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Abstract: There are various types of autonomous unmanned systems, covering different spaces of
sea, land, and air, and they are comprehensively going deep into multiple fields of national security
and social life. Due to the development of technology, the scale of unmanned systems is getting larger
and larger, the number of components in the system is increasing, and the operating environment
of the system is also becoming more and more complex. Therefore, the probability of failure of the
components of the system will also be significantly increased. In order to eliminate the impact of the
fault in time, the fault diagnosis method is significant. Considering the differences of components in
autonomous unmanned systems, if a specific fault diagnosis algorithm is designed for each type of
component, it will bring difficulties to the coordinated control of the system. Therefore, this paper
analyzes the data characteristics of unmanned autonomous system devices (such as sensors) and
finds that these data have time series. Therefore, the data of different devices can be converted into
time series, and a general fault diagnosis algorithm suitable for most devices can be studied. The fault
diagnosis algorithm is based on the clustering algorithm. In order to improve the clustering effect,
the time series of different devices are represented by Gaussian mixture clustering to reduce the
computational complexity of the clustering calculation. Then, a time series similarity measurement
method based on the improved Markov chain is proposed. This method can better distinguish normal
samples from abnormal samples so as to classify and identify faults effectively.

Keywords: autonomous unmanned system; fault diagnosis; clustering algorithm; time series
symbolization; improved Markov chain

1. Introduction

The unmanned system consists of a single or multiple unmanned platforms, which
can complete designated tasks autonomously or through remote control. The system is
highly integrated with mechanization, information, and intelligent platforms to form a
smart unmanned system, including a single unmanned aerial vehicle, unmanned vehicles,
unmanned ships, unmanned submersibles, and other typical objects.

In order to ensure the reliable execution of the tasks of the multi-unmanned system,
it is necessary to pay attention to all aspects of the work of the multi-unmanned system
and ensure the safety of each part for overall safety. The autonomous fault monitoring and
fault-tolerant control of multiple unmanned systems is a hot research topic at home and
abroad. Compared with the traditional single-control system, considering the scale and
complexity of the multi-unmanned system, the multi-agent system lacks a central node
to coordinate the overall behavior of the system. As a result, the failure of a single node
can easily spread to the whole system through the coordination and cooperation between
nodes, bringing severe challenges to the system security.

Reference [1] designs a fault estimator that satisfies the hybrid passive/H∞ perfor-
mance index for stochastic multi-agent systems with unknown actuator offset faults and
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partial actuator failure faults. Reference [2] proposes a fault-tolerant tracking control design
method based on LMI technology and Lyapunov stabilization method, which is applied to
aircraft with sensor failures so that for disturbances and sensor failures, the closed-loop
system is asymptotically stable at a given disturbance attenuation level. Reference [3] uses
Kirsch operator and a deep convolutional neural network to identify abnormal areas of
photovoltaic modules, extract defect features, and then use a multi-class support vector
machine for defect detection. Reference [4] performs interval sampling and reconstruction
of the surface vibration acceleration signals of the rotor UAV under different flight states.
It then uses a one-dimensional convolutional neural network (1D-CNN) to perform the
reconstruction. Fault identification can effectively identify different or weak fault types
with slight differences. Reference [5] applies the transfer learning algorithm based on a
convolutional neural network to the fault diagnosis of MEMS inertial sensor of unmanned
aerial vehicle, improving the fault classification performance. Reference [6] proposed a
credit assignment-based fuzzy cerebellar model articulation controller (FCA-CMAC) neu-
ral network information fusion model. The model is used as an estimator for unknown
continuous faults, and the proposed fault identification method can diagnose thrusters’
continuous, uncertain, and novel failure modes. The heading angle sensor (compass) signal,
the yaw rate, and the control signal are used as the input of the FCA-CMAC, and the fault
diagnosis results are obtained through offline training. Reference [7] utilizes the charac-
teristics of parallel processing and highly self-organizing and self-learning information
of a fuzzy neural network to diagnose the diesel engine of unmanned cabin, overcoming
the limitation of a single system and obtaining better fault diagnosis results. Reference [8]
proposes a fault diagnosis strategy for induction motors based on support vector machine
(SVM) multi-classification. Fault features extracted from electrical and mechanical diag-
nostic media are used as input to the support vector machine, which performs feature
data fusion.

The above study shows that most of the existing fault intelligent diagnosis methods
are diagnosis algorithms for a specific target, such as an oil cylinder, partial actuator, etc.,
and the algorithms are designed using its characteristics (e.g., physical characteristics, elec-
trical characteristics). Therefore, each algorithm has different assumptions and applicable
objects and lacks universality. However, there are many types of equipment in autonomous
unmanned systems, and their characteristics are also different. If each equipment adopts
different fault diagnosis algorithms, it will cause great difficulties for the system’s au-
tonomous fault diagnosis and algorithm integration. Therefore, it is important to design a
general fault diagnosis algorithm suitable for most equipment.

The completion of autonomous unmanned systems missions is usually based on time,
and the sampled equipment data have a strong dependence on time. Time series refers to a
dataset in which the data are sorted according to the order of generation time. The recorded
data are the monitoring data of the same indicator of the same device and object over time.
These data have a trend with time change sequence. Time series is one of the most common
forms of data recording, which widely exists in various fields such as underwater ships,
aerospace, and so on.

