroid surgery in 34 patients. They utilized a Bayesian convolutional neural network
(CNN) approach to simultaneously classify action potentials and assess signal characteris-
tics. The extended model with two hidden layers with sigmoid activation yielded the best
predictive value, with an accuracy of 97.6%. By applying a Bayesian deep learning model,
they estimated the uncertainty of the model output, which improved the interpretability
of the prediction. They demonstrated that the deep learning model was suited for robust
interpretation of electrophysiological signals.
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Zha et al. [19] applied a deep learning model to free-running EMG for recurrent
laryngeal nerve monitoring during thyroid surgery. They classified the EMG according to
morphology and presented a hybrid model that combined a CNN approach with a long
short-term memory (LSTM) network. Their proposed CNN-LSTM hybrid model yielded an
accuracy of 89.54% and a sensitivity of 94.23%. Their results demonstrated the possibility of
reducing inter-rater variability in the reading of free-running EMGs by using deep learning
models, reducing the interpretive burden on the expert.

Verdonck et al. [20] presented a model for the interpretation of outliers via train-of-four
(TOF) measurements during intraoperative acceleromyographic neuromuscular monitoring.
They used a cost-sensitive logistic regression model to analyze 533 TOF measurements
from 35 patients. In terms of the predictive power of this model, the AUROC was 0.91
(95% confidence interval: 0.72–0.97) and the F1 score was 0.86 (0.48–0.97). Their model
proved outstanding for binary classification. Their study is important since it showed
that the model could analyze TOF measurements to automatically identify outliers during
intraoperative accelero-myographic neuromuscular monitoring.

Qiao et al. [21] conducted visual evoked potential (VEP) monitoring in 76 patients
who underwent surgical decompression for sellar region tumors. They presented a model
that could classify amplitude changes in VEPs during surgery, by combining CNN and
recurrent neural network (RNN) algorithms. The target class was divided into three groups:
increased VEP amplitude (>25% increase), decreased VEP amplitude (>25% decrease), and
no change in VEP amplitude. In this study, the overall accuracy of multiclass classification
was 87.4% (84.2–90.1%). The sensitivities for classification of no change in VEP, increasing
VEP, and decreasing VEP were 92.6%, 78.9%, and 83.7%, respectively, and their specificities
were 80.5%, 93.3%, and 100.0%, respectively.

Somatosensory evoked potential (SEP) is a modality that acts as the framework of
intraoperative spinal surgery monitoring [4]. Fan et al. [22] utilized least squares and
multi-support vector regression models on 15 patients undergoing spinal surgery to intra-
operatively interpret the SEP results. They defined the warning criteria as an amplitude
reduction of ≥50% or a latency delay of ≥10%. Target outcomes were classified as suc-
cessful, false-positive, or trauma cases. Their intelligent decision system lowered the false
warning rate compared with their conventional method and enabled more accurate detec-
tion of spinal cord trauma. The multi-support vector regression model performed better
than the least squared support vector regression model.
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Table 1. The application of machine learning in the field of intraoperative neurophysiological monitoring.

Author
(Year) Samples IONM Modality Models Target Outcome Summary of Results

Jamaludin et al. [16] (2022) 55 patients who underwent
lumbar surgeries MEP KNN and Bagged trees Positive outcome

(motor improvement)

The proposed method was
inferior to the existing criteria.

- Sensitivity: 87.5%
- Specificity: 33.3%

Agaronnik et al. [17] (2022) 993 patients who underwent
spinal surgery MEP and SEP

Deep learning-based natural
language processing

Change in status
- AUROC: 1.00
- F1 score: 0.80

Difficulty establishing
baseline

- AUROC: 0.97
- F1 score: 0.80

Stable course
- AUROC: 0.91
- F1 score: 0.93

Kortus et al. [18] (2021) 34 patients who underwent
thyroid surgery EMG Bayesian CNN Classification of

action potentials

- Accuracy: 97.6%
- Precision: 97.7%
- Recall: 97.6%

Zha et al. [19] (2021)
5 patients who underwent
thyroid surgery Free-running EMG Hybrid CNN-LSTM model

EMG signal waveforms
(quiet, evoked, irritation,
burst, injury, and artifact)

The hybrid model could
automatically classify the
free-running EMG.

