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Abstract: A computational scheme is suggested to estimate neutral excitation energies in the fractional
quantum Hall effect (FQHE) states. The FQHE states are systematized according to the Farey-number
hierarchy structure. We show that besides the widely known Laughlin–Jain hierarchy of fractional
states, there exist other “dark” hierarchies. Although hardly observed in the highest mobility samples,
they can significantly affect the thermodynamics and spectral characteristics of the FQHE states. The
known problems in the interpretation of the FQHE’s experimental results are explained in terms
of the coexistence of two fundamentally different transformations of the electron system, one of
which is a neutral excitation in the FQHE state, whereas the other is a transition between two FQHE
ground states, one of which represents the Laughlin–Jain FQHE hierarchy and the other a state of
“dark” hierarchies.
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1. Introduction

Today, the FQHE provides the only experimentally accessible system for observing
anyons—quasiparticles with non-Fermi and non-Bose statistics. The pioneering works
on the experimental detection of quasiparticles with abelian anyonic statistics π/3 in the
FQHE state of 1/3 [1,2] opened fundamentally new prospects for incorporating anyons
into applied physics. At present, the FQHE states with non-abelian anyons in the frac-
tional states of 5/2 and 12/5 have been the focus of intense research [3,4]. In addition to
single anyons, multiparticle anyon complexes have been observed, and their collective
properties have been investigated [5]. In the very near future, further advancements in
the experimental methods of studying anyon matter may well enable the observation of
quasiparticles with more sophisticated abelian and non-abelian statistics than that of π/3.
However, at the current stage of development, FQHE physics is facing challenges related to
the thermodynamics and spectral properties of the observed fractional states. These issues
raise fundamental questions about the FQHE hierarchical structure and the interrelation
between different fractional states. For example, in the spectrum of the neutral excita-
tions of the 1/3, 2/5, and 3/7 fractional states, there have been experimentally observed
charge density excitations with abnormally low energies compared to the calculations [6].
Other significant problems arise concerning the interpretation of conductivity activation
dependencies for the known FQHE states, close to the filling factor of 1/2 [7].

Creating a general hierarchical structure of fractional states requires building its
foundation on the lowest spin sublevel of the zero Landau level ν < 1. However, such a
task can be considered within several theoretical approaches. The choice of a particular
approach shall be based on either experimental observations or the numerical solution of
the Schrodinger equation obtained by exact diagonalization for the system of a sufficiently
large number of particles. In the present work, we argue that even in the best existing
samples, the random potential precludes the observation of the vast majority of possible
fractional states. For this reason, the exact diagonalization technique remains the only
feasible method of organizing FQHE states into a hierarchical system.
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All modern conceptions of FQHE states at the lowest Landau level can be summarized
by the following well-established facts. First, there exist fractional states belonging to
the main Laughlin hierarchy ν = 1

m (where m is an odd integer number), as well as their
symmetrical counterparts, ν = 1− 1

m , emerging due to the electron–hole symmetry. Second,
there exists the Jain series. It generalizes the main Laughlin series with the electron filling
factors expressed as ν = m

2nm±1 and their symmetric pairs of the form 1 − m
2nm±1 (where n

is an integer number). Finally, several experimentally detectable “weak” fractional states
lie outside the main Laughlin–Jain hierarchy, for example, 4/11, 4/13, 5/13, etc.

Hence, it is natural to ask the question of whether the Laughlin–Jain hierarchy is a
complete representation of fractional states, with few possible exceptions, or are there any
fractional hierarchies for some reason unobservable experimentally (“dark hierarchies”).
Indeed, since the very discovery of the FQHE, several theoretical approaches have been
developed to answer this question. The works of Haldane and Halperin suggest the
following model to account for possible hierarchies of the FQHE. When a large quantity of
the charged excitations of the 1

m Laughlin state carrying the charge ± e
m (quasi-electrons and

quasi-holes) are present in an electronic system, they themselves form a Laughlin-like child
state at ν = p

q [8,9]. Since the quasiparticle charge reduces as the denominator increases

proportionally to q−1, the given Haldane–Halperin models predict a decrease in the value
of the energy gap between the ground and the excited states with the growing denominator
of the fractional state.