The main contributions of this paper are as follows.

(1) This paper abandons the previous idea of designing a fault diagnosis algorithm
based on the characteristics of special equipment and takes the time series charac-
teristics of unmanned autonomous system data as the main research object. Based
on the above assumptions, this paper proposes a fault diagnosis method suitable for
most equipment.

(2) To improve the applicability of the fault diagnosis algorithm, this paper proposes a
fault diagnosis algorithm based on time series. This algorithm and clustering method
are combined for fault detection so that autonomous unmanned systems can reveal
fault data’s inherent laws and properties by learning unlabeled training samples.

(3) In order to reduce the computational complexity of clustering, this paper proposes a
time series symbolization method based on Gaussian mixture clustering to express
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different types of sensor data uniformly. Through the above processing, the time
series can effectively reduce the dimension and calculation.

(4) In order to improve the clustering effect, a time series similarity measurement algo-
rithm based on improved Markov chain is proposed. The algorithm can better extract
features and make the discrimination between samples more obvious.

2. Related Work

As a source of information, sensors play an essential role in automatic control systems,
and the accuracy of measurement results directly affects the entire system’s operation.
Faulty sensor signals can lead to incorrect decisions that affect system safety and produc-
tivity. Researchers have designed many methods for the fault diagnosis of sensors, such as
the diagnosis method based on signal analysis [9–13], and the diagnosis method based on
fault pattern recognition [14–18].

The approach adopted in this paper is to treat the sensor data as a time series. Time
series classification has been widely used in all aspects of life such as pattern recognition,
industrial control, anomaly detection, etc. Time series data have high dimensions and
are difficult to classify. Symbolic representation of time series refers to the representation
of high-dimensional and noisy continuous real-valued data into low-dimensional and
intuitive symbolic sequence data on the premise of maintaining and reflecting the basic
characteristics of time series data. There are many studies on the characterization of time
series. Keogh et al. presented piecewise approximate polymerization (PAA) [19]. This
method is a way to reduce the dimension of time series data, which can effectively improve
computing efficiency and reduce the cost of data storage. Lin et al. first proposed SAX,
a symbol approximation representation method based on the piecework approximation
aggregation method [20]. The value is mapped to the corresponding coincident space
according to the segmentation points of the sequence under the Gaussian curve for symbolic
representation. Fuad proposes an improved method for traditional symbolic approximate
representation to solve the problem of distance measurement. This method uses UMD
distance to update the lookup table, making it more advantageous in lower bound tightness
and time complexity compared with the original method [21]. Random shifting-based SAX
is an improved method proposed by Bai, which can significantly improve the tightness
of the lower bound without increasing the corresponding representation granularity [22].
Malinowski put forward a way that adds trend information based on traditional symbol
approximation aggregation. The central idea is to use linear regression for each segment
to find the mean and slope and convert the time series into a binary string, the fitting
error and classification effect are better than the good traditional symbol approximate
aggregation method [23]. Yin et al. put forward a new kind of long-time series symbol
representation method based on the trends. The difference from other methods is to focus
on retaining most of the trend features and patterns of the original series [24]. The above
techniques are all based on the assumption that the standardized time series obeys Gaussian
distribution, which is often difficult to be established in the natural environment. Especially
in autonomous unmanned systems, data do not follow normal distribution due to sampling
and other reasons, so the method often leads to large errors in the subsequent process.
Pham, N.D. et al. proposed an adaptive time series representation aSAX (adaptive SAX),
which combines the traditional symbol approximation representation method with the
k-means clustering method to find adaptive symbol segmentation points. This method is
superior to the classical time series representation method in all kinds of data sets with or
without Gaussian distribution, but the time complexity increases [25]. In 2016, Barnaghi,
P.M. proposed an enhanced time series representation method; this method is built on
the basis of extended SAX. The maximum, minimum, and average values of each time
series are constructed as vectors, the cosine similarity of the vector is used to measure
the similarity of the vector, and k-means clustering method is used to divide the symbol
region. The calculation time of this method is complicated, and the promotion effect is
not significant [26]. Passos, H.D. et al. proposed three different symbolic representation
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methods, including the k-means-based representation method, k-means-based symbolic
aggregation approximate representation method, and k-means-based extended symbolic
aggregation approximate representation method [27].

Another way to explore the symbolization of time series is to use it as a text and
to learn from the way of thinking of natural language processing. Lin et al. proposed
a histogram-based time series representation BOP (bag-of-patterns) based on the bag-of-
words model [28]. This method considers the global structure of time series and retains
the local structure. This kind of symbol representation method based on natural language
processing requires large memory, and it has high time complexity in the training phase, so
it cannot be used well in an autonomous unmanned system.

3. Core Idea
3.1. Problem Statement

Time Series: In this paper, time series with the same time interval are abbreviated as:

S = 〈s1, s2, . . . , sn〉

Time series data describe the changes of various parameters of equipment in work
and also contain the law and trend of fault occurrence, which is an important basis for fault
detection in this paper.

