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Abstract: The unmanned operation of agriculture machinery in the full field of farmland is an
important part of unmanned farm and smart agriculture. Although the autonomous navigation
for agriculture robot has been widely studied in literature, research on the full-field path tracking
problem of agriculture machinery is rare. In this paper, in order to enhance the adaptivity of path
tracking algorithm, an improved fuzzy Stanley model (SM) is proposed based on particle swarm
optimization (PSO), where the control gain is modified adaptively according to the tracking error,
velocity and steering actuator saturation. The PSO-enhanced fuzzy SM (PSO-FSM) is verified by
experiments on numerical simulation and self-driving of mobile vehicle. Simulation results indicate
that the PSO-FSM achieves a better result than SM and FSM, where PSO-FSM changes the control
gain adaptively under different velocities and actuator saturation conditions, and the maximum
lateral errors of SM and PSO-FSM for mobile vehicle autonomous turning are 0. 32 m and 0.03 m,
respectively. When the location of the mobile vehicle deviates from the expected path at 4 m in a
lateral direction, the distance of the guided trajectory for the mobile vehicle to reach the expected
path is no more than 5 m. A preliminary experiment is also carried out for a wheeled combine
harvester working on slippery soil, and the result indicates that the maximum lateral tracking error
of PSO-FSM is 0.63 m, which is acceptable for the path tracking of a combine harvester with a large
operation width.

Keywords: agriculture machinery; autonomous navigation; adaptive path tracking; Stanley model

1. Introduction

Intelligent agricultural machinery is a crucial support for unmanned farm and smart
agriculture, where automatic navigation is the core technology and has been widely stud-
ied [1,2]. During the special period of the outbreak of the new crown epidemic, the
automatic navigation of agricultural machinery provides an important guarantee for agri-
cultural production and food security. The path tracking of agricultural machinery controls
the agricultural machinery driving along a predetermined trajectory autonomously, which
is an important part of the unmanned autonomous operation of agricultural machinery in
the farmland [3,4].

The widely employed path tracking control methods for agricultural machinery in-
clude PID control, pure pursuit control, fuzzy control, neural network-based control and
optimal control [5–9], to name a few. Hu et al. [10] proposed a cascaded navigation control
method for straight line path tracking, which separates the navigation control into path
tracking control and steering control, and the standard deviation of the lateral error is
0.04 m. Zhang et al. [11] developed a path tracking controller by integrating an adap-
tive neural network estimator and a saturated auxiliary system, and compared it with
the traditional methods. The controller reduces the tracking error by more than 28%. A
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model predictive control-based path following the controller was developed for high-speed
vehicle path tracking in [12], where the fluctuation of longitudinal velocity is compensated
in the predicted horizon to reduce the state prediction error. The experimental results
indicate that the controller not only reduces the lateral and heading deviation effectively
but also maintains the control stability under large vehicle maneuver. Li et al. [13] proposed
an adaptive sliding mode control method based on non-time reference and RBF neural
network to handle uncertain disturbances. The experiments demonstrate that the proposed
method not only improves the path tracking performance but also eliminates the chattering
phenomenon when the wheeled mobile robot suffers from uncertain disturbances. In
order to overcome the disadvantages of pure pursuit in high-speed path tracking, a model
predictive active yaw control implementation of pure pursuit path tracking was proposed
in [14], which improves the tracking performance at high speeds by accommodating the
vehicle’s steady-state lateral dynamics. Most of the abovementioned adaptive path tracking
algorithms improve the tracking precision or robustness with respect to disturbances at
the cost of computational complexity, which hinders their application from real-time path
tracking application.