An alternative hierarchical structure of the FQHE states was proposed by Jain; he
developed the conception of composite fermions—quasiparticles consisting of an electron
and an even number of the magnetic flux quanta [10]. This model is based on mapping
FQHE states onto composite fermions’ integer QHE states (the Laughlin–Jain hierarchy
mentioned above). The given structure can be generalized as the FQHE states with the
filling factor ν are mapped onto the new fractional states with the electron filling factor
ν2 > 1. Hence, successive mappings lead to one of the Laughlin states—the foundation of
every hierarchy of the FQHE states. Such a construction corresponds to the system with
several “sorts” of composite fermions that differ in the number of attached flux quanta.
Generally speaking, given an arbitrary fractional filling factor ν, both described theoretical
approaches permit a few ways of bringing a particular FQHE state to the top of its hierarchy.
Jain himself suggested selecting real FQHE states on the basis of energy consideration,
whereas other studies argued that electron density configurations obtained in different
ways are equivalent [11].

To resolve such an uncertainty, Zang and Birman [12] combined the approaches
proposed by Halperin, Haldane, and Jain and devised a method of matching every fraction
to a unique path leading to the top of its hierarchy. Not only does it remove the construction
ambiguity, but it also enables qualitative estimation of the energy of the first excited state
for every filling factor. In essence, the Zang–Birman arrangement is similar to Jain’s, except
that at every level of the hierarchy, a new composite particle “captures” two extra magnetic
flux quanta. Thus, for the child state, the filling factor ν can be described by the mediant of
the parent state, p

q , and the critical fraction, p′
q′ , q′ = 2m, as follows: ν = p

q ⊕ p′
q′ =

p+p′
q+q′ . In

this case, the energy gap that separates the ground state from the excited states drops for
every descendant fraction within its own hierarchy. This rule does not impose principal
restrictions on energy gaps in different hierarchies. Hence, there is no direct link between
the denominator value of an arbitrary FQHE state and the energy gap. Finding the pattern
in energy gaps for a number of filling factors can give us evidence on the credibility of a
given hierarchy scheme, even without conjecturing a trial wavefunction for a state at said
filling factors, as, e.g., Jain in [10]; therefore, it is important to find the gaps.

The choice between the given hierarchical models of the FQHE depends on the de-
velopment of modern computational resources. However, even for the existing ultra-fast
computers, calculating the dispersion dependencies of neutral excitations by solving the
many-electron Schrodinger equation with exact diagonalization method proves difficult.
It allows covering the range where the momentum corresponding to the energy gap lies
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only for the main Laughlin states 1/3 and 2/3. Indeed, explicitly calculating the gap even
for the next fractional state 2/5 in the Laughlin–Jain hierarchy presents a considerable
computational challenge [13]. To overcome this technical difficulty, we used general as-
sumptions about the dispersion dependencies of neutral excitations for the FQHE states at
the zero Landau level regarding the link between the magnitude of the energy gap and the
lowest energy at zero momentum. We tested these assumptions numerically for several
fractions and built the hierarchy of the FQHE states for ν from 1/4 to 3/4—most suitable
for the experimental study. This hierarchy was found to be in good agreement with the
Zang–Birman model (Farey-number hierarchy structure [14]).

In Section 1, a computational technique is given—to obtain an energy spectrum
of a many-electron system interacting via Coulomb repulsion in a cell with the periodic
boundary condition, the exact diagonalization technique was used. The results of numerical
experiments are listed in Section 2. In Sections 3 and 4, a possible explanation for the pattern
that can be seen in the result of our numerical experiment is proposed and discussed.