Cluster-Based Fault Diagnosis: In the fault diagnosis algorithm based on machine
learning, it can be divided into two categories: supervised learning and unsupervised
learning. Due to the confidentiality of the autonomous unmanned system, the small
number of faulty samples, and the difficulty of manual interpretation under massive data,
it is impossible to perform supervised learning by effectively labeling the dataset. The
learning of unlabeled training samples is needed to reveal the inherent laws and properties
of the autonomous unmanned system data. Clustering is often the preferred method for
such unsupervised learning.

The operation of dividing samples into a data set into several disjoint subsets is called clus-
tering, and each subset is a cluster. Formally speaking, the sample set D = {x1, x2, . . . , xn} con-
tains n unmarked samples, and for each sample, the goal of the clustering algorithm is to di-
vide the set composed of these samples into several disjoint clusters C = {ci |i = 1, 2, . . . , k},
where k is the number of clusters, and ci′ ∩ ci = ∅, D = Uk

i=1ci.
In order to improve the clustering effect of time series and better discover abnormal

data, we need to solve the following problems, denoted as questions Q1–2:

(1) Design a time series dimensionality reduction method to reduce the cost of clustering
calculation (Q1);

(2) Determine the similarity measure of two time series (Q2).

3.2. Overview of Our Model

To solve the problems mentioned above, we designed a multi-sensor fault diagnosis
method based on time series, as shown in Figure 1.

First, the time series data of the autonomous unmanned system are collected, and
the time series is dimensionally reduced by the symbolic representation method. Second,
the similarity calculation is performed on the symbolized time series. Third, based on the
similarity calculation results, a clustering algorithm is selected to identify abnormal data.
In the end, we provide answers to questions Q1–3. The key techniques are as follows:

(1) When extracting and classifying time series, the characteristics of multi-unmanned
system time series are first analyzed: high dimensionality and unknown distribution.
The high dimensionality determines that we must represent the time series symbol-
ically in order to achieve the purpose of dimensionality reduction. In the choice of
the time series symbolization method, this paper proposes a symbolic time series
classification method based on Gaussian mixture clustering (in Section 4.1.).
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(2) The measurement of time series similarity is the core of cluster-based fault diagnosis
algorithms. Whether the two time series are similar mainly depends on whether
their changing trends are consistent. However, time series has the characteristics
of high dimension and many data types, which brings great inconvenience to the
follow-up research. Therefore, for the measurement of time series similarity, the
similarity measurement function is particularly important. In Section 4.2., we define a
time series similarity measure based on an improved Markov chain.
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4. Fault Diagnosis Method Using Improved Clustering Algorithm
4.1. Time Series Symbolic Representation Based on Gaussian Mixture Clustering

For the above problem Q1, considering the distribution characteristics of sensor data,
the Gaussian mixture clustering is adopted to represent symbolically. This clustering
method is used to select the segmented points of the symbol interval, which has better
adaptability to the data with unknown distribution.

The Gaussian mixture model is a probability distribution model with the following form:

PGMM(x|θ) = ∑k
i=1 αi·p(x|θi) (1)

where αi > 0 is the mixed component of the i-th Gaussian distribution, and ∑k
i=1 αi = 1p(x|θi)

is the density of the Gaussian distribution, θi =
(
µi, σ2

i
)
, where µi, σ2

i are the location
parameters and scale parameters of the i-th Gaussian distribution corresponding to the
sub-model are as follows:

p(x|θi) =
1√

2πσi
e
(− (x−µi)

2

2σ2
i

)
(2)

The Gaussian mixture clustering algorithm is a prototype-based clustering method
that uses a probability model to describe the clustering prototype. The core idea is to
initialize the Gaussian mixture distribution model and then use the EM algorithm to update
the model iteratively.

The Algorithm 1 is shown as follows.
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Algorithm 1 Gaussian mixture clustering algorithm

Input: sample set D = {x1, x2, . . . , xm}, the number of Gaussian mixture components k;
Output: cluster partition C = {C1, C2, . . . , Ck};
1. initialize the parameter set of Gaussian mixture model {(αi, µi, σi)|1 ≤ i ≤ k}
2. repeat
3. for xj (1 ≤ j ≤ m) do

4. calculate the posterior probability E
(

γji

)
generated by the i-th Gaussian distribution

E
(

γji

)
=

αi·p
(

xj

∣∣∣µi, σ2
i

)
∑k

l=1 αi·p
(

xj

∣∣∣µl , σ2
l

)
5. end for
6. for i = 1,2,. . . , k do
7. update the mixing coefficient, position parameters and scale parameters for each Gaussian

distribution model:

α
′

i =
∑m

j=1 E
(

γji

)
m

; µ
′

i =
∑m

j=1 E
(

γji

)
xj

∑m
j=1 E

(
γji

)

σ2
i
′
=

∑m
j=1 E

(
γji

)(
xj − µ

′

i

)2

∑m
j=1 E

(
γji

)
8. end for
9. update the parameter setof Gaussian mixture model {(αi, µi, σi)|1 ≤ i ≤ k} to{(

α
′

i, µ
′

i, σ
′

i

)∣∣∣1 ≤ i ≤ k
}

10. until the end of the iteration
11. for j = 1,2,. . . , m do
12. λj = arg max

i∈{1,2,...,k}
γji

13. {λj = {λj ∪
{

xj

}
14. end for

The time series symbolic representation based on Gaussian mixture clustering is to
conduct Gaussian mixture clustering on all sample points and use the label obtained by
clustering to symbolize the value at a certain time so as to achieve the dimensional reduction
of the original time series.