Stanley model (SM) is a nonlinear feedback function based on lateral tracking error,
which generates the steer angle command by employing the relative geometric relationship
between vehicle’s pose and predefined trajectory. SM does not depend on the look-ahead
distance as pure pursuit, and its lateral tracking error converges to zero exponentially [15].
The unmanned vehicle based on SM is the winner of DARPA’s second unmanned vehicle
challenge, whereas its application on the automatic navigation of agricultural machinery is
rarely reported. The adaptive parameter tuning is an active research field for a geometric-
based path tracking controller, and there is similar problem for SM especially when vehicle
maneuver or road conditions vary from time to time. The look-ahead distance of pure
pursuit is adjusted in [16] by using improved particle swarm optimization (PSO), which
indicates when the speed of agricultural machinery is 0.7 m/s and the driving distance
exceeds 5 m, the maximum lateral error is 0.02 m. Wang et al. [17] utilized the multi-
population genetic algorithm to optimize the parameters of SM controller, and results show
that the path tracking performance is improved by 41.72% and 48.61% for two typical
tractor turning methods (U and Ω routes), compared with SM without optimization. Amer
et al. [18] proposed a PSO-optimized fuzzy supervisory system to handle the various
trajectories and speed for an armored vehicle, where the parameters of the modified SM
were changed adaptively based on fuzzy inference and an optimal knowledge database.

Inspired by the work of [18], this paper proposes an improved path tracking control
algorithm based on the fuzzy SM (FSM) and PSO to cater for variations in the agriculture
robot in terms of speed and road conditions. In this contribution, the primary controller
parameters of SM are adjusted by fuzzy inference at first, and then the control gain under
different velocities and actuator saturation conditions are further modified by PSO. The
fuzzy algorithm is used to adjust the control gain with respect to tracking errors, which not
only improves the tracking precision for the automatic turning of agricultural machinery,
but also reduces the distance of guided trajectory when the initial lateral error is large. The
PSO is employed to further optimize the decision-making of the front wheel steer angle
and improve the adaptivity of agricultural machinery towards different vehicle speeds and
actuator saturation situations. The main contributions of this paper are as follows: (1) PSO-
enhanced control gain adjustment is developed to cater for varying vehicle velocities and
actuator saturation conditions; (2) a cascaded path tracking algorithm based on FSM and
PSO is proposed for the full-field autonomous navigation of agriculture robot; (3) the
autonomous navigation experiments based on numerical simulation, a mobile vehicle
and a combine harvester are employed to verify the superiority of PSO-enhanced FSM
(PSO-FSM).

The structure of this paper is arranged as follows. The fuzzy Stanley model is presented
in Section 2. PSO-enhanced control gain adjustment is developed in Section 3. In Section 4,
the PSO-FSM is verified by using numerical simulation, path tracking of a mobile robot and
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an unmanned combine harvester in a slippery soil condition. Finally, Section 5 concludes
the conclusions of this work.

2. Fuzzy-Based Stanley Model

In the path tracking of agricultural machinery, the bicycle model is often used for
kinematic analysis, where it is assumed that the agricultural machinery is running on a
smooth road, and only longitudinal pressure is generated between the tires and the ground.

As shown in Figure 1, δ is the front wheel rotation angle, θ is the heading angle of the
vehicle and L is the distance between the front and rear axles of the vehicle. Kinematic
analysis of this model can be summarized as

x′(t) = v sin θ

y′(t) = v cos θ

θ′(t) =
v tan δ

L
(1)

where v is the vehicle longitudinal speed; x′(t) is the vehicle speed in the x-axis direction;
y′(t) is the vehicle speed in the y-axis direction; and θ′(t) is the vehicle angular velocity.
The simplified bicycle kinematic model will be employed in our simulation.

Figure 1. Vehicle kinematics model.

SM needs parameter adaptation similar to other geometric-based path tracking. Typi-
cal parameter self-adaptation methods include the intelligent search algorithm [19], neural
networks algorithm [20] and fuzzy algorithm [21]. Intelligent search algorithms mainly
include the genetic algorithm [22], PSO [23] and differential evolution algorithm [24].
The neural networks algorithm can be classified into BP [25], RBF [26], PNN [27] and
GRNN [28] according to their excitation functions. Compared with other methods, param-
eter self-adaptation based on fuzzy algorithm has the advantages of low computational
load and strong robustness, which is suitable for online implementation in an embedded
controller [29]. In this section, the fuzzy algorithm is used to adjust the output gain of
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SM, which provides an algorithm basis for global intelligent optimization under varying
environmental disturbances.