2. Materials and Methods

We considered a two-dimensional system of electrons with Coulomb interaction
confined to a parallelogram cell Λ ∋ z = ατ1 + βτ2, 0 ≤ α, β ≤ 1, z being the complex
coordinate and τ1,2 corresponding to coincident sides of the cell, and quantizing magnetic
field B perpendicular to its plane. We applied periodic boundary conditions (PBCs), that is
the state of the system is conserved by magnetic translation by τ1,2. The PBCs are compatible
if the cell is pierced by an integer number Ns of magnetic flux quanta. In such a system,
a Hamiltonian of a single electron has a well-known spectrum of h̄ωC

(
n + 1

2

)
, ωC = eB

m
(Landau levels), each energy level having a finite degeneracy equal to Ns. Therefore, for a
number of electrons Ne, we can define the following base of states diagonalizing the kinetic
part of Hamiltonian ∏Ne

j=1 a†
ij ,nj

|0⟩, the pairwise interaction part given by

ĤC = ∑
α,β

∑
i1,i2,i3,i4

∑
n1,n2,n3,n4

Vn1n2n3n4
i1i2i3i4

a†
α,i1,n1

a†
β,i2,n2

aβ,i3,n3 aα,i4,n4 (1)

where a†
α,ik ,nk

and aα,ik ,nk stand for, respectively, the creation and annihilation operators of a
spin α electron k in the state ψn

i , n being the number of the Landau level and ranging from
0 to ∞ and i specifying the number of the states within the Landau level and ranging from
1 to Ns.

To find the energy spectrum of the given system, it is necessary to calculate matrix
elements of Coulomb potential and to diagonalize (1). We assumed that the cyclotron
energy h̄ωC and Zeeman splitting are much larger than the Coulomb energy e2

ϵlB
; hence,

we can neglect the contribution of higher Landau levels and assume that all electrons
are spin polarized; therefore, we only need a finite number of matrix elements for exact
diagonalization (in what follows, we however present expressions for matrix elements for
arbitrary pairs of Landau levels for the sake of completeness). For a multi-electron system
with Ne electrons occupying Ns possible states, the allowed Fock basis comprises CNe

Ns
vectors, which makes the exact diagonalization for even simple fractions quite a tedious
task. However, an observation due to Haldane [15] helps to build a simpler scheme, as
there exists a certain momentum-like operator with gcd(Ne, Ns) quantum numbers.

The periodic eigenfunctions of Landau Hamiltonian were built by Yoshioka [16], who
also applied the exact diagonalization scheme in the case of a rectangular cell, and later by
Haldane and Rezayi [17], the matrix element for Coulomb interaction was computed in the
case of a rectangular cell in [18]. However, the formula for a general parallelogram was
never published, to our knowledge. Some results concerning the reciprocal vector operator
were rederived in a fashion that seems more fitting for the problem.
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2.1. Magnetic Translations and One-Electron Wavefunctions

For a single electron in a constant magnetic field, the Hamiltonian Ĥ = 1
2m
(

p̂ − e
c A
)2.

We work in the Landau gauge Â = ( 0
Bx), so one-electron states at the lowest Landau level

can be represented as [16]

ψ(x, y) = f (z) exp

(
− y2

2l2
B

)
, z = x + iy (2)

Because of the PBC, we have t̂m(τ1,2)ψ = ψ, where magnetic translations:

t̂m(τ) = exp
(

i
h̄

(
p̂ − e

c
A
)

τ

)
. (3)

By the Campbell–Hausdorff formula (here, t̂(τ) stands for an ordinary translation by
τ and τ = τx + iτy):

t̂m(τ) = exp

(
iτxτy

2l2
B

)
exp

(
iτyx
l2
B

)
t̂(τ) (4)

t̂m(τ1)t̂m(τ2) = exp

(
i
(
τ1xτ2y − τ1yτ2x

)
l2
B

)
t̂m(τ2)t̂m(τ1) (5)

For a state to be conserved by two magnetic translations by τ1 and τ2, they must
commute; therefore:

τ1xτ2y − τ1yτ2x = 2πNsl2
B, Ns ∈ Z (6)

Applying (4) to (2) and taking t̂m(τ1,2)ψ = ψ into account, we have the following
condition on f :

f (z + τi)

f (z)
= exp

(
−

i(τi + 2z)τiy

2l2
B

)
(7)