This method can adapt well to the time series data provided by the autonomous
unmanned system, which is subject to Gaussian mixture distribution. The model is simple
and easy to understand, and the time complexity is relatively low.

4.2. Time Series Feature Engineering Using the Improved Markov Chain Model

The measurement of time series similarity is the core of clustering algorithm. The
definition of time series similarity is described as follows:

For the two given time series S1, S2, and given a similarity measure function Dist(S1, S2).
If the time series S1 and S2 meet the following conditions:

Dist(S1, S2) ≤ ε (3)

then, the time series S1 and S2 are similar, where ε is the threshold of time series similarity.
In the design of the time series similarity measurement method, we must consider the

common characteristics of sensor data of unmanned autonomous systems. The ultimate
goal of unmanned autonomous system fault diagnosis is to find out the abnormal state
of the system. Through analysis, it can be found that the current state of the unmanned
autonomous system is determined by the state of the previous moment, independent of
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other time states, and has Markov properties. Therefore, this paper proposes a similarity
measurement method for time series based on Markov chain models.

In Section 4.1, the symbolic representations of the original space mission time series
were made through the symbolic representation of time series based on Gaussian mixture
clustering, and this symbolic expression can be regarded as different states of the time
series, and the process of symbols change can be considered as the state transition of the
time series, this transition is determined by the current state, it has the Markov property.
Therefore, we regard each time series as a Markov chain, and its state space is the symbol
set after the time series is symbolized. Therefore, we designed a time series similarity
measurement method based on Markov chain. The specific process is shown in Figure 2.
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Each symbolized time series S = {s1, s2, . . . , sn} satisfies Markov property, that is:

P(Sl+1 = j|S0 = i0, S1 = i1, . . . , Sl = il) = P(Sl+1 = j|Sl = il) (4)

Among them, Sl represents the corresponding state of time series at time l, and the
conditional transfer probability P(·|·).

Thus, the transition probability between states in each symbolized time series can be
obtained as follows:

pi,j = P(Sl+1 = j|Sl = i) (5)

The corresponding transfer probability matrix of each symbolized time series can be
obtained, that is:

P =
(

pi,j

)
(6)

where ∑i,j∈S pi,j = 1 and pi,j ≥ 0.
Since the symbolic representation method of time series is based on Gaussian mixture,

clustering gives the symbol set corresponding to the time series, and the length of the
symbol set is fixed. We might set the length as k, then the size of the transfer probability
matrix corresponding to each time series is also fixed, that is k× k. Therefore, the method
can convert the time series with variable length into the transfer probability matrix with the
same size, and it also provides effective support for the similarity measure of time series.
Because the transition probability matrix is a sparse matrix, the representation of triples is
used to reduce the space complexity during storage.
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In order to facilitate similarity measurement, the transition probability matrix is
converted into a one-dimensional vector X, and the transformation method is as follows:

xi∗k+j = pi,j (7)

Since the one-dimensional vector X can describe each time series S, the similarity
of the two time series can be described as the Euclidean distance of the corresponding
one-dimensional vector.

Because the time series data will be in a state for quite a long time when a time series
is directly modeled using a Markov chain, the transition from one state to its own state will
account for the majority. The proportion to other states is much smaller than this value,
which leads to this method describing the proportion of different states and ignoring the
changes between states. Therefore, this paper improves the time series feature engineering
based on Markov chain model.

First, the state transition is divided into two part: maintaining the current state and
transitioning to other states. For the part that keeps the current state, the proportion of the
state in the whole time series is measured, and the state transition probability after the state
transition to other states is measured by removing the state transition to itself. The specific
process is as follows:

• Input: Symbolized time series S = {s1, s2, . . . , sm}, symbol set C
• Output: feature matrix corresponding to the time series M
• Process: Traverse the symbolized time series S, count the number of transitions be-

tween states, and construct a matrix of times as follows:

Counti,j = ∑Sl+1=i ∧Sl+1=j ∧i,j∈C 1 (8)

Traverse the matrix and calculate the total number of times that the time series main-
tains its own state, as follows:

Sumkeep = ∑i∈C Counti,i (9)

Traverse the matrix and calculate the total number of jumps to other states in the time
series as follows:

Sumchange = ∑i∈C,j∈C,i 6=j Counti,j (10)

Use the following formula to obtain the feature matrix corresponding to the time
series M

Mi,j =

{
Counti,j/Sumkeep

Counti,j/Sumchange

i ∈ C, j ∈ C, i = j
i ∈ C, j ∈ C, i 6= j

(11)

In Section 5.2, we will compare these two different feature extraction methods.

4.3. Fault Diagnosis Method Based on Clustering

There are three types of anomaly detection methods based on clustering:

• The first type of method is based on the assumption that each piece of normal data
belongs to a cluster, while the abnormal data do not belong to any cluster. Generally,
this type of method does not force every instance to belong to a cluster.

