
Citation: Khrapak, S. Vibrational

MOdel of Heat Conduction in a Fluid

of Hard Spheres. Appl. Sci. 2022, 12,

7939. https://doi.org/10.3390/

app12157939

Academic Editors: Ştefan Ţǎlu and
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Abstract: Application of a vibrational model of heat transfer to a fluid made of hard spheres is
discussed. The model was originally proposed to describe heat conduction in fluids with soft
pairwise interactionsHere, it is shown that only minor modifications are required to apply the model
in the opposite limit of hard sphere interactions. Good agreement with recent results from molecular
dynamics simulation is documented in the moderately dense regime. Near the freezing point,
however, the model overestimates the thermal conductivity coefficient (by '50%). The new approach
is compared with other simple models for the thermal conductivity coefficients such as Bridgman’s
expression and the Enskog formula. The value of the coefficient in the Bridgman’s expression,
appropriate for the hard sphere fluid, is determined. A new expression for the dependence of the
reduced thermal conductivity coefficient on the reduced excess entropy is proposed. The obtained
results can be useful for rough estimates of the thermal conductivity coefficient of simple fluids with
steep interactions when more accurate experimental results are not available.

Keywords: transport properties of fluids; heat conduction; hard sphere fluid; vibrational mechanism
of atomic transport; collective modes

1. Introduction

Our understanding of dynamical and transport properties of liquids remains incom-
plete and fragmented even in the case of the simplest atomic systems. Despite considerable
progress achieved over the years [1–6], we still often need to apply various phenomenolog-
ical approaches, semi-quantitative models, and scaling relations. Among the renowned
examples are the Stokes-Einstein relation between the self-diffusion and the shear viscosity
coefficients [4,7–17], the excess entropy scaling of reduced transport coefficients [18–22],
and several variants of the freezing temperature scaling [23–27]. Recently, a freezing density
scaling of reduced transport coefficients of the Lennard-Jones and related fluids has been
discussed as a new useful addition to the existing approaches [28–30].

Heat transfer in fluids (throughout this paper the term “fluid” is applied to liquids
and supercritical fluids) is an important topic of contemporary research with diverse
interdisciplinary applications [31–36]. A vibrational model of heat transfer has been recently
applied to fluids with soft pairwise interactions [37] . In this model, the thermal conductivity
coefficient is proportional to the effective frequency of atomic vibrations around the local
temporary equilibrium positions. The effective frequency is related to the properties of the
liquid collective excitation spectrum. The model has been applied to quantify heat transfer
in a strongly coupled one-component plasma fluid, dense Lennard-Jones liquid, and plasma-
related screened Coulomb (Yukawa) fluid. An impressive agreement with the available
results from numerical simulations has been documented [37–39]. The purpose of this work
is to consider the applicability of the vibrational model to a new physical system—a fluid
made of hard spheres (HS fluid). The vibrational picture of atomic dynamics is clearly not
very appropriate for extremely anharmonic HS system. Nevertheless, collective excitations
are supported in the dense HS fluid and averaging over collective modes can formally
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be performed. The question is whether the results have any relation to reality. It will be
shown below that a formal expression based on the vibrational model of heat transfer is in
agreement with the results from molecular dynamics simulations in a moderately dense
regime, but overestimates the numerical results near the freezing point. The accuracy of
some other simplistic approaches will be also examined. In particular, the coefficient in the
Bridgman’s expression, appropriate for the HS fluid, will be identified. The excess entropy
scaling of the thermal conductivity coefficient in the HS fluid will be briefly discussed and
a new expression will be proposed. The results can be useful for simple rough theoretical
estimates when more accurate data are unavailable.

2. Hard Sphere Fluid

The HS interaction potential is defined as:

φ(r) =

{
∞, r < σ

0, r ≥ σ,
(1)

where σ is the sphere diameter and r is the distance between the centres of two spheres. The
potential ensures that spheres cannot overlap. The HS system is a very important simple
model for the properties of condensed matter in its various states [40–47].

The thermodynamic and transport properties of HS systems depend on a single
reduced density parameter, ρ∗ = ρσ3, or the packing fraction, η = πρσ3/6, where ρ is
the density. Transport properties of the HS fluid have been extensively studied (see e.g.,
Ref. [42] for a review). Here we use recent molecular dynamics (MD) simulation results
for the thermal conductivity coefficient reported by Pieprzyk et al. [48]. The use of large
simulation systems and long simulation times allowed accurate prediction of the thermal
conductivity coefficient in the thermodynamic limit.