- Accuracy: 89.54%
- Sensitivity: 94.23%

Verdonck et al. [20] (2021) 533 TOF samples from 35 patients AMG
Cost-sensitive
logistic regression Outlier TOF measurement

AMG-based intraoperative
measurements of TOF outliers
displayed an increased
monitoring consistency.

- F1 score: 0.86
- AUROC: 0.91
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Table 1. Cont.

Author
(Year) Samples IONM Modality Models Target Outcome Summary of Results

Qiao et al. [21] (2019) 76 cases with sellar region tumor VEP CNN and RNN combination Increasing, decreasing, or no
change of VEP amplitude

- Overall accuracy of
CNN/RNN combined vs.
traditional method using
single VEP images: 87.4%
and 83.1%, respectively

Fan et al. [22] (2016)

10 successful surgeries
(158 samples)

SEP LS-SVR and M-SVR

Successful case: no
interruption
False positive case: surgery
interrupted by an expert
without spinal cord injury
Trauma case: surgery
interrupted by an expert,
with spinal cord injury

- False positive rates

NBM vs. LS-SVR vs. M-SVR:
0.304, 0.080, and 0.068,
respectively.

- True warning rate

NBM vs. LS-SVR vs. M-SVR: 0.500,
0.714, and 0.714, respectively.

4 false positives
(72 samples)

1 trauma case
(14 samples)

IONM, intraoperative neurophysiological monitoring; MEP, motor evoked potential; KNN, k-nearest neighbors; SEP, somatosensory evoked potential; AUROC, area under the receiver
operating characteristic curve; EMG, electromyography; CNN, convolutional neural network; LSTM, long short-term memory; TOF, train-of-four; AMG, acceleromyography; VEP, visual
evoked potential; RNN, recurrent neural network; LS, least squares; M, multi; SVR, support vector regression; NBM, nominal baseline method.
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3. Overview of Machine Learning

ML is a subfield of AI in which the knowledge to perform a target task is learnt from
data. ML can be applied to various tasks, such as regression and classification [23]. An
ML system consists of multiple steps as illustrated in Figure 3 (top), some of which can be
omitted depending the type of the target task, the nature of the data, and the property of
the ML model. In IONM, the ML system often takes (serial) evoked potentials and EMG
signals as input. The preprocessing step transforms and normalizes the data to make it
easier to process in subsequent steps. The feature extraction step converts the data into
vector representation, from which the ML model produces the prediction result. In IONM,
the ML model predicts discriminating altered signals, postoperative neurologic deficit, or
postoperative functional gain. Optionally, the postprocessing step refines or reformats the
prediction results.

There are various ML models. Linear models are widely used for numerical data anal-
ysis owing to their simplicity and interpretability. However, more sophisticated methods,
such as neural networks, support vector machines (SVMs), and decision trees (DTs), are also
frequently used in medical data analysis [24]. In particular, tree-based ensemble techniques
such as random forests and extreme gradient boosting (XG-Boost) have exhibited excellent
performances in numerical data analysis. In recent years, deep learning has attracted
considerable attention owing to its outstanding performance [25]. Deep learning is based
on neural networks and is particularly effective in analyzing complex data, such as images,
text, and time-series data [26,27].

The training algorithms adjust the parameters or structure of the model to optimize a
learning objective as shown in Figure 3 (bottom). Widely used learning criteria include loss
minimization and likelihood maximization. In supervised learning, the model learns from
the ground truth labels specified by human experts. The training algorithm minimizes
loss, such as cross-entropy or the mean squared error, that reflects the difference between
the model output and the ground truth [28]. Further, unsupervised learning is used to
learn data distribution or specific tasks, such as clustering and reproduction, without
labels [29]. In recent years, self-supervised learning has been widely used for learning
feature representations from a large volume of unlabeled data [30]. In self-supervised
learning, the model achieves knowledge for multiple tasks through artificially defined tasks
whose ground truth can be derived from the data itself, e.g., predicting the next data from
the past data and filling in the masked part of the data. Reinforcement learning trains a
model that interacts with the environment. The model then performs actions that affect the
environment, and the environment rewards the model’s actions. The training algorithm
optimizes the model to select the actions that maximize the expected reward.