2.1. Stanley Path Tracking Algorithm

The schematic diagram of SM is given in Figure 2, where the control input of the
expected front wheel angle of the SM consists of two parts, i.e., corresponding to the lateral
deviation and the heading deviation, respectively:

δ(t) = δe(t) + δθ(t) (2)

where δ(t) is the expected angle; δe(t) is the expected angle due to lateral deviation; and
δθ(t) is the expected angle due to heading deviation.

Figure 2. Schematic diagram of Stanley model.

By only considering the influence of lateral deviation, the larger the lateral deviation,
the larger the expected front wheel steering angle. Suppose the expected path and the
tangent line intersects at a point, that in front of the closest point with respect to front wheel
by d, and according to the geometric relationship the following nonlinear scaling function
can be obtained

δe(t) = arctan
e(t)
d(t)

= arctan
ke(t)
v(t)

(3)

where k is the gain coefficient; e(t) is the lateral deviation; and v(t) is the driving speed.
If only the influence of heading deviation is taken into consideration, the front wheel

deflection angle is consistent with the tangent direction of the given path. The expected
steering angle of the front wheel is equal to the angle between the vehicle heading and the
tangent direction of the nearest path point, that is

δθ(t) = θe(t) (4)

where θe(t) is the heading deviation.
By taking both the two aspects into consideration, the expected rotation angle function

of the front wheel is obtained as follows:

δ(t) = θe(t) + arctan
ke(t)
v(t)

(5)
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2.2. Parameter Self-Adaptation Based on Fuzzy Algorithm

It is notable in Equation (4) that the influence of the lateral deviation on the wheel
steering angle is weighted by the gain coefficient of SM. The larger gain coefficient can
reduce lateral deviation efficiently and enable the agricultural machinery to converge
to the expected path quickly, whereas a large gain coefficient will lead to tracking error
fluctuation. The small gain coefficient can make the agricultural machinery run smoothly
and thus reduce the steady-state tracking error when the algorithm converges, but the
controller converges slowly, especially when a large initial lateral error is given. Therefore,
the time-varying gain coefficient should be selected according to different lateral deviations,
especially for the full-field path tracking of agriculture machinery, which has stringent
requirements on the distance of guided trajectory. What is more, the effect of the heading
deviation and lateral deviation work on wheel steering angle is directional. When the lateral
deviation and the heading deviation have the same direction of action on the wheel angle,
the gain coefficient is decreased appropriately to make the controller stable. Conversely,
when the lateral deviation and the heading deviation work on the wheel steering angle in
opposite directions, the gain coefficient would be increased appropriately to speed up the
algorithm’s convergence speed.

The fuzzy reasoning rules are initially formulated by taking the actual conditions of
agricultural machinery into consideration, where the membership function is constructed
with the lateral deviation and heading deviation as input variables, and the steering angle
of the front wheel as output whose maximum value is limited to 35 degrees. The maxi-
mum value and standard deviation of the lateral deviation are employed as observations,
and a trial-and-error procedure is performed to find the optimal gain coefficient under
different inputs.

The universe for the lateral deviation is [−3 m, 3 m], which includes right large, right
medium, right small, zero, left small, left medium, left large, respectively, corresponding to
NP, NM, NS, ZO, PS, PM and PB, as it is shown in Figure 3a. The universe of the heading
deviation is [−30◦, 30◦], as it is shown in Figure 3b, which includes right large, right
medium, right small, zero, left small, left medium and left large, respectively, corresponding
to NP, NM, NS, ZO, PS, PM and PB. As it is shown in Figure 3c, the universe of gain
coefficients is [0, 1.2], and the gain coefficients include zero, small, medium and large,
respectively, corresponding to ZO, PS, PM and PB.

Figure 3. Membership function design for FSM. (a) Membership function of lateral deviation;
(b) Membership function of heading deviation; (c) Membership function of gain coefficient.

The specific rules of the fuzzy inference table are designed as follows: the smaller the
heading deviation and the larger the lateral deviation, then the larger the gain coefficient;
if the heading deviation and the lateral deviation work on the wheel angle in the same
direction, then the larger the heading deviation, the smaller the gain coefficient; if the
heading deviation and lateral deviation work on the wheel angle in opposite directions,
then the larger the heading deviation, the larger the gain coefficient; if the heading deviation
is large, and the heading deviation and lateral deviation work on the front wheel angle in
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the same direction, then a smaller gain coefficient is selected; and if the heading deviation
is large, and the heading deviation and lateral deviation work on the steering angle of the
front wheel in opposite directions, then a larger gain coefficient is selected. Finally, after
verification by experiment test, a total of 49 fuzzy rules are summarized in Table 1, where e
stands for the lateral deviation and θe represents the heading deviation.