Throughout the paper we use macroscopically reduced units for the thermal conduc-
tivity coefficient:

λR = λ
ρ−2/3

vT
, (2)

where λ is the dimensional thermal conductivity coefficients, vT =
√

T/m is the thermal
velocity, T is the temperature in energy units (≡ kBT), and m is the atomic mass. This
normalization is essential in Rosenfeld’s excess entropy scaling approach [18,19], therefore
the subscript R is often used. This normalization does not contain the Boltzmann constant
kB, because the temperature is measured in energy units. Another normalization that is
commonly employed is:

λ∗ = λ
σ2

vT
. (3)

These two normalizations are related via λ∗ = λR(ρ
∗)2.

3. Vibrational Model

The vibrational paradigm of atomic dynamics in dense liquids has been discussed by
many authors over the years, see e.g., Refs. [1,7,49–51]. The main assumptions involved
are as follows [16]: Atoms exhibit solid-like oscillations about temporary equilibrium
positions corresponding to a local minimum on the system’s potential energy surface [1,51].
These positions do not form a regular lattice like in crystalline solids, but correspond to a
liquid-like structure [50]. They are also not fixed and change (diffuse or drift) with time,
which allows liquids to flow. However, these rearrangements occur on much longer time
scales than those characterising solid-like oscillations. Effectively, one can assume that the
local configurations of atoms are preserved for some time until a fluctuation in the kinetic
energy allows the positions of some of these atoms to be rearranged towards a new local
minimum in the multidimensional potential energy surface. This picture allows to make
important approximations about the properties of atomic motion and the mechanisms
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of momentum and energy transport in the liquid state. For instance, the Stokes-Einstein
(SE) relation without the hydrodynamic radius naturally emerges within this vibrational
paradigm under a few additional assumptions [7,13,15,16].

For energy transfer, separation of time scales corresponding to fast solid-like atomic
oscillations and their slow drift plays a dominant role. Namely, it is reasonable to assume
that a vibrating atom transports energy from its hotter to its cooler neighbors with a
characteristic energy exchange rate equal to its average vibrational frequency, ν = 〈ω〉/2π.
Each atom controls the energy transfer through an area of order ∆2, where ∆ = ρ−1/3

is the average interatomic separation. A liquid can be approximated by a quasi-layered
structure with quasi-layers that are perpendicular to the temperature gradient (applied
along x-axis) and are separated by the distance ∆ (see e.g., Figure 1 from Ref. [37]). The
energy difference between two neighbouring layers is (dU/dx)∆. The energy flux density
can be approximated as:

j ' − ν

∆2

(
dU
dx

)
∆ = − 〈ω〉

2π∆
cp

dT
dx

, (4)

where cp = (dU/dT)p is the specific heat at constant pressure and the minus sign implies
that the heat flow is down the temperature gradient. On the other hand, Fourier’s law of
the heat transfer reads:

j = −λ
dT
dx

. (5)

By comparing Equations (4) and (5) we immediately obtain:

λ = cp
〈ω〉
2π∆

. (6)

This is essentially the expression derived in Ref. [37], except that the specific heat at constant
volume, cv, appeared there. The present choice seems in general more appropriate because
pressure should be constant in equilibrium. The difference is insignificant for soft spheres,
because dense fluids can be considered as essentially incompressible in a wide portion
of their phase diagram not too far from the freezing curve and thus cp ' cv holds. For
example, Equation (6) with cp → cv works very well for soft plasma-related Coulomb
and Yukawa interactions and the Lennard-Jones fluid [37–39]. In such cases it is more
appropriate to use cv for practical estimates (since cv is normally easier to evaluate). This is
not the case, however, in the HS limit. For hard spheres cv ≡ 1.5 and cp and cv can differ
very considerably.

Before we discuss heat conduction further, it should be emphasized that the vibrational
picture of atomic dynamics is not particularly suitable for the HS fluid. In contrast to softer
interactions, atomic motion does not exhibit a pronounced oscillatory character [52–54].
The HS fluid is extremely anharmonic and dynamics is dominated by short hard-core-
like collision events [55]. Nevertheless, similar to other simple fluids, the dense HS fluid
does support the longitudinal and transverse collective excitations [56] (with a forbidden
long-wavelength region for the transverse mode, the so-called “k-gap” [56–60]). Therefore,
averaging over collective modes can be performed and in this sense 〈ω〉 remains a meaning-
ful quantity. The Stokes-Einstein relation holds in the HS fluid, just as it does in soft sphere
fluids, where it emerges naturally as a consequence of the vibrational picture of atomic
dynamics [7,16]. Vibrational model allows to estimate the excess entropy of various fluids
with pairwise repulsive interactions near the fluid–solid phase transition, including the HS
limit [61]. Under these circumstances it is not very unreasonable to compare the predictions
of Equation (6) with the available results from MD simulations in the HS limit.