Figure 3. A general framework for training and applying ML models. The bottom figure illustrates
supervised learning using ground truth labels.
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The validation and performance evaluation of ML models is crucial in their application
to the field of medicine [28]. For evaluation, the primary metric for classification tasks
is accuracy, which is the fraction of correctly classified samples among all test samples.
Precision and recall are widely used for detection and identification tasks. Precision is the
fraction of retrieved instances that were relevant, while recall is the fraction of relevant
instances that were retrieved. The F1-score, defined as the harmonic mean of precision and
recall, is used to measure the balanced performance of the model [31].

In general, researchers divide data into three non-overlapping subsets with different
purposes: training, validation, and testing. The training set is used only to train the model,
and the validation set is used to determine hyperparameters and select a model. The
performance of the selected ML model is assessed on the testing set. One potential problem
in evaluation is that bias in the selection of the testing set can harm the reliability of the
evaluation results [32]. This can be minimized by applying techniques such as k-fold
cross-validation. The k-fold cross-validation procedure is as follows [33]:

1. Randomly split the dataset into k groups (e.g., for k = 5, the groups are S1, S2, S3, S4,
and S5).

2. Repeat the training and testing k times. At the k-th iteration, use Sk for testing and all
other groups for training and hyperparameter determination.

3. Average the k evaluation results.

However, despite the rapid development of ML, its adoption in medicine has been slower
than that in other areas [34]. In clinical practice, the decision-making process of a human expert
is very sophisticated and complex. A model can only learn such a process by being trained
on a large number of high-quality samples [9]. The collection and labeling of large-scale
medical datasets are labor-intensive and expensive. In addition, medical research involves
the use of human data, which is accompanied by ethical considerations. Another hurdle in
the application of ML to the medical field is the hesitation of many human experts to accept
the results of black-box models [35]. Moreover, deep learning-based image segmentation
techniques are essential for the analysis of advanced medical images, such as those generated
with computed tomography or magnetic resonance imaging [36]. Therefore, deep learning
models can only be applied to medical research if the infrastructure is in place for the accurate
and efficient processing of large quantities of image segmentation results [37,38].

4. Representative Machine Learning Models for IONM-Related Research

Previous works on IONM have applied various types of ML models. In this section,
we briefly introduce the representative ML models that can be useful to predict or analyze
IONM data, including those listed in Table 1.

4.1. Neural Networks

Neural networks have been the major ML models applied to the field of IONM. For
example, these analyze neuromonitoring documents by a natural language processing
model implemented with a Transformer. CNN and RNN have been used to classify action
potentials and EMG signal waveforms, respectively. Here, we described the overview of
neural networks.

4.1.1. Artificial Neural Networks

An artificial neural network (ANN) is an ML algorithm imitating the human brain [39].
Neurons in the human brain combine signals (stimuli) from multiple upstream neurons;
when the combined stimulus exceeds the threshold, the neuron relays the resulting signals
to the downstream neurons. ANNs were designed according to this principle. A neural
network consists of an input layer that receives data from multiple inputs, an output layer
that produces the output results, and one or more hidden layers between them [24]. Each
layer comprises multiple neurons and contains learning parameters, such as connection



Appl. Sci. 2022, 12, 7943 9 of 15

weights (wij) and biases (bj), where i and j are the indices for the input and output neurons,
respectively. Given an input vector,

x = (x1, x2, . . . , xn)

each layer computes the output,

yj = (y1, y2, . . . , ym)

via a linear combination followed by a nonlinearity; for instance, the output may be
calculated as follows:

yj = f (∑
i

wijxi + bj)

where f (·) denotes a nonlinear activation function. The behavior of a neural network
depends on the values of the connection weights and biases. The learning algorithm
determines the optimal values of these parameters for the target task by minimizing the
loss function on the training data.

The neural network learns to map an input into the desired output. An ANN com-
posed of multiple layers with nonlinear activation functions can approximate complex
maps [27]. However, the training of a large-scale neural network requires a large amount
of training data and computational power [40]. In particular, when trained with a lim-
ited number of samples, ANNs often suffer from overfitting and are not generalizable to
different input data.