The typical defuzzification methods include maximum subordination principle, center
of gravity method and weighted average method [30]. The center of gravity method is
widely used in industry application because of its smooth output, so the center of gravity
method is chosen in our work for defuzzification, which is formulated as

u0 =
∑m

k=1 ukµk(uk)

∑m
k=1 µk(uk)

(6)

where µ0 is the output coefficient; m is the number of levels; µk is the coefficients for each
level; and µk(uk) is the degree of membership.

Table 1. Rule base for fuzzy logic control.

θe
e

NB NM NS ZO PS PM PB

NB PS PS PS PM PB PB PB
NM PM PS PS PS PM PB PB
NS PM PM PS PS PM PM PB
ZO PM PM PS PS PS PM PM
PS PB PM PM PS PS PM PM
PM PB PB PM PS PS PS PM
PB PB PB PB PM PS PS PS

3. PSO-Enhanced Fuzzy Stanley Model
3.1. Principle of PSO Optimization

PSO is a heuristic swarm intelligence algorithm, which stems from the research on the
predation behavior of bird flocks [31]. In order to find the place where most food is located,
the flocks adjust their search directions by using their own experience and communication
among the flocks. Because of its fast convergence speed, easy online implementation and
simple principle, it is widely used in the fields of fuzzy control system design and other
high-dimensional optimization problems [32]. In the application of intelligent agricultural
machinery for full-field unmanned operation, the various operation speeds, soil conditions
and actuator saturation of steering control system will have a great effect on the accuracy
and stability of path tracking. Therefore, in order to improve the adaptively of fuzzy-based
SM, the PSO algorithm is employed to further optimize the expected steering angle.

The steering control system of agricultural machinery is a closed-loop PID control
system including an electric steering wheel, a mechanical steering mechanism and angle
sensor fixed on the front wheel. It is easy to understand that when the driving speed is
high, the steering wheel control input should be changed slowly and a small steering angle
should be given. In order to handle the time-varying speed, PSO is employed to optimize
the output gain of FSM. Define a control gain coefficient α, and the control gain of FSM is
multiplied by the coefficient

δPSO(t) = α · δ(t) (7)

where δPSO(t) is the desired front wheel angle after utilizing PSO.
When the speed of the agricultural machinery is high, the value of the coefficient α

should be reduced to improve the stability of the control. What is more, the steering control
systems of the wheeled mobile vehicle and combine harvester involved in our work are
actually a first-order system with time delay, and the varying parameters of the closed-loop
PID will have a great effect on the navigation control decision. When the mobile robot is
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subject to its steady-state stage of path tracking, i.e., at the end of a straight line tracking,
the actuator saturation of the steering control system will make it difficult to respond to
the large, expected input angle in a timely manner. However, by multiplying the expected
steering angle by a coefficient α, the response speed of the steering control system can be
improved, and thus the accuracy of the path tracking during the path transition period can
be ensured.

3.2. Implemention of PSO-Enhanced FSM

The fitness function of PSO is also named as the objective function. The selection of
fitness function has a significant effect on the convergence speed and steady-state accuracy
of the PSO-FSM. The integral time absolute error (ITAE) is frequently applied as the
performance metric in the automatic control community, which calculates the integral of
the product of the time and absolute error value for some predefined time interval [33].
In this paper, the inverse of the sum of ITAE of lateral deviation and heading deviation is
used as the fitness function, and the calculation formula is as follows

f = ω1∆t
N

∑
j=1

tj|e(j)|+ ω2∆t
N

∑
j=1

tj|θe(j)| (8)

F =
1
f

(9)

where f is the sum of ITAE of lateral deviation and heading deviation, ω1 and ω2 are
the weights which correspond to ITAE, ∆t is the integration interval, and e(j) and θe(j)
correspond to the lateral deviation and heading deviation at time j∆t. N is the number
of control periods involved in the calculation of the f value, and F is the fitness value
employed for PSO-FSM.