Specifying τ1 ∈ R, τ2 = |τ2|eiθ (note that (6) yields τ1|τ2| sin θ = 2πNsl2
B), we obtain

f (z+τ1)
f (z) = 1 and, hence, represent f as a Fourier series f (z) = ∑k∈Z ck exp

(
i 2πkz

τ1

)
. To find

its coefficients, substitute it into (7), which gives

ck+Ns = exp
(

iτ2πNs

τ1

)
exp

(
i
2πkτ2

τ1

)
ck (8)

Consequently f (z) corresponding to LLL states with PBCs constitutes a linear space
of dimension Ns, with one example of a base delivered by

fr(z) = ∑
m∈Z

exp

(
i
m(m|τ2| sin θ + 2Xr)|τ2|eiθ

2l2
B

)
exp

(
i
(Xr + m|τ2| sin θ)z

l2
B

)
, (9)

Xr =
2πl2

Br
τ1

.
Finally, the LLL wavefunctions are

ψr(x, y) =
(

1
τ1
√

πlB

) 1
2

∑
m∈Z

exp

(
i
(m2|τ2|2 sin θ + 2Xrm|τ2|) cos θ

2l2
B

)
×

× exp

(
i
(Xr + m|τ2| sin θ)x

l2
B

)
exp

(
− (y + Xr + m|τ2| sin θ)2

2l2
B

)
. (10)

Similarly, at the n-th LL (Hn is the n-th Hermite polynomial):
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ψn
r =

(
1

L1
√

π2nn!lB

) 1
2

∑
m∈Z

eim
(

2π j L2 cos θ
L1

)
e

i
m2 L2

2 sin 2θ

4l2B exp

(
i
(Xr + mL2 sin θ)x

l2
B

)

exp

(
− (y + Xr + mL2 sin θ)2

2l2
B

)
Hn

(
y + Xr + mL2 sin θ

lB

)
(11)

2.2. Reciprocal Vectors and Partial Translations

For an operator to constitute an observable, it should commute both with the Landau
Hamiltonian and magnetic translations t̂m(τ1,2). A remarkable observation due to Hal-
dane [15] was that there exists center mass magnetic translation operators
T̂(a) = ∏Ne

i=1 t̂m,i(a), where t̂m,i(a) acts on the i-th electron, to nontrivial vectors a satis-
fying both of these properties and also commuting with each other, thus constituting a
vector quantum number similar to momentum.

Indeed, it follows from (4) that T̂(a)T̂(b) = exp
(

iNe(axby−bxay)

l2
B

)
T̂(b)T̂(a). Consider

N = gcd(Ne, Ns), then for Na = τ1, Nb = τ2 [T̂(a), T̂(b)] = 0:

T̂
(τ1

N

)
T̂
(τ2

N

)
= exp

(
i2πNeNs

N2

)
T̂
(τ2

N

)
T̂
(τ1

N

)
What is the spectrum of these operators? Because each ∏Ne

i=1 a†
ji
|0⟩ is an eigenstate for

T̂
( τ1

N
)N , the T̂

( τ1
N
)

eigenvalues are exp
(

2πil
N

)
. Two translation operators commute; hence,

they have a common eigenstate base, the eigenvalues being exp
(

2πili
N

)
for T̂(Li). Consider

q such that (q, L1) = 2πl1, (q, L2) = 2πl2 (i.e., q belongs to a reciprocal lattice), then the
spectrum of T̂(L) is exp( i(q,L)

N ). This q is a reciprocal vector quantum number.
Direct calculation shows that the one-electron states deduced in the previous section

satisfy T̂
( τ1

N
)
ψr = exp

(
2πir

N

)
ψr, T̂

( τ2
N
)
ψr = exp

(
i (2r+1)

N · π |τ2| cos θ
τ1

)
ψr+ Ns

N
. Using this, we

constructed a base out of reciprocal momentum eigenstates, and to diagonalize (1), it is
only needed to handle blocks corresponding to each eigenvalue.