4.1.2. Convolutional Neural Networks

Composed of large numbers of layers, deep neural networks can perform high levels of
abstraction and are, therefore, excellent in processing complex data such as images, text, and
sounds. CNNs are the most popular deep learning architectures for image processing [41].
CNNs have heterogeneous structures that combine various types of layers, such as those
for convolution, pooling, normalization, and self-attention, as well as dense layers, skip
connections, and dropouts [36]. Most CNN layers are composed of multi-channel feature
maps. The convoluted layer learns the position-invariant local features to capture the 2D
local patterns of the input image.

4.1.3. Recurrent Neural Networks

RNNs are a class of neural networks that are specialized in the processing of iterative
and sequential data. Unlike feedforward networks, RNNs have feedback connections to
deliver information from the past to the future [42]. RNNs have been widely used in natural
language and speech processing. In medicine, RNNs are frequently used for the analysis
of medical data that require continuous signal reading, such as EMG or fluoroscopic
images [19,43]. An encoder RNN and a decoder RNN can be combined to learn mappings
between sequential data of different lengths [9].

Simple RNNs have the limitation that they cannot learn long-term dependencies from
time-series data. LSTM networks [44] and gated recurrent units (GRUs) [45] are advanced
RNN architectures that overcome this limitation by applying the gating mechanism. How-
ever, all RNNs, including LSTM networks and GRUs, have the drawback that they are hard
to parallelize and, therefore, slower than other architectures.

4.1.4. Transformers

Recently, transformers have exhibited higher performance than RNNs in natural lan-
guage and speech processing [46]. A transformer network consists of a stack of transformer
blocks, each of which combines a self-attention sub-layer and a multi-layer perceptron
sub-layer. Self-attention is easy to parallelize and refers to a wider context than recurrent
connections in RNNs do. RNNs and transformers can be used to process medical textual
data (e.g., extracting a specific word from a text-based medical record) [47].
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4.1.5. Bayesian Neural Networks

Most neural networks provide prediction results as fixed values without an indication
of uncertainty. Without uncertainty modeling, it is challenging to determine the appropriate
level of confidence in the output. This obstacle causes reluctance among medical experts to
accept the results of ML models.

Bayesian neural networks provide the posterior distribution of the output value rather
than a single deterministic value [48]. In general, the prediction and its uncertainty are
provided as the mean and variance of the output distribution, respectively.

Bayesian neural networks model one or both of two types of uncertainties: aleatoric
uncertainty, which captures variation inherent in the data, and epistemic uncertainty,
which accounts for uncertainty in the model [49]. Epistemic uncertainty is modeled by
estimating the posterior distribution of the model parameters, whereas aleatoric uncertainty
is modeled by a neural network that estimates the density of the output quantity. Bayesian
neural networks can be implemented with various types of neural networks including
CNN, RNN, and transformers.

4.2. Support Vector Machines

SVMs have higher generalizability than other traditional ML models when the training
data are limited. When the training samples are represented in vector space, SVMs find
the boundary with the maximum margin from the nearest samples in each class [50].
Linear SVMs find linear boundaries, whereas nonlinear SVMs combine a linear SVM
and a nonlinear transformation using the “kernel trick” to classify complex nonlinear
patterns [51]. SVMs are binary classifiers. However, it is possible to discriminate between
multiple classes by combining multiple SVMs in one-to-one or one-to-the-rest approaches.

4.3. Regularized Logistic Regression

Logistic regression is a classification algorithm that extends linear regression by combin-
ing it with a logistic function. This method is widely used in medical statistics. However, if the
model deals with many input variables with an insufficient number of training samples, logis-
tic regression poses the risk of overfitting. When overfitting, the model yields a low degree of
training loss but a substantial degree of validation loss. Overfitting is a common issue with
most ML models that generally increases with the capacity of the model [52]. Overfitting can
be reduced with the application of regularization techniques. The loss function of regularized
logistic regression was designed to reduce not only the prediction error but also the norm of
the weight vector. L1 and L2 regularization reduce the L1 and L2 norms of the weight vector,
respectively [10,53]. L2 regularization is generally more effective in reducing overfitting,
whereas L1 regularization is used more frequently for feature selection. L1 regularization is
also known as lasso regularization, and L2 regularization as ridge regularization. Elastic net is
a hybrid model that applies both L1 and L2 regularizations [54].

