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Abstract: In this paper, the mechanism of rock damage induced by blasting excavation is numerically
studied by using an FDEM-based multiphysics fracture analysis software, MultiFracS. Based on the
drainage channel project of Guanggu 1st Road to Gaoxin 4th Road, a numerical model considering the
near-field fracture process is established to study the influence of a millisecond delay and construction
technology on the blasting excavation. Firstly, the double side drift method model is established to
analyze the influence of different millisecond delays on the peak blasting vibration velocity. Then, the
rock fracture process of the surrounding rock around the blast holes under the blasting excavation
construction technology of the double side drift method, the reserved core soil method, and the CRD
method is studied, respectively. The numerical simulation results show that the mainshock phases of
the blasting vibration velocity waveform generated by different bores overlap when the millisecond
delay is small. With the increase in the millisecond delay, the mainshock phase is gradually separated,
and the superposition effect of the blasting vibration is weakened. When the millisecond delay is
greater than 40 ms, the peak blasting vibration velocity is not affected by the millisecond delay. In
the three kinds of blasting excavation construction technologies, the double side drift method has
a better effect on the deformation and the fracture control of the surrounding rock. The optimal
millisecond delay and the rock fracture evolution process of the surrounding rock around blast holes
with different blasting excavation construction technologies are obtained.

Keywords: MultiFracS; FDEM; blasting excavation; rock fracture; numerical simulation

1. Introduction

In underground engineering, such as tunnel excavation and mining engineering,
blasting is an effective measure to break up rock mass. Although the application of blasting
significantly improves the efficiency of underground cavern excavation, it causes damage
to the surrounding rock. To reduce the damage of blasting to the surrounding rock, the
blasting excavation design and construction technology need to be optimized.

Therefore, the rock fracture process caused by blasting is characterized and classified.
Ramulu et al. [1] established a damage model of compact basalt and almond-shaped basalt
to study the damage of dynamic load on basalt rock mass. Kim et al. [2] established a split-
Hopkinson pressure bar (SHPB) model to study the stress–strain relationship of rocks under
dynamic loads, and a series of parameters affecting the dynamic mechanical properties of
rocks were obtained. Singh et al. [3] conducted field blasting tests by controlling blast hole
spacings and charging methods and studied the design modes and blasting excavation
construction technologies. Villaescusa et al. [4] used a triaxial blasting vibration waveform
monitoring device to monitor the rock mass damage in the mining field and established a
rock damage model for blasting design.

However, the blasting excavation test has the disadvantages of a high safety risk,
complicated operation, poor repeatability, and high cost. Recently, more and more scholars
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are using numerical simulation to study blasting excavation. Tao et al. [5] used a three-
dimensional numerical simulation to study the fracturing effect of the surrounding rock
under the excavation stress. Liu et al. [6] studied the expansion process of the rock fracture
propagation process during blasting excavation in the TASQ tunnel of the Aspo laboratory.
Saiang et al. [7] used a finite-difference program (FLAC) to study the mechanical behavior
of blast-damaged rock masses in shallow tunnels, and the results showed that the blast
damage area can significantly induce boundary stress and affect the distribution and mag-
nitude of ground deformation. Li et al. [8] proposed a mathematical model for the dynamic
excavation response of a circular roadway under hydrostatic pressure and analyzed the
dynamic response mechanism of the surrounding rock under different unloading rates
and different unloading paths using PFC. Yang et al. [9] used the LS-DYNA to simulate
the rock damage evolution process under the dynamic stress redistribution and explosive
loading and confirmed that the dynamic stress redistribution generates additional stress
fluctuations, resulting in a larger rock damage area. Xie et al. [10] introduced a new damage
model in the LS-DYNA to study the effect of in situ stress distribution on the development
of damage zones around deep-buried tunnels during the cutting blasting process. How-
ever, the above research rarely considers the near-field fracture evolution of the tunnel
surrounding rock.