The PSO simulates birds in a flock by designing a massless particle where only the
speed and position are adjustable, and the flowchart of PSO is shown in Figure 4. Firstly,
each particle searches for the optimal solution individually in the search space, then, its
position is recorded as the local optimal position. Secondly, each particle shares its optimal
position with other particles in the entire flock to find the temporary global optimal position
of the current flock. Finally, each particle in the flock adjusts its attributes continuously
according to the optimal position of the individual and the current flock until the global
optimal solution is found. The specific procedures are as follows:

(1) Initialize the particle flock. Parameters such as the inertia coefficient ω and learning
factor c1, c2 are determined according to the operation of agricultural machinery.

(2) Calculate the fitness of each particle in the flock and update the optimal position of
each particle, then calculate the optimal position of the current flock. Adjust the speed
and position of each particle accordingly. The calculation formulas are as follows:

vi(k + 1) = ωvi(k) + c1ξ(pibest(k)− xi(k)) + c2η
(

pgbest(k)− xi(k)
)

(10)

xi(k + 1) = xi(k) + vi(k + 1) (11)

where vi(k) and xi(k) are the velocity and position of particle i in the k-th iteration,
pibest is the optimal position of particle i, pgbest is the optimal location of the entire
flock and ξ and η are random numbers between 0 and 1.

(3) The particles are continuously updated until the maximum number of iterations is
reached or the required convergence accuracy is achieved. Then, the optimal position
of the flock is the value of the optimization coefficient α.

Finally, the input and output block diagram of PSO-FSM can be summarized in
Figure 5, where e represents the lateral deviation, θe represents the heading deviation and
δα represents the expected front wheel angle after PSO.
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Figure 4. Flowchart of the PSO algorithm.

Figure 5. Input and output block diagram of PSO-FSM.
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4. Results and Discussion
4.1. Numerical Simulation

In this section, the path tracking algorithms including SM, FSM and the proposed
PSO-FSM are verified in autonomous turning under different scenarios using numerical
simulation. A typical U turning trajectory is stimulated to verify the superiority of PSO-FSM.
The flowchart of the numerical simulation is shown in Figure 6, where the vehicle kinematic
model defined by (1) is employed to update the vehicle state, and the particle flock size is
20, the inertia coefficient ω = 0.5, the learning factors c1 = 1, c2 = 2, the maximum number of
iterations K = 200 and the termination threshold J = 0.8. These parameters not only reduce
the occurrence of large errors but also prevents the overshoot of the system output.

Figure 6. Flowchart of simulation experiment.

Figure 7a shows the test result when the vehicle runs at 1 m/s with small time delay of
steering control system, which is an ideal work condition for agricultural machinery. It can
be seen that both FSM and PSO-FSM achieve better performance than SM, especially when
the curvature is variable, whereas PSO-FSM does not outperform FSM, obviously because
the gain coefficient α does not have a direct modification on the expected front wheel angle.
Figure 7b shows the results in the high-speed operation scenario, where the vehicle speed
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is increased to 3 m/s with other conditions unchanged. It is notable that the PSO-FSM
achieves the best accuracy among the involved algorithms, and both SM and FSM have
an obvious performance degradation. Once a low driving speed is given, e.g., 1 m/s, the
actuator saturation situation and state delay of the control signal would have a great effect
on the steering control system, which suits the actual operation scenario. By importing the
control input limitation to the steering control system, i.e., scale the expected steering angle
every control period by multiplying the random coefficient between 0 and 1, the steering
actuator saturation can be stimulated. The corresponding result is shown in Figure 7c,
which indicates when the vehicle starts turning with obvious curvature variation, PSO-FSM
not only improves the response speed of steering control system, but also achieves better
stability once the autonomous turning is finished. The detailed simulation results are
listed in Table 2, where the mean absolute error (MAE) and root mean square error (RMSE)
are taken as the performance metrics. As we can see, PSO-FSM achieves a much better
result than FSM and SM, especially when the scenarios of high-speed or random actuator
saturation appear.