We will now focus on the allowed values of q because these will be the eigenvalues
for the blocks, and their absolute values correspond to the points in the dispersion curve.
As we mentioned, they lie in the reciprocal lattice {n1τ1 + n2τ2}−1 and are defined up to
a translation by an element of

{ n1τ1
N + n2τ2

N
}−1. Therefore, the number of allowed values

(N2) of the reciprocal number at some fixed filling factor can be increased by increasing
gcd(Ne, Ns), which makes the computational complexity of our problem dramatically
increase. Keeping Ns fixed, we can still increase the number of different absolute values
of allowed q by considering a non-square cell (“lifting degeneracy” of two points, which
are reflections in a diagonal) and the maximum absolute value of q by choosing a non-
rectangular cell (maximizing the diagonal of a parallelogram while keeping its area). The
latter may be crucial in constructing roton minima for some fractions.

2.3. Matrix Element

Finally, we need to evaluate the matrix elements in (1). Using the translational invari-
ance of wavefunctions, it can be rewritten as follows:

An1n2n3n4
j1 j2 j3 j4

=
∫

Λ
dr1

∫
Λ

dr2ψn1∗
j1

(r1)ψ
n2∗
j2

(r2)Ṽ(r1 − r2)ψ
n3
j3
(r2)ψ

n4
j4
(r1) (12)

where Ṽ stands for periodic continuation of V, Ṽ(r) = ∑k1,k2
e2

|r+k1τ1+k2τ2|
. Being a double-

periodic function, it can be also represented by the following Fourier series
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Ṽ(z) = 2πl2
B

σ ∑q∈L−1
e2

q exp(i(q, r))), where σ denotes the area of a primitive cell of the
lattice and L = {k1τ1 + k2τ2, k1, k2 ∈ Z}, and the series is summed over the reciprocal
lattice L−1, ∀q ∈ L−1, r ∈ L (q, r) = 2πN, N ∈ Z.

To account for Coulomb weakening, we modified the Fourier components by intro-
ducing the geometrical form-factor F(q), calculated using the profile of the envelope wave
function of electrons in the lowest-dimensional quantization sub-band of the conduction
band in GaAs and obtain the following more realistic expression:

Ṽ(z) =
2πl2

B
σ ∑

q∈L−1

e2F(q)
q

exp(i(q, r))), (13)

Plugging in the expressions from (11) and (13) and with some math, we arrive at:

An1n2n3n4
j1 j2 j3 j4

=
2e2

σ ∑
q∈L−1

F(q)
q

Gn1,n4(q)Gn2n3(−q), (14)

where (Lk
n stands for the generalized Laguerre polynomial)

Gnsnt(q) =
√

π exp

(
i
2π2 cot θl2

B
τ2

1

(
js − jt −

qxτ1

2π

)(
js + jt −

qxτ1

2π

))
exp

(
iqy

(
Xjs +

qxl2
B

2

))
e−(

1
2 lq)

2

×

×

√
min(ns, nt)!
max(ns, nt)!

(
l(sign(nt − ns)qx + iqy)√

2

)|ns−nt |
L|ns−nt |

min(ns ,nt)

(
q2l2

2

)
δ′qxτ1

2π +jt−js
(15)

The function F(q) was calculated numerically for the actual parameters of the experi-
mental sample.

3. Results

In our study, we considered a hypothetical two-dimensional electron system with
physical parameters of GaAs/AlGaAs quantum wells to provide a direct comparison with
experimental data. The calculations were carried out for a system of several electrons in
toric geometry, using the electron wavefunctions introduced in [17], invariant with respect
to magnetic translations. To check the correctness of the numerical results, we calculated
the dispersion dependencies of the five lowest-energy neutral excitations for the main
fractional states of the Laughlin–Jain hierarchy, 1/3 and 2/3, related by the electron–hole
symmetry (Figure 1). The spectrum of neutral excitations consists of a magneto-roton
branch (MR) [19,20] and a continuum of multi-roton states (MMR). At zero momentum,
the roton branch merges with the continuum and cannot be detected as a distinct excitation
branch. The principal result of these calculations is that at zero momentum, the lowest-
energy excitation is a biroton (magneto-graviton (BMR(0)) [21]) with twice the energy of
the roton minimum, which is consistent with the previously reported findings [22]. The
application range of our computational scheme was specified based on the condition of
building the roton minimum with the smallest number of electrons (Figure 1).