• The second type of method is based on the following assumption: normal data dis-
tribution is close to the center of the cluster, while abnormal data distribution is far
away from the cluster’s center. In this method, the data are firstly clustered, then the
anomaly is evaluated by calculating the distance from each point to the center of the
corresponding cluster.

• The third method is based on the following assumptions: the samples of the cluster
where the normal data are located are relatively dense, while the samples of the cluster
where the abnormal data are located are relatively sparse.
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Considering that the abnormal data of autonomous unmanned systems belong to the
small sample data, the fault diagnosis can choose the first and third types of clustering
algorithms. The first type of method mainly uses DBSCAN clustering method based on
density, while the third type is based on k-means based on partition and hierarchical
clustering. In this paper, we adopt the third clustering method for fault detection.

5. Experimental Results and Analysis

In order to verify the validity of the method, we carried out further experiments by
using the data set of an aeronautical autonomous unmanned system.

5.1. Model Evaluation Criteria

(1) Data fitting effect evaluation index

This paper uses the fitting error to measure the effect of time series coincidence. The
segmentation model of time series is the set of elements composed of the start time and the
end time of the subsequence, which is denoted as M = {(b0, e0), (b1, e1), . . . , (bk, ek)}. The
element (b0, e0) is a two-tuple, in which bi is the start time of the segmentation subsequence,
and ei is the end time of the segmentation subsequence.

The symbolization of time series can be regarded as the segmentation and description
of time series. For time series S = (x1, t1), (x2, t2), . . . , (xn, tn), the segmentation mode M is
adopted, and the fitting error is:

E =

√
∑k

j=0 ∑
ej
i=bj

(
xi − avgj

)2
(12)

where avgj is the mean value of the i-th subsequence.
Considering that the selected time series are not equally long, to measure the effect

of time series symbolization better, we add a normalization factor to the fitting error to
balance the length of time series, that is:

E′ = 1
n

√
∑k

j=0 ∑
ej
i=bj

(
xi − avgj

)2
(13)

The smaller the fitting error, the better the effect of time series coincidence.

(2) Clustering effect evaluation index

Considering the data confidentiality and labeling difficulties, we use internal indexes
of clustering to evaluate the clustering effect. In order to better describe the index, some
function definitions are given.

Function definition 1: Average distance between samples in the cluster:

avg(C) =
2

|C|(|C| − 1) ∑
1≤i≤j≤|C|

dist
(

xi, yj

)
Function definition 2: Maximum distance between samples in the cluster:

diam(C) = max
1≤i≤j≤|C|

dist
(

xi, yj

)
Function definition 3: The distance between the nearest samples between clusters:

dmin
(
Ci, Cj

)
= min

xi∈Ci,yj∈Cj
dist

(
xi, yj

)
Function definition 4: Distance of sample center point between clusters

dcen
(
Ci, Cj

)
= dist

(
µi,µj

)
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For cluster partition C = {C1, C2, . . . , Ck}, there are several common internal indexes
of clustering performance measurement as follows:

Internal index 1: The Davies–Bouldin Index (DBI)

DBI =
1
k ∑k

i=1 max
j 6=i

(
avg(Ci) + avg

(
Cj
)

dcen
(
Ci, Cj

) )
(14)

Internal index 2: Dunn Index (DI)

DI = min
1≤i≤k

min
j 6=i

 dmin
(
Ci, Cj

)
max

1≤l≤k
diam(Cl)

 (15)

For clustering, if the average value between samples of each cluster is smaller, the DB
index is smaller. If the distance between the cluster center points is larger, the DB index is
smaller. In contrast, the Dunn exponent characterizes the ratio between the minimum of
the closest distance between any two clusters and the maximum of the distance between
the two furthest points within any cluster. If the minimum value of the nearest distance
between any two clusters is larger, the Dunn index is larger; if the maximum value of the
distance between the two furthest points in any cluster is smaller, the Dunn index is larger.

5.2. Test Results and Analysis

(1) Experiment results of time series symbolization

Each value of all time series is taken as a sample to train the Gaussian mixture
clustering model, and the clustering label of each sample is successively obtained as
its corresponding symbol thus each time series is symbolized, as shown in the figure below:

The series is symbolized, as shown in Figure 3 below:
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Figures 4 and 5 respectively compress a time series in the data set with the traditional
symbolic representation method of time series and the symbolic representation method of
time series based on Gaussian mixture clustering proposed in this paper. These two algo-
rithms use the same compression ratio, and it can be seen that the symbolic representation
method of time series based on Gaussian mixture clustering proposed in this paper can
better describe the fluctuation of the original time series.
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We used the above formula to calculate 408 time series in the data set for experiments,
and the results are shown in Table 1.

Table 1. Comparison between the symbolic representation method of time series based on Gaussian
mixture clustering and the traditional method.

The Serial Number Traditional Symbolic
Representation of Time Series

A Symbolic Representation
Method of Time Series Based on

Gaussian Mixture Clustering

1 0.006521201 0.002199259
2 0.002446704 0.015722783
3 8.02 × 10−7 8.02 × 10−7

4 0.00701202 0.000718564
5 0.002896344 0.002896344
6 0.002338207 0.009036553
7 0.005271108 0.009092318
8 0.004497003 0.001726509
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Table 1. Cont.