The finite-discrete element method (FDEM) proposed by Munjiza [11,12] has been
successfully used to model the transition from continuum to discontinuity and developed
the open-source program Y2D. The FDEM absorbs the advantages of the explicit finite
element method for solving deformation and stress, the advantages of the discrete element
method for dealing with contact, and the advantages of the cohesive element model for
simulating fracture. In the FDEM, the solution domain is divided into solid finite element
meshes, and initial zero thickness joint elements that are similar to cohesion elements
are inserted into the boundaries of the solid elements. In addition, the initiation and
propagation of cracks are simulated by the fracture of joint elements. The deformation and
stress of the continuum are characterized by the deformation of the solid elements and
the bonding effect of the unbroken joint elements. Secondly, the NBS contact detection
algorithm and potential contact force are used to deal with the contact problems caused by
crack closure, sliding, and block collision.

In recent years, the FDEM has been widely used in tunnel excavation [13,14], labo-
ratory test-scale simulation [15,16], etc. For example, Rougier et al. [17] used a 3D-FDEM
to perform a full-scale three-dimensional analysis of the SHPB test for granite materials.
The softening behavior of the sample after crushing can be reproduced, and the simulation
results are consistent with the laboratory observations. Fukuda et al. [18] combined the
FDEM and GPU parallel technology to simulate a full-scale SHPB test and observed the
dynamic fracturing process and stress response phenomena of a Brazilian disk marble
specimen. Hamdi et al. [19] used the FDEM to simulate the complete 3D fracture process in
routine laboratory tests, including Brazilian splitting and uniaxial and biaxial compression
tests. The numerical results are in good agreement with the experiments, which shows that
the FDEM can simulate the rock fracture well.

Later, Yan [20] proposed a new potential function, which not only retained all the char-
acteristics of the original potential function in the FDEM but also reduced the dependence
on the mesh. Yan developed a series of 2D/3D hydro-mechanical coupling models [21–28],
contact heat transfer models [29–31], thermo-mechanical coupling models [32–36], hydro-
thermal coupling models [37], and moisture diffusion-fracture coupling models [38–40],
which make it possible to solve complex problems such as hydraulic fracturing, thermal
cracking, shrinkage cracking, etc. Later, these models were integrated and combined
with GPU parallel technology to develop the MultiFracS software by Yan [36]. From the
above discussion, it can be seen that the FDEM has been used in various fields [41], and
its related functional modules have been continuously improved. The functions of the
FDEM have completed the transition from pure mechanical fracture calculation to multi-
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physics fracture calculation, and from small-scale 2D fracture calculation to larger-scale 3D
fracture calculation.

In view of the unique advantages of the FDEM, we use the FDEM-based software
MultiFracS to establish a numerical model for tunnel blasting excavation, considering
near-field fracture and breakage. This model is used to study the effects of a millisecond
delay and different blasting excavation construction technologies, including the blasting
vibration velocity and the degree of fracture of the surrounding rock around the blast hole.

2. Fundamental of FDEM
2.1. Basic Equation

The FDEM combines the advantages of the finite element method and discrete element
method. In the FDEM, the explicit finite element method is used to calculate the stress and
strain of the element, the discrete element method is used for contact detection and contact
force, and the joint element is used to simulate the initiation and propagation of cracks.
The entire solution domain is discretized into a series of triangular elements. The relevant
information (mass, load) and motion information (displacement, velocity, acceleration) of
each triangular element are equivalent to the nodes of the triangular element, as shown
in Figure 1. Therefore, the motion law of the entire solution domain can be determined
through the motion law of these triangular element nodes. The velocity and displacement
of any point in the triangular element can be obtained by linear interpolation of the three
nodes constituting the triangular element. According to Newton’s second law, the position
and velocity of these nodes of the element at any time can be determined when the mass of
each node and the total node force are determined. The equation of motion of the node is
as follows [20]:

M
∂2x
∂t2 + C

∂x
∂t

= F (1)

where the M is the nodal mass, C is the damping coefficient, and F is the total nodal
force, which is equal to the vector sum of the nodal forces caused by the contact force,
the deformation of the triangular element, the deformation of the joint element, and other
external loads such as gravity.

Figure 1. The connection relationship between the triangular element and joint element in FDEM [20].

2.2. Fracture Constitutive Model for the Joint Element

In the FDEM, the initiation and propagation of cracks are controlled by the constitutive
fracture model of the joint element. The four nodes of the joint element are shared with the
two adjacent triangular elements on both sides. Therefore, the initiation and propagation
of cracks are only along the boundary of the triangular element. According to the relative
displacement state of the nodes of the joint element and the fracture constitutive model, it
can be judged whether the joint element is yielded, the I-type tension failure, II-type shear
failure, or I-II mixed tension–shear failure [20].