Figure 7. Autonomous turning under different scenarios. (a) Autonomous turning under ideal
scenario; (b) Autonomous turning under high-speed scenario; (c) Autonomous turning under steering
actuator saturation scenario.

4.2. Mobile Vehicle Autonomous Navigation Test

In order to verify the effectiveness of the proposed PSO-SM, a real-time autonomous
navigation test is performed by employing a mobile vehicle, as shown in Figure 8. The
dual-antenna RTK position system is applied to provide the position, velocity, heading



Appl. Sci. 2022, 12, 7683 11 of 19

and pitch information of the mobile vehicle. The base station receiver is OEM719 and the
mobile station receiver is OEM718D (provided by NovAtel Inc., Calgary, AB, Canada),
where the positioning accuracy is 1 cm + 1 ppm and heading accuracy is 0.08◦ with a 2 m
antenna baseline. The update frequency of the dual-antenna RTK is 5 Hz. The motor driver
RMDS405 supports 30 A current (provided by Shenzhen RoboModule Technology Co. Ltd.,
Shenzhen, China), and the encoder is Omron E6B2 with a resolution up to 3600 P/R.

Table 2. Path tracking result under different scenarios.

Velocity (m/s) Steering Angle Scaling Algorithm MAE (cm) RMSE (cm)

1 1 SM 1.1 36.1
1 1 FSM 0.4 13.6
1 1 PSO-FSM 0.3 12.4
3 1 SM 9.2 93.7
3 1 FSM 1.8 28.7
3 1 PSO-FSM 0.9 15.6
1 0~1 SM 20.9 48.1
1 0~1 FSM 5.4 16.2
1 0~1 PSO-FSM 0.3 12.5

Figure 8. Setup for mobile vehicle path tracking test.

The navigation decision system NavLight (with Version 4.07) is built by the intelligent
agricultural machinery team of Jiangsu University (Zhenjiang, China), which includes a
full-field path plan and navigation signal processing and the cross-platform navigation
software based on Qt works well by using multi-thread coding technology. First, predefined
path information is generated utilizing the position information of the farmland. Second,
the real-time heading and position information is sent to navigation PC and then lateral
deviation and heading deviation are calculated and sent to the embedded controller. Finally,
the controller calculates the desired steering angle based on the navigation deviation and
sends the control information to the motor driver via the CAN bus at a frequency of 5 Hz.
The motor driver converts the control command into voltage and receives feedback from
the encoder to form a closed-loop control system, which can control the motor at 100 Hz.

In order to verify the adaptability of PSO-FSM to different path curvatures and speeds
of agricultural machinery, the full-field working path for the combine harvester is designed.
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As it is shown in Figure 9, a hybrid path is designed for the combine harvester of large
operating width, where the outer circle is composed of autonomous turning path and the
arrows indicate the driving direction. If half of the remaining field width is less than the
turning radius of the combine harvester, the turning at the field head is carried out by
manual driving, which is more efficient than autonomous turning with back-up control.
The combine harvester performs harvesting operations in sequence. When the remaining
field width is smaller than the size required for the harvester to carry out autonomous
turning, the navigation PC sends a signal to the controller before the end of last straight line
for autonomous turning, e.g., straight line 4 in Figure 9, and then automatically switches to
the manual-assisted driving mode.

Figure 9. Full-field path planning schematic of the combine harvester.