The Serial Number Traditional Symbolic
Representation of Time Series

A Symbolic Representation
Method of Time Series Based on

Gaussian Mixture Clustering

9 0 0
10 0.004288419 0.009207164
... ... ...

471 5.84 × 10−7 5.84 × 10−7

472 0.009355902 0.001267874
473 3.12 × 10−7 3.12 × 10−7

474 0.008298582 0.003469096
475 0.004413301 0.008241421
476 0.010358657 0.02383774
477 0.011526121 0.025266455
478 8.52 × 10−7 8.52 × 10−7

479 0.009612222 0.001176151
480 0.008940187 0.002242722

The average error 0.003751851 0.003683018

As can be seen from the above table, the fitting error of the time series symbolized
representation method based on Gaussian mixture clustering is smaller than that of the
traditional time series symbolized representation method. From this perspective, this
method can describe the original time series relatively well.

(2) Clustering experiment results based on improved similarity measurement method

According to Section 4.2., an improved Markov chain model is used to model the
time series. For example, all of the time-series data are converted into a 10× 10 state
transition matrix and converted into a vector of length 100, as described in this chapter.
Based on using the principal component analysis to reduce data dimension for the vector
visualization, Figure 6 shows the sample distribution based on the Markov chain feature
engineering, Figure 7 shows the sample distribution after based on the improved Markov
chain feature engineering (A blue dot in Figures 6 and 7 represents a data sample).
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It can be observed that the discrimination between the samples based on the improved
Markov chain feature engineering is more prominent, which is conducive to the following
clustering analysis.

The DBI indices of different clustering algorithms based on the Markov feature en-
gineering and the improved Markov feature engineering are obtained by calculation, as
shown in Figure 8:
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Figure 8. Comparison diagram of clustering DBI index before and after improvement.

In general, when the number of clusters exceeds 5, the DBI of the improved Markov
feature engineering under any clustering method is much smaller than the DBI before the
improvement. The effect is more apparent when the number of clusters increases.

The DI of different clustering algorithms based on the Markov feature engineering and
the improved Markov feature engineering is obtained by calculation, as shown in Figure 9.

It can be found from the figure that when the number of clusters is between 2 and 7, the
DI increases, but after that, the DI starts to decrease. When the number of clusters is greater
than 11, the DI of the improved feature engineering is still relatively stable. In contrast, the
DI of the pre-improvement feature engineering is very small under any algorithm, and the
clustering effect becomes generally poor.
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(3) Abnormal sample detection results

Two example of fault diagnosis based on the improved k-means clustering algorithm
are shown in Figures 10 and 11 (Different colors are used to represent different clusters in
the diagram).
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The sample anomaly rate is defined as follows in this paper:

ACC(S) =
nS

N
(16)

N is the total number of samples, nS is the number of elements in the cluster where
the current sample is located. In order to compare the accuracy of samples and enhance
the robustness of the algorithm, a normalization factor is introduced to the normality
of samples

ACC
′
(S) = λ

nS

N
(17)

λ is the normalization factor that is used to normalize the function, which the following
formula can obtain:

λ =
ACC(S)−min

i∈D
ACC(i)

max
i∈D

ACC(i)−min
i∈D

ACC(i)
(18)

Then, the abnormal rate of the sample is:

P(S) = 1−ACC
′
(S) (19)

The experiment result (Figure 10) shows a normal sample using the improved clus-
tering algorithm. In this case, there are 10 clusters, and the cluster in which the sample is
located is number 2. No. 2 cluster has 55 samples. The total number of samples is 480, the
smallest cluster has 10 samples, and the largest cluster has 73 samples. The abnormal rate
of this sample is 28.75%.

The experiment result (Figure 11) shows an abnormal sample using the improved
clustering algorithm. In this case, there are 10 clusters, and the cluster in which the sample
is located is number 5. No. 5 cluster has 17 samples. The total number of samples is 481,
the smallest cluster has 10 samples, and the largest cluster has 73 samples. The abnormal
rate of this sample is 88.89%.

The larger the value is, the fewer elements in the cluster, and the greater the possibility
of abnormality.

6. Conclusions

In the research of fault detection algorithm of the autonomous unmanned system,
most researchers focus on the use of fault detection algorithm of a specific device and the
lack of a unified fault detection method for multiple devices in the system. The specific
work is as follows:

• Based on the time series data of unmanned autonomous system and the time series
data of various devices, a fault diagnosis algorithm based on time series and clustering
is proposed. This method can be applied to a variety of devices.

• A time series symbolic representation method based on Gaussian mixture clustering
is proposed. By symbolizing the time series to perform dimensionality reduction
operations on the data, it can reduce the complexity of clustering calculations and
reduce the impact of noise data on autonomous data. Compared with other time series
symbolization methods, this method has better fitting effect and is more convenient
for subsequent clustering operations.

• A method for measuring the similarity of time series based on Markov chain model is
proposed. This method further improves the original method and performs different
probability calculations for the transition between states and the transition of the state
itself to further optimize the clustering effect.

• Through experiments, we found that the improved clustering algorithm can better
detect abnormal data.