The relationship between the normal and tangential traction force and the normal
opening and tangential slip is shown in Equations (2) and (3). These two equations mainly
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represent the softening behavior in the latter part of the tensile and shear peaks, as shown
in Figure 2.

σ =

{
p f o, o < 0
f (D)Ts, o ≥ 0

(2)

where Pf is the penalty parameter of the joint element, o is the normal opening, Ts is the
tensile strength.

τ =

{
(c− σ tan φ) f (D), σ < 0
c f (D), σ ≥ 0

(3)

where D is the damage variable of the joint element, which can be specifically calculated.
When the joint element is in an elastic state:

D = 0, o ≤ op and |s| = 0 (4)

when the joint element is in a pure tension state:

D =
o−op
ot−op

, o > op and |s| = 0 (5)

where op is the corresponding normal opening amount when the joint element is at the peak
tensile stress (equal to the tensile strength), ot is the critical opening amount when the joint
element is tensile-fractured. When the opening amount of the joint element reaches the
critical opening amount ot, the damage variable D is 1. At this moment, the tensile stress
is reduced to 0 and a tensile crack occurs. ot can be calculated according to the fracture
energy of Mode I according to the following formula:

G f I =
∫ ot

0
σ(o)do (6)

For pure shear state:

D =
|s|−sp
st−sp

, |s| > sp and o ≤ 0 (7)

where sp is the corresponding tangential slip when the joint element is at the peak shear
stress (equal to the shear strength), and st is the critical tangential slip when the joint
element is tensile-fractured. When the tangential slip reaches the critical slip st, the damage
variable D is 1. At this moment, the tangential shear stress is reduced to 0 and a shear crack
occurs. st can be calculated according to the fracture energy of Mode II by:

G f I I =
∫ st

0
τ(s)ds (8)

For the mixed tensile–shear state:

D =

√(
o−op
ot−op

)2
+
( |s|−sp

st−sp

)2
,o > op or |s| > sp (9)

According to Equations (4), (5), (7), and (9), the damage degree of the joint element
can be calculated. If the damage variable D is greater than 1, set D to1. At this time, the
joint element breaks, and a crack occurs.

2.3. Contact Model for Triangular Element

Solid materials come into contact due to the closing of cracks and the sliding or collision
of blocks. The generation of contact is dynamic, and it is impossible to know in advance
when and where the contact occurs. Therefore, a contact detection algorithm is needed that
can dynamically determine which elements are in contact at the current moment during
the simulation. Once the elements are in contact, a contact force calculation is performed
on these contact elements, and contact force is applied to these contact elements to prevent
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excessive embedding between them. In the FDEM, the NBS algorithm [42] is used to judge
the contact, and the potential contact force algorithm is used to calculate the contact force.
This potential contact force algorithm can ensure energy conservation in the contact process,
and the contact force is a distributed force rather than a concentrated force.

Figure 2. Fracture constitutive model of joint elements: (a) tensile failure; (b) shear failure; (c) mixed
tensile and shear failure [11,12,20].

The basic idea of the NBS contact detection algorithm is to map the solid element to
the background cells, and the size of the cells can just fit the largest solid element. In this
way, for a given element, it is only necessary to judge whether the element in the cell is in
contact with the element in this cell and adjacent cells. In this way, the number of elements
involved in the detection will be greatly reduced. Thus, the efficiency of contact detection
is improved.

The calculation of the contact force between the blocks or the media on both sides of
the fracture is transformed into the calculation of the contact force between the triangular
elements in the FDEM. When judging the contact of triangular elements, the interaction
forces with equal force but opposite directions are applied to them to prevent the two
triangular elements from being embedded in each other. The contact force includes the
normal contact force and the tangential force. The following will focus on the normal
contact force and the tangential contact force.