The next step in the numerical calculations involved constructing the dispersion
dependency of five neutral excitations with the lowest energy for the second representative
of the Laughlin–Jain hierarchy, the fractional QHE state of 2/5. Once again, it can be
claimed, though with less certainty than in the case of the fractional state of 1/3, that at zero
momentum, the lowest energy of neutral excitations corresponds to the doubled energy
of the absolute minimum of the roton branch [23]. Numerical calculations for the other
fractional states lead to the conclusion that at ν < 1, the spectrum of the lowest-energy
neutral excitations of any FQHE state is of the same type. It consists of a multi-roton
continuum and a roton branch (with the number of minima depending on the fractional
state) damped at zero momentum.
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Figure 1. (a) Dispersion dependencies of the five lowest-energy excitations in Laughlin fractional
QHE states 1/3 and 2/3, calculated for nine electrons in a δ-function GaAs/AlGaAs quantum well
at a magnetic field of 10 T. (b) Calculated energies of birotons with zero momentum and rotons in
Laughlin state 1/3, at a magnetic field of 10 T, plotted versus the number of electrons. The dashed
line indicates the smallest number of electrons needed to observe the minimum in the dispersion of
the roton brunch. The solid lines are included as a matter of convenience.

Based on the calculations, it is natural to assume that the lowest-energy excitation with
zero momentum is going to be a biroton with twice the energy of the absolute minimum of
the roton branch. It corresponds to the appearance of two rotons with minimal possible
energies and opposite momenta. In our analysis, we could also consider the question of the
binding energy between the rotons in a biroton [13]. However, even for the main FQHE
states 1/3 and 2/3, such energy turns out to be smaller than the numerical error of our
simulations. Therefore, since calculating only the lowest energy of neutral excitations at
zero momentum is far less complicated than finding the absolute minimum of a roton
branch in the corresponding dispersion dependencies, it opens broad prospects for the
comparative analysis of the excitation energies of different fractional states.

4. Discussion

Calculation results for biroton energies were compared to the activation dependencies
of conductivity in fractional states of the Laughlin–Jain hierarchy. In this case, the doubled
activation energy was considered approximately equal to the energy of a biroton with
zero momentum [24]. Hence, we found that the activation energies closely agree with the
calculation for the main fractions, 1/3 and 2/3. However, approaching the filling factor
of 1/2 leads to increasing deviation between the calculated energies and the experimental
values of activation energies. Thus, for example, for the fractional states of 5/11 and
6/11, the discrepancy between the calculated and experimental data already exceeds an
order of magnitude (Figure 2). The observed disagreement cannot be explained by the
non-locality of electronic wavefunctions due to the finite width of the quantum wells used
in the experiment. Indeed, the change in biroton energies due to the quantum well width
is virtually independent of the FQHE state (Figure 2). It should also be noted that in
the experiment, a linear approximation of the activation energy of fractional states in the
Laughlin–Jain hierarchy to the filling factor 1/2 leads to non-physical, negative values [7],
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which does not occur in the numerical modeling (Figure 3). A plausible explanation of
this effect is that, for electron filling factors in the vicinity of ν = 1/2, we are observing a
temperature-induced reorganization of electron density rather than activation dependency.
In that case, the ground state is brought to the FQHE states of a close filling factor that
belong to a “dark” (experimentally undetectable) FQHE state. The transition between
different fractional states should be accompanied by the appearance of bulk conductivity in
a two-dimensional electronic system. This effect is insignificant for the activation energies
of the main fractional states of the Laughlin–Jain hierarchy, 1/3 and 2/3. Indeed, energy
gaps between the ground states of these fractions and the “dark” fractional states of close
filling factors is approximately equal to the activation energies themselves. However, as the
electron filling factor approaches ν = 1/2, the given energy gaps separating fractions of the
Laughlin–Jain hierarchy and close to them “dark” fractional states are substantially reduced,
leading to the decrease in “activation” energy observed in the experiment (Figure 2).