Since the actual frequency distribution is often not known in liquids, and can vary
from one type of liquid to another, some simplifying assumptions are necessary to evaluate
〈ω〉 in Equation (6). In the simplest Einstein approximation all atoms vibrate with the
same (Einstein) frequency ΩE. We arrive at the expression derived by Horrocks and
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McLaughlin [62]. But this approximation is obviously not applicable to the HS fluid. The
conventional expression for the Einstein frequency,

ΩE =
ρ

3m

∫
dr∇2φ(r)g(r), (7)

where g(r) is the radial distribution function (RDF), is simply undefined in the HS limit.
One can use an acoustic spectrum, ω = kcs with an appropriate maximum cutoff

wavenumber kmax. Here cs is the conventional adiabatic sound velocity. Then, the standard
averaging procedure would result in:

λ ∼ cs

∆2 . (8)

This can be considered as an analog of Bridgman’s equation [63]. The numerical coefficient
remains undefined, because of the qualitative character of the arguments involved (the
values between 2 and 3 can be found in the literature, see e.g., Ref. [35]). We shall see that
for the HS fluid the numerical coefficient is in fact close to unity.

As a more physically sound approximation, assume that a dense liquid supports one
longitudinal and two transverse collective modes. Debye-like averaging in k-space can be
performed using acoustic asymptotes ωl(k) = clk and ωt(k) = ctk in the long-wavelength
domain, where cl and ct are the longitudinal and transverse sound velocities, respectively.
The thermal conductivity coefficient becomes [37]:

λ ' 1
4

(
3

4π

)1/3
cp

cl + 2ct

∆2 . (9)

If we substitute cp ' cv ' 3 near the freezing point (according to Dulong-Petit law), we get
a formula, which is similar to that of the minimal thermal conductivity model proposed by
Cahill and Pohl for amorphous solids [64–66]. It turns out that a similar formula obtained
using the vibrational model works rather well in the liquid regime. It is the expression (9)
that will be compared with the recent MD data on the thermal conductivity coefficient of
the HS fluid. Note that there are no free parameters in the discussed approach.

4. Methods

To evaluate the thermal conductivity coefficient from Equation (9) we need to know
the longitudinal and transverse sound velocities (cl and ct) and the specific heat at constant
pressure (cp). The later is obtained from the equation of state of the HS fluid. Here a simple
but sufficiently accurate equation of Carnahan and Starling (CS) is used [67]. The pressure
is written as:

P(ρ, T) = ρTZ(η), Z(η) =
1 + η + η2 − η3

(1− η)3 , (10)

where Z(η) is the CS compressibility.
The various sound velocities are related to the elastic moduli. For example, the

adiabatic sound velocity cs is related to the adiabatic bulk modulus Ks via cs =
√

Ks/mρ.
The adiabatic bulk modulus Ks is determined from the CS compressibility factor Z [68,69]:

Ks = ρT
[

Z(η) + ηdZ(η)/dη + 2
3 Z2(η)

]
. (11)

Similarly, the longitudinal and transverse sound velocities are obtained from the lon-
gitudinal and transverse instantaneous (infinite frequency) elastic moduli, cl =

√
M∞/mρ

and ct =
√

G∞/mρ. Moreover, the longitudinal elastic modulus is related to the bulk and
shear moduli via:

M∞ = K∞ + 4
3 G∞. (12)
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The behavior of elastic moduli when approaching the HS interaction limit has recently
been discussed in detail [60]. For the instantaneous shear and bulk moduli, the expressions
derived by Miller [70] are employed, with minor modifications discussed in Ref. [71]. The
shear modulus is [70,71]:

G∞ = ρT
[

1− 8
5

ηg′(1)
]

, (13)

where g′(1) denotes the reduced derivative at contact, g′(1) = limε→0[dg(x)/dx]x=1+ε
with x = r/σ. For g′(1) we use the approximation proposed in Ref. [72]:

g′(1) = −9η(1 + η)

2(1− η)4 . (14)

The bulk modulus is [70,71]:

K∞ = 2P− 8
3

ρT +
2
3

P2

ρT
+

5
3

G∞. (15)

The longitudinal modulus is then obtained from Equation (12). This allows to evaluate all
necessary quantities and compare the results of various approaches with those from MD
simulations. Results are reported in the next Section.