(i) Normal Contact Force
As shown in Figure 3, the two contact triangular elements are called the active triangle

βc and the passive triangle βt, respectively. A closed area will be formed when they are in
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contact. The normal contact force between these two triangular elements can be expressed
as the area integral of potential function gradient in the overlapping area as:

fc = pn

∫
Γβt∩βc

[gradϕc(Pc)− gradϕt(Pt)]dA (10)

Figure 3. (a) Discretization for the contact between blocks with arbitrary shape; (b) contact between
triangular elements [11,12].

Applying Green’s formula to Equation (10), the area integral can be transformed into
a line integral of the boundary of the overlapping area:

fc = pn

∮
Γβt∩βc

nΓ(ϕc − ϕt)dΓ (11)

where Γβt∩βc is the boundary of the overlapping area of the two triangular elements, nΓ is
the outer normal direction vector of the boundary of the overlapping area.

(ii) Tangential contact force
After obtaining the total normal contact force and the force action point, the tangential

friction force can be calculated by:

Ft+∆t
t = Ft

t − pt∆us (12)

where the pt is the tangential penalty parameter and the ∆us is the relative displacement
increment at the current time step. When the tangential contact force calculated by the
equation satisfies

∣∣∣Ft+∆t
t

∣∣∣≥ Fn tan φ , the tangential friction force can be calculated by:

Ft+∆t
t =

Ft+∆t
t∣∣∣Ft+∆t
t

∣∣∣u|Fn| (13)

where u is the coefficient of friction.

3. Engineering Background

With the rapid development of urban construction in Wuhan, the existing drainage
system cannot meet the regional drainage needs. Especially along Guanggu Avenue, the
terrain is low-lying. The existing drainage box has been neglected in management for a
long time, resulting in serious siltation. In addition, the catchment area of the drainage
system along the line is large, and the rainwater cannot be discharged in time during
rainstorms, resulting in serious water stagnation in this area. Therefore, the construction
of the drainage channel project from Guanggu 1st Road to Gaoxin 4th Road needs to be
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urgently carried out to improve the drainage and waterlogging prevention capacity of the
Guanggu area.

The drainage channel project from Guanggu 1st Road to Gaoxin 4th Road is con-
structed by the Wuhan Municipal Construction Group. The starting point of the drainage
channel project is the intersection of Guanggu 1st Road and Huanglongshan North Road.
The construction line runs south along the planned drainage corridor belt on the west
side of Guanggu 1st Road; crosses Huanglongshan, the Third Ring Road, and the small
intersection overpass of T1\T2 line; and then reaches Gaoxin 4th Road, with a total length
of 2.3 km. The section from Ak0 + 135.800 to Ak0 + 887.850 with a length of about 752.050 m
is constructed by a concealed excavation method. The cross-sectional shape of the tunnel
is a straight wall and a micro-arch. The maximum net width of the tunnel is 13.56 m, the
maximum net height is 6.88 m, and the net cross-sectional area is 93.29 m2. The standard
section shape and size of the tunnel are shown in Figure 4. The surrounding rock of the
tunnel crossing includes grades III, IV, and V, and the tunnel blasting excavation construc-
tion technology for different surrounding rocks is also different. A variety of excavation
methods are adopted in the project, such as the bench method, CRD method, reserved core
soil method, and double side drift method. It can be seen that the structure and blasting
excavation construction technology of the tunnel are complex, and the transformation of
different blasting excavation construction technologies is frequent, which makes the tunnel
construction risk high. In addition, the important structures and pipelines around the
underground tunnel are densely distributed, resulting in many unforeseen risk factors. The
tunnel passes through the Third Ring Road foundation and high-pressure gas pipeline,
the existing Huanglongshan Municipal Tunnel, and other important structures at a short
distance. The disturbance effect of adjacent construction is significant, and the risk to the
surrounding environment is high.

Figure 4. Schematic diagram of the cross-sectional shape of the tunnel in the surrounding rock section
of grades III, IV, and V.

Given the complexity of the geological conditions, the tunnel structure, the surround-
ing environment, and the blasting excavation construction technology of the project, it is
necessary to investigate the deformation mechanism and control of the tunnel excavation
under complex conditions, which can provide a scientific basis and technical support for
the design and construction of the project. In this paper, the FDEM-based MultiFracS
software is used to simulate the tunnel blasting excavation. It does not need to track crack
propagation and mesh re-division when simulating the crack initiation and propagation.
Combined with efficient contact detection algorithms and contact force algorithms, the
blasting process of rock and soil mass can be modeled accurately. Therefore, the process of
complex fracture, fragmentation, movement, and accumulation of rock and soil mass of the
blasting excavation can be simulated.