4.4. Random Forests

Ensemble learning is a promising technique to improve the accuracy of ML by com-
bining the results of multiple classification or regression models [10,55]. There are two
primary strategies to combine ML models: bagging and boosting. In bagging, the training
data are randomly split into overlapping subsets, and each model is trained on one of
them. The results of the models are combined by averaging or voting. Random forests
are ensemble models that combine decision trees by using the bagging strategy. Decision
trees are vulnerable to overfitting [28], which is effectively reduced with bagging [56]. In
addition, random forests retain the advantage of decision trees in that they do not require
data normalization and are relatively easy to interpret.

4.5. Extreme Gradient Boosting

Boosting, or bootstrapping, is another ensemble strategy that builds multiple sequen-
tial models, one at a time. In each step, the model learns by focusing on the samples that



Appl. Sci. 2022, 12, 7943 11 of 15

were misclassified by the previous models. XG-Boost is one of the most advanced boosting
algorithms, yielding excellent performance with tabular data [55]. It is an extension of the
gradient boosting machine (GBM) with improved scalability [57]. GBMs build decision
trees via function approximation. In each step, the GBM finds a new decision tree that
reduces the bias of the previous trees via a gradient-based method derived from second-
order Taylor approximations. GBMs excel in many tasks but are slow and not scalable [58].
XG-Boost uses multiple techniques to improve the efficiency of the GBM in terms of com-
putational and memory requirements. Consequently, it is 10 times faster than conventional
GBMs and scalable to billions of examples in distributed or memory-limited environments.
In addition, its accuracy can be improved and overfitting reduced by adjustment of the
hyperparameters according to the data and environment, such as computing infra and
memory size [59].

4.6. Hyperparameters for Each ML Model

Each ML model has a set of hyperparameters to specify the model size, the types of the com-
ponents, the strength of regularization, and other properties. The performance of the ML model is
significantly affected by the hyperparameters [60,61]. Table 2 lists the major hyperparameters of
ML models. Some hyperparameters in Table 2 specify training options, such as the batch size,
learning rate, maximum number of training iterations, early stopping criteria, and algorithms for
initialization and optimization, which are important for training ML models.

Table 2. Important hyperparameters of machine learning models.

ML Models Major Hyperparameters

ANN

The number of layers
The number of units in each layer
The type of activation functions (e.g., ReLU, sigmoid, tanh, softmax, ELU, swish, mish)
Training hyperparameters (e.g., batch size, learning rate, maximum number of iterations, early stopping
criteria, and the algorithms for initialization and optimization)

CNN

All of the hyperparameters of artificial neural networks
The type of each layer (e.g., conv., max-pooling, batch-norm, dropout, group conv.)
The width, height, and channel of each layer
Kernel size, stride, padding
Existence of skip connection

RNN
(including LTSM and GRU)

All of the hyperparameters of artificial neural networks
Unidirectional or bidirectional
The size of cell blocks (LSTM)

Transformers

The number of layers
The total dimension of hidden features
The number of heads in the multi-head attention
The dimension of key and value
The dimension of MLP layers
All of the training hyperparameters of artificial neural networks

SVM
The weight of soft margin
The type of kernel (e.g., polynomial, Gaussian, RBF) and its parameters (e.g., γ of RBF kernel)
Training hyperparameters (e.g., learning rate, number of iterations)

Regularized
logistic regression

Regularization factors
Training hyperparameters (e.g., learning rate, number of iterations)

Random forests

The number of trees
Maximum depth of the tree
Maximum number of leaf nodes
Quality measure of a split (e.g., Gini, entropy, log_loss)
Regularization factor

XG-Boost

The number of trees
Maximum depth of the tree
Type of booster and its parameters (e.g., learning rate, gamma, max delta step)
Regularization factors

ANN, artificial neural network; ReLU, rectified linear unit; ELU, exponential linear unit; CNN, convolutional
neural network; RNN, recurrent neural networks; LSTM, long short-term memory; GRU, gated recurrent unit;
MLP, multi-layer perceptron; SVM, support vector machines; RBF, radial basis function; XG, extreme gradient.
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5. Limitations