5. Results

Figure 1 shows the comparison between the MD data on the reduced thermal con-
ductivity coefficient and the discussed theoretical approximations. Symbols correspond
to the MD data [48]. The quantitative picture is conventional and resembles that in other
simple fluids, see e.g., Refs. [30,73]. In the low-density domain λR decreases with den-
sity. In the first approximation, the thermal conductivity coefficient of a dilute HS gas is
λ0 = (75/64σ2)(T/πm)1/2 [74], which leads to λR ' 0.661/(ρ∗)2/3 [28]. The minimum of
λR is reached at ρ∗ ' 0.25. The amplitude of this minimum is known to be quasi-universal
for many model and real fluids. Numerically, a rough estimte λmin

R ∼ 3 holds for various
liquids, except for plasma-related fluids with very soft Coulomb-like interactions [30,73].
This minimum corresponds to the crossover between two different mechanisms of en-
ergy transfer: pairwise collisions in the dilute gas regime and collective vibrations in the
dense fluid regime. Note that a similar minimum appears in the reduced viscosity coeffi-
cient [30,73]. It is the location of the reduced viscosity minimum that previously served as
one of the definitions of the gas-liquid dynamical crossover [75,76]. After the minimum,
λR increases monotonously with density. The typical value of the thermal conductivity
coefficient at the freezing point of various simple liquids is λfr

R ∼ 10 [30,73]. We observe in
Figure 1 that the thermal conductivity coefficient of the HS fluid at the freezing point is
around ' 30% higher. A similar observation was previously made in Ref. [28].

The dashed curve in Figure 1 corresponds to the vibrational model of heat transfer as
formulated above. The agreement is reasonably good at moderate densities (after minimum
in λR is reached), but becomes worse at ρ∗ & 0.7. As the freezing density (ρ∗fr ' 0.939
according to Ref. [77]) is approached the vibrational model overestimates λR by ' 50%.
This reflects the fact that the vibrational picture is not very appropriate for the dense HS
fluid. It is to some extent surprising that the expression based on the averaging over
collective modes remains a relatively good approximation in the moderately dense regime.

The dash-dotted curve corresponds to the Bridgman’s expression. Plotted is the value
λR = cs/vT, where cs is evaluated using Equation (11). We see that the numerical factor
equal to unity is appropriate for the dense HS fluid. Only near the freezing point it leads to
some underestimation of λR.

The solid curve corresponds to the Enskog theory, which is an extension of the gas
kinetic theory for the transport coefficients to finite densities. It accounts for the excluded
volume effects, but assumes that the successive collisions between the atoms are uncor-
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related. The Enskog expression for the thermal conductivity coefficient of the HS fluid
reads [48]:

λ = 1.02513λ0ρB2

(
1

Zex
+ 1.2 + 0.7574Zex

)
, (16)

where λ0 is the first approximation for λ in the infinitely dilute gaseous limit (see above),
the coefficient 1.02513 is the Sonine polynomial correction up to 4th term, B2 = 2πσ3/3
is the second virial coefficient, and Zex = Z− 1 is the excess compressibility factor. It is
observed that overall the thermal conductivity coefficient of the HS fluid is rather well
described by the Enskog theory. Deviations from MD data of Ref. [48] do not exceed ∼5%
in the entire fluid regime. This is in contrast to other transport properties: Agreement with
Enskog theory for the self-diffusion and viscosity coefficients only takes place at sufficiently
low densities [77].

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 00

5

1 0

1 5  M D  r e s u l t s
 V i b r a t i o n a l  m o d e l
 B r i d g m a n  e x p r e s s i o n
 E n s k o g  t h e o r y

λ R

ρ*
Figure 1. (Color online) Macroscopically reduced thermal conductivity coefficient λR of the HS
fluid as a function of the reduced density ρ∗. Symbols correspond to the numerical results from
Ref. [48]. The dashed curve denotes the calculation using the vibrational model, the dash-dotted curve
corresponds to the Bridgman’s expression, and the solid curve is plotted using the Enskog theory.