Appl. Sci. 2022, 12, 7517 8 of 22

4. Millisecond Delay Determination

To improve the contrast of the analysis, the five blast holes segments (3, 5, 7, 9 and 11,
see Figure 5b) of the sixth part (other parts are labeled as 1, 2, 3, 4 and 5, see Figure 5a) of
the double side drift method are selected. The numbers in Figure 5 indicate the sequence
of excavation or detonation. The differential millisecond delay interval is set between the
segments, and the charge arrangement is shown in Figure 5b. The transverse direction of
the tunnel is the X-axis, and the Y-axis is the vertical direction. According to the actual
engineering conditions, the size of the model is 18 × 10 m, and the size of the tunnel is
13.56 × 6.88 m. Gmsh software is used to build models and generate the computational
mesh, as shown in Figure 6. In the FDEM, the numerical simulation results are affected by
the mesh size. When the mesh size is small enough, the FDEM numerical simulation results
tend to be stable [35,43]. Therefore, using a small mesh size does not have a significant
effect on the peak blasting vibration velocity. The normal direction around the model
is fixed and set as absorbing boundaries. The values of the millisecond delay are 5, 10,
20, 30, 40, and 50 ms, respectively. By simulating these six working conditions, the peak
blasting vibration velocity of the monitoring element on the right boundary of the model
in Figure 6 is obtained. Then, the influence of a different millisecond delay on the peak
blasting vibration velocity is analyzed to obtain a reasonable millisecond delay interval,
which provides a reference for the selection and optimization of a reasonable millisecond
delay. According to engineering experience and data, the meso-parameters input during
calculation are shown in Table 1.

Figure 5. (a) Schematic diagram of blasting excavation construction process of the double side drift
method; (b) schematic diagram of the blast hole arrangement and networked detonation in part VI.

Table 1. Meso input parameters of MultiFracS for tunnel calculation model.

Parameters Value

Triangular element

Density (kg/m3) 2300
Elastic Modulus E (GPa) 20

Friction angle (◦) 30
Normal contact penalty parameter pn (GPa) 2000

Tangential contact penalty parameter pt (GPa/m) 2000
Poisson 0.25

Joint element

Cohesive (MPa) 1.5
Tensile strength ft (MPa) 14

Internal (◦) 30
Tensile break energy release rate G f I (J/m2) 30,000

Shear fracture energy release rate G f I I (J/m2) 100,000
Blasting load peak (surrounding holes/other holes) MPa 104/316
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Figure 6. Schematic diagram of tunnel calculation model and monitoring unit for the double-side-
drift method.

As shown in Figure 7, the exponential blasting load function P(t) is applied to the
blast hole [44]:

P(t) = P0(e−αt − e−βt)/(e−αt0 − e−βt0) (14)

where t0 is the load rise time, which can be obtained by t0 = [1/(β− α)] log(β/α), and
β/α is the control parameter of pressure decay. In this study, β/α = 100 and t0 = 10 µs are
selected for simulation. P(t) only acts on the initial surface of the blast holes. Therefore,
the gas flow into the crack is not considered. P0 is the peak load, which is obtained from
the blasting technical parameters [45]. The peak load acting on the cutting holes, auxiliary
holes, and bottom plate holes is all 316 MPa, and the peak load acting on the peripheral
blast holes is 104 MPa.

Figure 7. Pressure–time curve of blasting load waveform.
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Figure 8 shows that the blasting vibration velocity of monitoring element A under
different millisecond delays calculated by MultiFracS software. The main shock phases of
the blasting vibration velocity waveforms basically overlap when the millisecond delay
is 5 ms. With the increase in the differential millisecond delay, the main shock phases
generated by different blast holes are gradually separated, and the superposition effect
of the blasting vibration gradually weakens. Four peaks are formed without considering
the peripheral blast holes. The main shock phases are completely separated when the
millisecond delay is 50 ms, and the blasting vibration waveforms caused by the four blast
holes can be clearly observed in the Figure 8.