Appl. Sci. 2022, 12, 7366 16 of 17

Author Contributions: Conceptualization, Z.X. and Q.L.; methodology, Z.X. and M.W.; writing—
original draft preparation, Z.X.; project administration, L.Q. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported in part by The 4th project “Research on the Key Technology of
Endogenous Security Switches” (2020YFB1804604) of the National Key R&D Program “New Network
Equipment Based on Independent Programmable Chips” (2020YFB1804600), the 2020 Industrial
Internet Innovation and Development Project from Ministry of Industry and Information Technology
of China, the Fundamental Research Fund for the Central Universities (30918012204, 30920041112),
the 2019 Industrial Internet Innovation and Development Project from Ministry of Industry and
Information Technology of China.

Data Availability Statement: The data presented in this study are available from the corresponding
authors. The data cannot be made public as it relates to ongoing projects.

Conflicts of Interest: We declare that we have no financial and personal relationships with other
people or organizations that can inappropriately influence our work, and there is no professional or
other personal interest of any nature or kind in any product, service and/or company that could be
construed as influencing the position presented in, or the review of this manuscript.

References
1. Liu, M.; Ke, Y.; Wang, A.; Liu, Z.; Li, J. Fault-tolerant control approach for multi-agent systems with multiple failures. J. Hangzhou

Dianzi Univ. (Nat. Sci.) 2022, 42, 7.
2. Qian, M.; Xiong, K. Fault tolerant control scheme design for formation flight control system of multiple unmanned aerial vehicles.

Trans. Nanjing Univ. Aeronaut. Astronaut. 2018, 35, 693–701.
3. Li, X.; Li, W.; Yang, Q.; Yan, W.; Zomaya, A.Y. An unmanned inspection system for multiple defects detection in photovoltaic

plants. IEEE J. Photovolt. 2020, 10, 568–576. [CrossRef]
4. Du, C.; Zhang, X.; Zhong, R.; Li, F.; Yu, F.; Rong, Y.; Gong, Y. Unmanned aerial vehicle rotor fault diagnosis based on interval

sampling reconstruction of vibration signals and a one-dimensional convolutional neural network deep learning method. Meas.
Sci. Technol. 2022, 33, 065003. [CrossRef]

5. Gao, T.; Sheng, W.; Yin, Y.; Du, X. A transfer learning based unmanned aerial vehicle mems inertial sensors fault diagnosis
method. J. Phys. Conf. Ser. 2021, 1852, 042084. [CrossRef]

6. Zhu, D.; Sun, B. Information fusion fault diagnosis method for unmanned underwater vehicle thrusters. IET Electr. Syst. Transp.
2013, 3, 102–111. [CrossRef]

7. Yuan, X.; Peng, J.; Yang, D.; Hao, R.S. Research on automatic monitoring and fault diagnosis system of unmanned cabin. EPH Int.
J. Sci. Eng. 2017, 3, 1–7.

8. Martínez-Morales, J.D.; Palacios-Hernández, E.R.; Campos-Delgado, D.U. Multiple-fault diagnosis in induction motors through
support vector machine classification at variable operating conditions. Electr. Eng. 2018, 100, 59–73. [CrossRef]

9. Cheng, G.; Chen, X.H.; Shan, X.L.; Liu, H.G.; Zhou, C.F. A new method of gear fault diagnosis in strong noise based on
multi-sensor information fusion. J. Vib. Control 2016, 22, 1504–1515. [CrossRef]

10. Othman, M.S.; Nuawi, M.; Mohamed, R. Vibration and acoustic emission signal monitoring for detection of induction motor
bearing fault. Int. J. Eng. Res. Technol. 2015, 4, 924–929.

11. Seshadrinath, J.; Singh, B.; Panigrahi, B.K. Investigation of vibration signatures for multiple fault diagnosis in variable frequency
drives using complex wavelets. IEEE Trans. Power Electron. 2013, 29, 936–945. [CrossRef]

12. Estima, J.O.; Cardoso, A.J.M. A new algorithm for real-time multiple open-circuit fault diagnosis in voltage-fed pwm motor
drives by the reference current errors. IEEE Trans. Ind. Electron. 2013, 60, 3496–3505. [CrossRef]

13. Martinez-Herrera, A.L.; Ferrucho-Alvarez, E.R.; Ledesma-Carrillo, L.M.; Mata-Chavez, R.I.; Lopez-Ramirez, M.; Cabal-Yepez, E.
Multiple fault detection in induction motors through homogeneity and kurtosis computation. Energies 2022, 15, 1541. [CrossRef]

14. Liu, Z.; Guo, W.; Tang, Z.; Chen, Y. Multi-sensor data fusion using a relevance vector machine based on an ant colony for gearbox
fault detection. Sensors 2015, 15, 21857–21875. [CrossRef] [PubMed]

15. Xiong, G.; Shi, D.; Chen, J.; Lin, Z.; Duan, X. Divisional fault diagnosis of large-scale power systems based on radial basis function
neural network and fuzzy integral. Electr. Power Syst. Res. 2013, 105, 9–19. [CrossRef]

16. Yu, C.; Ma, S.; Wen, X. Application of natural gradient algorithm for the aircraft engine vibration signal separation and fault
diagnosis. J. Converg. Inf. Technol. 2012, 7, 382–388.