Nonsurgical factors are important confounders in the interpretation of IONM. In par-
ticular, IONM modalities are very sensitive to changes brought about by anesthesia-related
factors [62]. The anesthetic methodology used, the use of neuromuscular blockade, the
patient’s blood pressure and body temperature, and prolonged operation time, among
other factors, can substantially affect IONM signals, even in the absence of a neural in-
sult [63]. Cross-disciplinary collaboration is essential in the construction of a model that can
consider these various factors simultaneously. In addition, since many variables need to
be processed, it is essential that models are trained and validated on high-quality datasets
with large numbers of samples that share the same features.

Another point to consider is that false positives results in ambiguity in the interpreta-
tion of IONM signals [64]. When a warning signal occurs during surgery, regardless of its
reliability (true or false positive), surgeons and anesthesiologists respond by initiating a
rescue intervention process [6]. This may be an important confounding factor in the predic-
tive value of ML algorithms. If postoperative neurological deficit is defined as a dependent
variable during the construction of an ML model, there may be disagreements in the input
to provide to an ML algorithm when a warning signal is issued. Therefore, as demonstrated
by Zha et al. [19], morphological classification may be a more realistic alternative to the
direct interpretation of evoked potential. In other words, although the ML algorithm reads
the signals, the human expert’s intervention remains essential in determining the reliability
and cause of a warning sign.

However, inter-rater variability in the interpretation of IONM signals is inevitable
when human experts are involved [65]. For example, results will be interpreted differently
depending on the definition of the baseline. The presence or absence of a warning sign
depends on whether the baseline is static or changes in response to previous waveforms
during the surgery [66]. Studies also vary in their definitions of postoperative neurological
deficits [67]. This difference in the interpretation of the ground truth can cause high
variability between ML algorithms. The interpretation of IONM results may also vary
depending on the degree of training of the expert [8].

6. Future Perspectives

To build an ML-based IONM model that can be applied to the clinical field in the
future, the following issues should be considered.

IONM is a diagnostic tool that uses multiple modalities, and the interpretational method
differs slightly among modalities. To date, we are aware of only limited studies on the use of
ML in the interpretation of MEP and SEP; such a model may play a key role in central nervous
system (CNS) surgeries. Therefore, additional validation studies of the ML models for each
modality should be conducted. Furthermore, several studies have demonstrated that, in the
interpretation of IONM signals, predictive power can be increased by considering multiple
modalities simultaneously rather than single modalities [68,69]. Therefore, there is a need for
complex models that can utilize various modalities simultaneously.

Moreover, models should be tailored for the prediction of optimal outcomes according
to each surgical method. For example, evoked-potential warning signs in open cranial
surgery differ slightly from those that occur during spinal cord decompression surgery [70].
In addition, warning signs for peripheral nerve surgery are completely different from those
that occur in CNS surgery [71].

We believe that ML-based IONM interpretational models will be useful in the predic-
tion of patients’ outcomes by assessing their intraoperative evoked potential. This topic
has been actively studied in the field of cervical decompression surgery [72]. Furthermore,
such studies are being conducted for open cranial and peripheral nerve surgeries [71]. If
ML models can perform precise sequential interpretation, they will be able to interpret a
patient’s neural integrity during surgery to predict subsequent clinical recovery.
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7. Conclusions

IONM is a valuable tool to improve patient safety and minimize neurological damage
during surgery. However, its interpretation is relatively complicated, expensive, and labor-
intensive. Therefore, it requires extensive training for human experts. The efficiency and
reliability of IONM may be enhanced with the use of ML models. However, standardized,
large-scale data collection and technical considerations are required to overcome the limita-
tions to such use of ML models and to provide practical support for experts. Further, since
IONM comprises many modalities and is used in different types of surgery, ML models
should be tailored accordingly for optimal performance. Similarly, ML models that use
multiple modalities should be established. Much research is required to achieve these
goals. Through these efforts, ML-based IONM interpretation can become a valuable and
applicable technology and can ultimately further guarantee patient safety.
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