Figure 8. The blasting vibration velocity of monitoring element A under different millisecond delays.
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In addition, the peak blasting vibration velocity of each segment obtained by the mon-
itoring element is different. When the millisecond delay is 5 ms, the peak blasting vibration
velocity of the particle is the largest, and the blasting vibration velocity is 2.304 cm/s. When
the millisecond delay is 20 ms, the peak blasting vibration velocity of the particle is the
smallest, and the blasting vibration velocity is 1.483 cm/s. The millisecond delay affects
the blasting vibration waveform caused by subsequent blast holes. For example, after
the second blast hole is detonated, the peak blasting vibration velocity of the monitoring
element is 1.095 and 1.008 cm/s, respectively, when the millisecond delay is 20 and 30 ms.
It is significantly lower than the other groups of blast holes in the same segment. After
the third and fourth blast holes are detonated, the peak blasting vibration velocity will
decrease with the increase in the millisecond delay and finally tend to be a stable value.
Therefore, we can find that the influence of the millisecond delay on the peak blasting
vibration velocity is not a single positive correlation or negative correlation. But when
the millisecond delay is greater than 40 ms, the millisecond delay does not affect the peak
blasting vibration velocity. In summary, the blasting vibration velocity effect is the best
when the millisecond delay is 20–30 ms, and it meets the requirements of the project that
the blasting vibration velocity is less than 2 cm/s. Therefore, the millisecond delay will be
set to 20 ms in the subsequent simulation.

5. Various Blasting Excavation Construction Technologies

A numerical model considering the near-field fracture process of the tunnel surround-
ing rock is established based on the actual engineering geology. However, it is difficult to
establish the same model as the reality. Therefore, the numerical model is simplified as
much as possible to reduce the computational burden. The last construction process of
the three blasting excavation construction techniques is simulated (the double side drift
method, the reserved core soil method, and the CRD method, as shown in Figure 9). The
numbers in Figure 9 indicate different excavation sequences. The transverse direction of
the tunnel is the X-axis, and the Y-axis is the vertical direction. According to the actual
engineering conditions, the size of the model is 18× 10 m, and the size of the tunnel is 13.56
× 6.88 m. The mesh of the model is shown in Figure 10. The normal direction around the
model is fixed and set as absorbing boundaries. The calculation parameters are consistent
with Table 1 except that the tensile and shear fracture energy release rates are 300 and 1000,
respectively. The blasting load P(t) adopts the same parameters as Section 4.

Figure 9. Schematic diagram of tunnel blasting excavation construction technology.
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Figure 10. Schematic diagram of the blasting excavation construction model and the mesh division.

The rock fracture process of the tunnel surrounding under three different blasting
excavation construction techniques is shown in Figures 11–13. The blasting rock splashes
toward the free surface in the calculation process. Figure 11 shows the fracture and
fragmentation process of the double side drift method, and the sequential millisecond
blasting method between rows parallel to the contour of the tunnel bottom is adopted.
Figure 12 shows the fracture and fragmentation process of the reserved core soil method,
and Figure 13 shows the fracture and fragmentation process of the CRD method, which
adopts the ladder millisecond blasting method. Cracks first appear around the blast holes,
then extend outward, and finally penetrate each other between the blast holes. The crack
penetration shape is consistent with other numerical methods and actual construction
as shown in Figure 14 (The number in Figure 14b represents the serial number of the
cracks.), which verifies the effectiveness of the MultiFracS software in dealing with the
tunnel blasting process.

However, the crack morphology of different blasting excavation construction tech-
niques is different. As shown in Figure 12, cracks initiated by the front blast hole extend
to the unexploded peripheral blast hole after the blasting of the third segment blast hole,
which weaken the directional fracture control effect of the peripheral blast hole, resulting
in the lack of integrity and flatness of the excavation surface of the peripheral blast hole in
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201 ms. As shown in Figure 13, the peripheral blast hole will detonate at 161 ms. Compared
with other blasting excavation construction techniques, there is no effective void effect
between the blast holes of the peripheral blast holes of the CRD method, which represents
that the surrounding rock around the blast holes is not effectively broken. It may be caused
by the high strength of the surrounding rock or the large spacing between the blast holes.

Figure 11. The fracture and fragmentation process of rock using the double side drift method.