17. Li, P.; Chai, Y.; Cen, M.; Qiu, Y.; Zhang, K. Multiple fault diagnosis of analog circuit using quantum hopfield neural network. In
Proceedings of the 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 25–27 May 2013; pp. 4238–4243.

18. Guo, X.-G.; Tian, M.-E.; Li, Q.; Ahn, C.K.; Yang, Y.-H. Multiple-fault diagnosis for spacecraft attitude control systems using
rbfnn-based observers. Aerosp. Sci. Technol. 2020, 106, 106195. [CrossRef]

19. Keogh, E.; Chakrabarti, K.; Pazzani, M.; Mehrotra, S. Dimensionality reduction for fast similarity search in large time series
databases. Knowl. Inf. Syst. 2001, 3, 263–286. [CrossRef]

http://doi.org/10.1109/JPHOTOV.2019.2955183
http://doi.org/10.1088/1361-6501/ac491e
http://doi.org/10.1088/1742-6596/1852/4/042084
http://doi.org/10.1049/iet-est.2012.0052
http://doi.org/10.1007/s00202-016-0487-x
http://doi.org/10.1177/1077546314542187
http://doi.org/10.1109/TPEL.2013.2257869
http://doi.org/10.1109/TIE.2012.2188877
http://doi.org/10.3390/en15041541
http://doi.org/10.3390/s150921857
http://www.ncbi.nlm.nih.gov/pubmed/26334280
http://doi.org/10.1016/j.epsr.2013.07.005
http://doi.org/10.1016/j.ast.2020.106195
http://doi.org/10.1007/PL00011669


Appl. Sci. 2022, 12, 7366 17 of 17

20. Lin, J.; Keogh, E.; Lonardi, S.; Chiu, B. A symbolic representation of time series, with implications for streaming algorithms. In
Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery, San Diego, CA,
USA, 13 June 2003; Association for Computing Machinery: San Diego, CA, USA, 2003; pp. 2–11.

21. Muhammad Fuad, M.M. Modifying the symbolic aggregate approximation method to capture segment trend information. In
Modeling Decisions for Artificial Intelligence; Torra, V., Narukawa, Y., Nin, J., Agell, N., Eds.; Springer International Publishing:
Cham, Switzerland; pp. 230–239.

22. Bai, X.; Xiong, Y.; Zhu, Y.; Zhu, H. Time series representation: A random shifting perspective. In Proceedings of the 14th
International Conference on Web-Age Information Management, Beidaihe, China, 14–16 June 2013; Springer: Beidaihe, China,
2013; pp. 37–50.

23. Malinowski, S.; Guyet, T.; Quiniou, R.; Tavenard, R. 1d-sax: A novel symbolic representation for time series. In Advances in
Intelligent Data Analysis XII; Tucker, A., Höppner, F., Siebes, A., Swift, S., Eds.; Springer: Berlin/Heidelberg, Germany; pp. 273–284.

24. Yin, H.; Yang, S.-Q.; Zhu, X.-Q.; Ma, S.-D.; Zhang, L.-M. Symbolic representation based on trend features for knowledge discovery
in long time series. Front. Inf. Technol. Electron. Eng. 2015, 16, 744–758. [CrossRef]

25. Pham, N.D.; Le, Q.L.; Dang, T.K. Two novel adaptive symbolic representations for similarity search in time series databases. In
Proceedings of the 2010 12th International Asia-Pacific Web Conference, Buscan, Korea, 6–8 April 2010; pp. 181–187.

26. Barnaghi, P.M.; Bakar, A.A.; Othman, Z.A. Enhanced symbolic aggregate approximation method for financial time series data
representation. In Proceedings of the 2012 6th International Conference on New Trends in Information Science, Service Science
and Data Mining (ISSDM2012), Taipei, Taiwan, 23–25 October 2012; pp. 790–795.

27. dos Santos Passos, H.; Teodoro, F.G.S.; Duru, B.M.; de Oliveira, E.L.; Peres, S.M.; Lima, C.A.M. Symbolic representations of time
series applied to biometric recognition based on ecg signals. In Proceedings of the 2017 International Joint Conference on Neural
Networks (IJCNN), Anchorage, AL, USA, 14–19 May 2017; pp. 3199–3207.

28. Lin, J.; Khade, R.; Li, Y. Rotation-invariant similarity in time series using bag-of-patterns representation. J. Intell. Inf. Syst. 2012,
39, 287–315. [CrossRef]

http://doi.org/10.1631/FITEE.1400376
http://doi.org/10.1007/s10844-012-0196-5

	Introduction 
	Related Work 
	Core Idea 
	Problem Statement 
	Overview of Our Model 

	Fault Diagnosis Method Using Improved Clustering Algorithm 
	Time Series Symbolic Representation Based on Gaussian Mixture Clustering 
	Time Series Feature Engineering Using the Improved Markov Chain Model 
	Fault Diagnosis Method Based on Clustering 

	Experimental Results and Analysis 
	Model Evaluation Criteria 
	Test Results and Analysis 

	Conclusions 
	References