The full-field path tracking of the combine harvester can be divided into the guiding
stage, straight line and curve path tracking stage. The lateral tracking error of SM for
the straight line is small, and the fixed output gain can achieve acceptable result, thus
the guiding and curve path tracking stages are our main focuses in this work. The initial
parameter setting of SM and PSO-FSM is the same as the numerical simulation to make a fair
comparison. The average speeds of the mobile vehicle for the straight line and autonomous
turning stages are 2.5 m/s and 0.8 m/s, respectively, i.e., the vehicle reduces its speed
automatically before starting the curve path tracking. The path tracking trajectories of
different algorithms for one U turning are shown in Figure 10, where both the guiding
trajectory and curve path tracking result are included. It is notable in Figure 10a that PSO-
FSM reduces the guiding distance of the mobile vehicle when the initial lateral deviation is
set as 4 m, where the guiding distance is less than 5 m. In Figure 10b, because of the time-
varying tracking error and steering actuator saturation, the performance of SM is degraded
a lot compared with the straight line tracking. It is important to note that PSO-FSM
outperforms SM which coincides with the numerical simulation, i.e., SM cannot achieve
stability and precision path tracking by use fixed gain coefficient for time-varying curvature
and disturbance. PSO and fuzzy inference improve SM significantly by employing a
cascaded optimization structure to change the gain coefficient adaptively. The parameter
variation in PSO-FSM is shown in Figure 11, where Figure 11a is the gain coefficient k of the
path tracking test based on PSO-FSM. It is notable that k is updated adaptively according to
the deviation change, and its value is reduced quickly when the path tracking of the curve
segment is finished. Figure 11b is the expected front wheel steering angle calculated by
the embedded controller. It is notable that when the curvature is changed, the expected
steering angle changed accordingly, which presents different results with respect to the
output gain coefficient variation.
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Figure 10. Path tracking result under different scenarios. (a) Guiding trajectory with large initial
lateral error; (b) Curve path tracking of autonomous turning.

Figure 11. Parameters of the path tracking based on PSO-FSM. (a) Gain coefficient of the path tracking;
(b) Expected steering angle of the path tracking.

The tracking error of the different algorithms is shown in Figure 12, where the lateral
errors of the straight line and curve segment are given. Notice that PSO-FSM reduces the
guiding distance of the autonomous vehicle in Figure 12a, whereas once the path tracking
is stable, i.e., after the vehicle runs after about 5 s, there is no obvious difference between
SM and PSO-FSM. Both the algorithms achieve a maximum lateral tracking error less than
3 cm with a standard deviation less than 1 cm. However, the steady-state error of SM in the
curve segment is improved significantly by PSO-FSM, where the maximum lateral error is
reduced from 32 cm to 3 cm. In order to verify the full-field unmanned driving ability of
the proposed algorithm, the full-field path tracking result of the mobile vehicle is shown in
Figure 13, and the detail tracking errors are listed in Table 3. As we can see, PSO-FSM not
only improves the guiding performance of the autonomous vehicle but also reduces the
tracking error significantly. The maximum tracking error of PSO-FSM is less than 3 cm in
the full-field path tracking test, which results from the fact that the uncertain disturbances
of the mobile vehicle path tracking on a dry pavement is well handled by the cascaded
path tracking algorithm.

When analyzing the experiment data, we notice that there is an obvious steady-state
error in the straight line segment, which may result from the mechanical clearance of the
steering control system and misalignment error between GNSS baseline and the forward
direction of the mobile vehicle. In the application of large agricultural machinery, the error



Appl. Sci. 2022, 12, 7683 14 of 19

coming from the mechanical clearance of the steering control system is negligible and the
misalignment error can be further compensated by field calibration [34].

Figure 12. Path tracking result of different algorithms. (a) Lateral error of path tracking for straight
line; (b) Lateral error of path tracking for curve path segment.

Figure 13. Full-field path tracking trajectory of PSO-FSM.

Table 3. Full-field path tracking error of the mobile vehicle.

Algorithm Guiding Distance
(m) Maximum Error (cm) MAE (cm) RMSE (cm)

SM 12 32 7.4 11.4

PSO-FSM 5 3 1.6 2.7

4.3. Combine Harvester Field Test

In order to further verify the fitness of the PSO-FSM algorithm, a field test was
performed based on a wheeled combine harvester C230 (provided by John Deere, Moline
city, IL, USA) as shown in Figure 14. In the design of the autonomous navigation system of
C230, the same dual-antenna RTK position system was employed as the wheeled mobile
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vehicle, and steering angle sensor, electric steering wheel were installed to set up the
close-loop control of self-driving. Electric control ignition, electric control shift, electric
control accelerator and electric control clutch were designed to realize unmanned combine
harvester. The C230 harvester has an operating width of 5 m and a turning radius of about
8 m. Its navigation system configuration and operation during harvesting operation is
consistent with that of the mobile vehicle experiment, and the path planning scheme shown
in Figure 7 is employed for the full-field path tracking test.

Figure 14. Reconstruction of the electric control system for the combine harvester.