Figure 15 shows the displacement distribution and rock fracture and fragmentation
process using the double side drift method excavation model. The first segment of the blast
hole is detonated at 0.1 ms. The surrounding rock around the blast hole begins to move
under the blasting load and the displacement of the surrounding rock around the blast hole
is 0.002 m. At 1.0 ms, the displacement of the surrounding rock around the blast hole close
to the free surface increases continuously, and the displacement of the surrounding rock
around the blast hole far away from the free surface increases slowly. The surrounding
rock near the free surface above the first segment of the blast hole is completely broken and
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splashed around at 20.5–34.0 ms. The surrounding rock below the blast hole of the first
segment blast hole is subjected to the blasting load of the second segment blast holes at this
moment. The displacement increases continuously, resulting in an upward-lifting trend.
The surrounding rock around the second segment of the blast hole produces horizontal
cracks that penetrate each other and gradually form a complete excavation surface. The
similar fracture mode is obtained in the fracture process of the surrounding rock around the
third segment blast hole (42.0–49.0 ms), the fourth segment blast hole (62.0–69.0 ms), and
the fifth segment blast hole (80.5–83.0 ms). The surrounding rocks between the peripheral
blast holes basically penetrated each other at 83.0 ms. The surrounding rock above the
peripheral blast holes reaches the maximum displacement of 0.005 m at this moment, and
the displacement of the surrounding rock below the peripheral blast holes basically tends
to 0. Therefore, the integrity and flatness of the tunnel excavation surface can be ensured.

Figure 12. Cont.
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Figure 12. The fracture and fragmentation process of rock damage and fracture in the reserved core
soil method.

Figure 13. Cont.
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Figure 13. The process of rock damage and fracture in the CRD method.

Figure 14. Tunnel crack propagation law: (a) other numerical simulation [46]; (b) field test results [47].
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Figure 15. Cont.
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Figure 15. Displacement distribution and rock fracture and fragmentation process using the double
side drift method.

Figure 16 shows the stress–time curves of the monitoring element under different
blasting excavation construction techniques. The monitoring element is consistent with
monitoring element A mentioned in Section 4. It can be seen from Figure 16 that the peak
stress range of the monitoring element under the double side drift method is 0.4–0.5 MPa,
the reserved core soil method is 0.1–0.4 MPa, and the CRD method is 0.2–0.7 MPa when
each segment of the blast hole is detonated. Compared with the reserved core soil method
and the CRD method, the stress change under the double side drift method is uniform. The
peak stress of the CRD method is the highest. The difference of the peak stress produced
by the peripheral blast holes detonation under different blasting excavation construction
techniques is small.
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Figure 16. Stress and time curve of monitoring element under different blasting excavation construc-
tion technologies.

6. Conclusions

In this paper, a numerical study of the blasting excavation process is carried out using
the FEDM-based MultiFracS software. Combined with the drainage channel project of
Guanggu 1st Road to Gaoxin 4th Road, the numerical model considering the near-field
fracture process is studied, and the influence of different millisecond delay and blasting
excavation construction technologies on the fracture and the blasting vibration velocity of
the surrounding rock around the blast hole is investigated. According to the numerical
simulation results, the following conclusions can be drawn:

(1) The influence of the millisecond delay on the peak blasting vibration velocity is not
a single positive correlation or negative correlation, but when the millisecond delay
is greater than 40 ms, the delay time no longer affects the peak blasting vibration
velocity. When the millisecond delay is 20–30 ms, the peak blasting vibration velocity
is the smallest, and it meets the requirements of the project that the blasting vibration
velocity is less than 2 cm/s.

(2) Through the numerical simulation on the near-field surrounding rock fracture of the
drainage channel project from Guanggu 1st Road to Gaoxin 4th Road, the optimal
blasting excavation construction technology of grade III surrounding rock is the
double side drift method. It has a better control effect on the deformation and crushing
of the surrounding rock of the tunnel.
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(3) Not only can the MultiFracS software simulate the whole process of a complex fracture,
fragmentation, and movement of rock and soil during blasting and excavation, but it
can provide information on the evolution of the displacement field and stress field in
the process of blasting, which provides a powerful simulation tool for blasting and
excavation engineering.
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