Figure 2. (a) Dispersion dependencies of the five lowest-energy excitations in the Laughlin fractional
QHE state 2/5, calculated for twelve electrons in a δ-function GaAs/AlGaAs quantum well at a
magnetic field of 10 T. The dashed line marks the boundary of an elementary cell in inverse space.
(b) Calculated energies of birotons with zero momentum for FQHE state 2/5 at a magnetic field of
10 T plotted as a function of the number of electrons. (c) The doubled experimental activation energy
of fractional states from the Laughlin–Jain hierarchy measured in [7] (red dots) normalized by the
calculated energies of birotons with zero momentum. (d) Energy dependencies of birotons with zero
momentum for the FQHE states of 1/3 (black circles), 2/5 (black triangles), and 13/27 (black squares).
For comparison, red circles indicate the energy dependency of the roton minimum for FQHE 1/3.
The solid lines are included for convenience.
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Figure 3. (a) Energies of birotons with zero momentum, at a magnetic field of 10 T, calculated for
different FQHE states in the range of filling factors [1/4; 3/4], given a δ-function GaAs/AlGaAs
quantum well. Fractional states of the Laughlin–Jain hierarchy (black circles) and “dark” hierarchies
(red circles) are expressed in Coulomb energy units. The solid lines are included for clarity. The length
of green arrows signifies the measured charge density excitation energies from [6], corrected for the
finite quantum well width and magnetic field used in the experiment. The diamonds denote the even
electron filling factors, 1/4, 3/10, 3/8, 1/2, 5/8, 7/10 (left to right). (b) Energies of neutral excitations
with spin 1 (S = 1) for the Laughlin state 1/3 calculated for spin birotons and spin excitons with zero
momentum, at a magnetic field of 10 T (black dots). The green dots show the measured excitation
energies from [5,6,25]. Red ovals indicate the corresponding pairs of experimental and calculated
neutral excitations, SE(0)-spin exciton [6] and SBMR(0)-spin biroton (magneto-graviton) [5]. Squares
mark the experimentally observable excitations that have no theoretical counterpart.

Another problem of FQHE states is the spectrum of experimentally detectable neu-
tral excitations. Direct measurement of neutral excitations of the Laughlin–Jain hierarchy
using resonant Raman scattering reproduces the pattern observed in the activation ex-
periments [6]. The energy of neutral excitations for the FQHE state 1/3 shows excellent
agreement with data calculated for a biroton (magneto-graviton) with zero momentum. In
contrast, for the following fractional states of the Laughlin–Jain hierarchy, 2/5 and 3/7, the
energies of the excitations decrease drastically, showing no resemblance to the calculation
results. One possible way of explaining the observed effect is to take into account “dark”
FQHE states, namely the optical transitions between the ground states of different FQHE
states, as the local redistribution of the electron density induced by the electromagnetic field
of a light wave. The coexistence of two different optical transitions: (i) between different
fractional states and (ii) within a single fractional state were already discussed in [25].

The authors of the paper observed analogous abnormal optical transitions in the spec-
trum of spin density neutral excitations for the main Laughlin state 1/3, measured by the
resonant reflection for several heterostructures with GaAs/AlGaAs quantum wells [5,26,27].
The spectrum indicates the direct optical transitions that excite spin birotons (spin magneto-
gravitons), as well as the transitions that give rise to excitations with the energy lying in
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the bandgap of the fractional Hall dielectric ν = 1/3 (Figure 3). Unlike birotons, which
exhibit bosonic properties predicted for neutral excitations [5], the anomalous excitations
do not show signs of Bose statistics [26,27], suggesting possible transitions between the
ground states of different fractional states rather than neutral excitations in the fractional
QHE state 1/3.