The whole control system includes an electric steering wheel, angle sensor, electric
throttle and control unit related to grain unloading and threshing. The electric steering
wheel is Shanghai Lianshi EMS2 steering drive unit, whose working current goes up to
10 A. The advantages of EMS2 include high torque, high precision, IP65 dustproof and
waterproof, which is suitable for the harsh operating environment of a combine harvester.
The angle sensor is DWQCAB-V-CH from Beijing Tianhaike Company, with a linearity
of 0.02%FS and angular resolution of 0.022◦. The angle sensor is installed directly above
the steering vertical axis of the harvester and is directly connected to the center steering
vertical axis. Because of the large operating width of C230, the average operating speeds
for a straight line and automatic turn are about 0.8 m/s and 0.6 m/s, respectively, which
is almost the same as manual driving operating. Limited by the large turning radius and
reliability of manual–automatic gear switching, only the straight line harvesting operation
and automatic turning at the outer circle path were performed in the field test.

The result of the unmanned operation of the combine harvester in the farmland is
shown in Figure 15, where both the straight line and curved path tracking errors are smaller
than 0.5 m if the path tracking algorithm is stable. However, the maximum lateral tracking
error of the harvester is 0.63 m due to the harsh field soil environment, such as side slip
resulting from field ridge. However, the tracking accuracy is acceptable for the C230
automatic navigation because of its large operation width. Compared with the mobile
vehicle test result, we can conclude that the harsh soil condition and state delay of the
steering control system have a complicated effect on the parameter tuning of SM, especially
for bigger and heavier combine harvesters. Because heading information is only employed
to correct the positioning error in this test, the lever-arm error coming from pitch and
roll is not compensated, which can be seen from the field ridge-induced tracking error.
Furthermore, the lever-arm of the GNSS antenna installed in C230 is obtained manually
by measuring tape, and more precise lever-arm and high-frequency attitude information



Appl. Sci. 2022, 12, 7683 16 of 19

would improve the dual-antenna RTK position, which needs further verification and is also
part of our future work.

Figure 15. Path tracking result of the combine harvester. (a) Tracking trajectory of the combine
harvester; (b) Lateral error of path tracking for the combine harvester.

5. Conclusions

In order to cater for the variation factors of the path tracking algorithm for autonomous
agriculture machinery, the PSO-enhanced fuzzy Stanley model (PSO-FSM) is developed
and verified. The internal factors of the path tracking control system are handled by
using fuzzy algorithm design, and the time-varying external factors, such as actuator
saturation and varying speed, are taken into consideration by PSO. Experiments based on
numerical simulation and autonomous navigation vehicle are firstly performed, and the
result demonstrates that PSO-FSM outperforms FSM and SM in terms of guiding distance
under large initial error and path tracking precision under automatic turning. The field test
of autonomous navigation vehicle indicates that the full-field tracking errors of PSO-FSM
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including straight line and curve path tracking are less than 3 cm. Then, a preliminary
experiment on harsh farmland soil is performed, and the PSO-FSM achieves maximum
tracking error at 0.63 m.

In the future, the dual-antenna RTK positioning system should be enhanced by fusing
inertial navigation system, which not only provides the position and attitude at high update
frequency, but also enables precise lever-arm identification and reliable seamless navigation.
In addition, the calculation of PSO optimalization is based on the fitness functions (8) and
(9), if more tracking deviations are provided, the optimal result would be better, especially
when the curvature and environment disturbances change randomly. With the increase in
the number of control periods, the computational complexity is increased too, and thus
running the optimalization on a FPGA chip to speed up the calculation of PSO is also part
of our future work.
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Nomenclature

Symbol Unit Description
SM Stanley model
FSM Fuzzy Stanley model
PSO Particle swarm optimization
PSO-FSM PSO-enhanced fuzzy Stanley model
MAE Mean absolute error
RMSE Root mean square error
δ(t) rad Expected angle
δe(t) rad Expected angle due to lateral deviation
δθ(t) rad Expected angle due to heading deviation
e(t) m Lateral deviation
θe(t) rad Heading deviation
v(t) m/s Driving speed
δPSO(t) rad Expected angle after PSO
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