6. Excess Entropy Scaling

In view of the importance of the excess entropy scaling for transport coefficients in
fluids, the reduced thermal conductivity λR is replotted in Figure 2 as a function of the
excess entropy. Excess entropy is defined as the actual entropy minus the entropy of an
ideal gas at the same temperature and density, divided by the number of particles and
Boltzmann constant kB to make it dimensionless. It is negative in fluids, because they are
more ordered than the ideal gas. The excess entropy can be easily calculated using the CS
compressibility:

sex =
∫ η

0

1− Z(η)
η

dη =
η(3η − 4)
(1− η)2 . (17)

In Figure 2 symbols are the MD numerical results from Ref. [48]. The dashed curve corre-
sponds to a “quasi-universal” exponential scaling proposed by Rosenfeld,
λR ∼ 1.5 exp(−0.5sex) [19]. The advantage of this scaling is that it allows to estimate
reasonably well (within about ' 30%) the thermal conductivity coefficient in various sys-
tems with quite disparate pair interactions [19]. On the other hand, different potentials can
be fitted better by somewhat different functional forms (see e.g., Ref. [22]). For the HS fluid
we propose a simple cubic polynomial fit of the form

λR = 2.3845 + 0.0272sex + 0.6550s2
ex − 0.0307s3

ex. (18)

This fit does a very good job for sex . −1, as shown by the solid curve in Figure 2.
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Figure 2. (Color online) Macroscopically reduced thermal conductivity coefficient λR of the HS fluid
as a function of the negative excess entropy −sex. Symbols correspond to the numerical results from
Ref. [48]. The dashed curve is the “quasi-universal” exponential scaling proposed by Rosenfeld. The
solid curve is a cubic polynomial fit.

7. Conclusions

The system composed of hard spheres is a very important model in statistical me-
chanics and condensed matter physics. It allows to understand many generic mechanisms
behind quasi-universal structural and dynamical properties of real materials. In this paper
we discussed the properties of thermal conduction in the HS fluid. It has been demonstrated
that the expression obtained within the vibrational model of atomic transport provides
a reasonable description of the thermal conductivity coefficient at moderate densities,
but leads to a significant overestimation (up to '50%) near the freezing point. Overall,
this is not particularly surprising, because the extremely anharmonic HS system does not
fit into the vibrational paradigm and the vibrational model was not originally intended
for the HS fluid. On the other hand, it should be noted that the Stokes-Einsten relation,
emerging naturally within the vibrational paradigm of atomic transport, is satisfied to a
good accuracy in the dense HS fluid. The vibrational model allows to estimate the excess
entropy for fluids with repulsive interactions, including the HS limit. Thus, the vibrational
approach seems not completely irrelevant and this represents an important lesson from
this study. We have also demonstrated that the reduced thermal conductivity coefficient
correlates well with the reduced sound velocity, and the Bridgman’s expression applies.
The coefficient of proportionality is close to unity, much smaller than usually quoted. The
Enskog expression is known to work rather well in the entire HS fluid density range, but it
is not directly applicable to other system as the vibrational model does. Yet, the vibrational
model is clearly much better suited for soft pairwise interactions.
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The following abbreviations are used in this manuscript:

HS Hard Sphere
CS Carnahan and Starling
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MD Molecular Dynamics
RDF Radial distribution function

Nomenclature

B2 second virial coefficient
cs adiabatic sound velocity
cl longitudinal instantaneous sound velocity
ct transverse instantaneous sound velocity
cp specific heat at constant pressure
cv specific heat at constant volume
g(r) radial distribution function (RDF)
G∞ instantaneous (infinite frequency) shear modulus
j energy flux density
Ks adiabatic bulk modulus
K∞ instantaneous (infinite frequency) bulk modulus
m mass of an atom (particle)
M∞ instantaneous (infinite frequency) longitudinal modulus
P pressure
sex reduced excess entropy
T temperature (in energy units)
U internal energy
vT =

√
T/m thermal velocity

Z = P/ρT compressibility factor
Zex = Z− 1 excess compressibility factor
∆ = ρ−1/3 average interatomic separation
η = πρσ3/6 packing fraction
λ thermal conductivity coefficient
λR reduced thermal conductivity coefficient
ρ density
ρ∗ = ρσ3 reduced density
σ hard sphere diameter
φ(r) pairwise interaction potential
ΩE Einstein frequency
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