5. Conclusions

In the conclusion of the study, we constructed the hierarchy of computable fractional
QHE states in the range of electron filling factors from 1/4 to 3/4 (Figure 4). The energies
of these fractional states were found to be reasonably consistent with the Zang–Birman
hierarchical structure—Farey-number hierarchy structure [12]. Although this particular
structure has much in common with the theoretical models of Halperin, Haldane, and
Jain, it has a significant distinctive feature. Fractional states of highly varied denominator
values from different FQHE hierarchies can have nearly equal energy gaps between the
ground and excited states. For instance, the energies of such dissimilar fractional states
as 6/19, 6/17, 8/23, 8/25, 10/29, and 10/31 belonging to different “dark” hierarchies
are found to be almost the same, as all of them belong to the second steps from the top
of their hierarchical ladders—the Laughlin state 1/3 (Figure 4). Conversely, the energies
of fractional QHE states with equal denominators and similar electron filling factors can
differ substantially. For example, the respective biroton energies of fractional states 10/31
and 11/31, corresponding to the second and third steps from the top of their hierarchical
ladders, come to be nearly two-orders of magnitude apart (51.8 · 10−3 and 0.74 · 10−3 in
Coulomb units (Figure 3), respectively).

Despite the abundance of calculated fractional QHE states from “dark” hierarchies,
the fact that they are not directly observable in magneto-transport experiments is quite
understandable. The hierarchical structure proposed in the present work makes it evident
that biroton energies of fractional states in the Laughlin–Jain hierarchy are always greater
than other fractional states of comparable filling factors belonging to “dark” hierarchies.
Hence, it is more energy favorable to localize some part of excited quasi-electrons and
quasi-holes of Laughlin–Jain fractional states and to keep the filling factor of extended
states unchanged in the region of filling factors separating the neighboring fractional
states of this hierarchy. Considering that even a small amount of impurities in a two-
dimensional system causes localization of a macroscopic number of electron states, the
filling factor regions where we can observe the fractional states of “dark” hierarchies are
not large, even in the most highly mobile samples known to this day [28]. Usually, for
ν < 1, these regions fall within narrow ranges of electron filling factors, [1/3; 2/5] and
[3/5; 2/3], where the Laughlin–Jain fractional states are far apart in terms of the filling
factor. As the electron filling factor approaches 1/2, free of Laughlin–Jain fractional states,
regions shrink in size because the “separation” (in terms of the electron filling factor)
between the nearby fractional states of the Laughlin–Jain hierarchy decreases as the inverse
square of the fraction’s denominator. Therefore, while the Laughlin–Jain hierarchy is
not the only hierarchy of FQHE states, it is still dominant over the “dark” hierarchies in
magnetotransport experiments (Figure 4). The “dark” hierarchies become, in turn, essential
in describing the excitation properties of FQHE states.

The “dark” hierarchies are nevertheless essential in describing the excitation properties
of FQHE states. Taking into account transitions between the FQHE states of the Laughlin–
Jain hierarchy and the states of the “dark” hierarchies, the non-physical negative values for
activation energies close to the filling factor 1/2 [7] are explained. The abnormal excitation
energies measured by resonant Raman scattering for the fractional states, 2/5 and 3/7 [6],
as well as the spin excitation energies for the state 1/3 measured by the authors of this
paper [5,26,27] are similarly explained,.
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Figure 4. (a) Energies of birotons with zero momentum, in a magnetic field of 10 T, calculated for
different FQHE states in the range of Coulomb energies from 0.001 to 0.1 e2/ϵl0. The fractional states
of the Laughlin–Jain hierarchy and of the “dark” hierarchies are plotted in black and red circles,
respectively. (b) FQHE states with energies from (a) brought into the Zang–Birman hierarchical
structure (Farey-number hierarchy structure). Horizontal and vertical axes denote, accordingly, the
fraction’s absolute value and its denominator. The dot diameter is proportional to the energy of the
biroton with zero momentum of the corresponding fraction. The lines link the fractional states of
individual hierarchies.
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