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Abstract: In the literature, robust reversible watermarking schemes (RWSs) allow the extraction of
watermarks after the images have suffered attacks; however, the modified images are compromised.
On the other hand, self-recovery schemes will restore the compromised regions of the images, but
no secret messages are inserted in these schemes. A framework for robust reversible watermarking
with signal restoration capabilities was previously proposed in the literature. This study selects
four fragile reversible watermarking techniques and two self-recovery schemes to design different
framework configurations. These configurations are evaluated to test the framework’s performance
and determine the structure that yields better results in terms of perceptual transparency using a well-
known image database as the signal input. It was found that fragile reversible watermarking schemes
hold low perceptual distortion, while self-recovery schemes produce high perceptual distortion levels.
The inherent characteristics of each algorithm determine, a priori, the behavior of the framework,
which is approximated by a proposed equation.

Keywords: robust reversible watermarking; signal restoration; self-recovery watermarking

1. Introduction

Due to available fast Internet connections, massive access to multimedia material is
common currently. However, this ease of connection produces some risks in the reliability
of the accessed material. Although different strategies have been proposed, in particular,
digital watermarking has been shown to be an appropriate option for the protection of
multimedia content. Despite its protection capabilities, conventional digital watermarking
produces distortion in the host signal. These distortions are not acceptable for critical
applications such as medical or military imaging [1]. Reversible watermarking schemes
(RWSs) emerge as an option to overcome the distortion induced by classical marking
schemes. RWSs allow the host signal to be reconstructed to its original state after removing
the inserted watermark.

On the other hand, most of the RWSs are not very robust to attacks. If a tagged
signal is attacked, the recovery of the information and the reconstruction of the host signal
will be very difficult. Recently, some robust reversible watermarking schemes have been
proposed in the literature. Most of these schemes are deployed in the spatial domain
and are robust to JPEG compression and the addition of Gaussian noise. Some examples
of this kind of scheme are the ones presented by [2,3]. Furthermore, there are schemes
that use the frequency domain for the insertion of the watermark. As is well known, the
frequency domain is usually more robust to attacks than the spatial domain. There are
some examples of such schemes in the literature, such as those proposed in [4–6]. Typically,
these schemes are robust to attacks such as clipping, noise addition, scaling, and histogram
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modification. Furthermore, RWSs for medical images have been recently proposed under a
hybrid approach such as in [7].

An interesting watermarking application is known as signal authentication, where
a fragile watermark is used to identify and localize tampering in the attacked signals. A
representative fragile watermarking scheme for medical images is reported in [8]. Due to
the need to restore the attacked signals, beyond identifying the attack, self-recovery schemes
have emerged. In [9], the idea was proposed of embedding an image into itself to restore
the tampered regions; this is the first self-recovering scheme proposed in the literature. The
steps typically followed by self-recovering schemes are: obtain a compressed version of
the host signal and insert this version into the host signal itself. Upon detection, using a
fragile watermark, of an attacked region, it is possible to restore it using the compressed
version originally inserted into the host signal. It has been observed in the literature that
there are two types of results delivered by self-recovery schemes: approximate recovery
and perfect recovery. The former refers to the ability to recover the attacked signal to levels
of high similarity with the original one, while perfect recovery refers to the fact that the
recovered signal will be exactly the same as the original signal.

Self-recovery schemes for audio, image, or video signals have been proposed in the
literature in recent years. In general, the strategies deal with modifying the insertion
domain or improving the compression process required for watermark insertion. Some
relevant proposals that insert the watermark in the spatial domain are [10–13]; similarly,
the use of the frequency domain as the insertion space was reported in [14–16]. The use of
the two domains, spatial and temporal, has also been explored by utilizing video signal
as the host in [17,18]. Reference [19] proposed a scheme for video signals in the DCT
domain, and it resists MPEG attacks. However, self-recovering schemes are limited in their
additional payload to the compressed version of the host signal that is used as a watermark.
If additional information is inserted, the distortion caused can be prohibitive for real-world
applications. In [20], a framework was first introduced; the idea behind this framework is
the combination of a fragile reversible watermarking scheme that allows the insertion of
a useful payload to the image and a self-recovery scheme to insert information that can
aid in the recovery of tampered regions of the images. By combining these schemes, the
framework achieves adequate transparency for the insertion of both control information and
useful payload. At the same time, it maintains the capacity of restoring the areas tampered
with content replacement. This approach is different from the framework proposed by
Coltuc in [21], where the first stage is a robust watermarking algorithm followed by a
reversible watermarking algorithm. Coltuc’s algorithm has inspired other works recently,
such as [22]; however, the perceptual distortion induced by that framework has been
studied as a whole; thus, the contribution of each stage is little known.

In this manuscript, an evaluation of the framework proposed in [20] is presented.
The main goal is to observe the perceptual distortion due to the framework and how it is
related to distortion due to both reversible and self-recovery stages. The main contribution
of this study is to determine the perceptual transparency of the framework from the
knowledge of each of the two algorithms selected for a given configuration. No more
experimentation of the whole framework will be needed for each new algorithm used to
know its perceptual transparency.

The rest of the document is organized in the following way. In Section 2, the framework
proposed in [20] among several reversible watermarking and self-recovery schemes is
described. Numerical results and discussions are given in Section 3. Finally, Section 4
concludes this paper.

2. Evaluation of the Robust Framework for Robust Reversible Image Watermarking

The framework proposed by [20] was taken as a general outline to be used with
different combinations of fragile reversible and self-recovery schemes to determine which
combination obtains better robustness results and transparency. The idea behind this
framework is detailed below.
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2.1. Description of the Framework

In [20], a framework is proposed to construct a robust reversible watermarking scheme
with signal restoration. Figure 1 shows the framework, which consists of two processes:
encoding and decoding. Each process consists of a fragile stage and a self-recovery stage.
Figure 2 shows a general fragile reversible watermarking scheme. Secret message M is
hidden in a host signal X, resulting in a watermarked signal Y transmitted through a
noise-free channel. The extraction process requires Y and control data to reconstruct the
host signal X, and it also recovers a message M′.

Figure 1. Framework for robust RWS with signal restoration.

Figure 2. General fragile reversible watermarking scheme.

On the other hand, Figure 3 shows a general self-recovery scheme that can detect
tampered regions and reconstruct them with the embedded control data.

Figure 3. General self-recovery scheme.

In the encoding process, the fragile embedding stage inserts the secret message m into
the host signal x, producing a watermarked signal y. Then, the self-recovery stage embeds
control information, which allows the recovery of the signal after a content replacement
attack. The result is the protected signal y′.

In the presence of a content replacement, attack signal y′ becomes an attacked signal ŷ.
The decoding process receives ŷ, then the restoration stage tries to revert the attack. The
self-recovery restoration stage extracts the control information embedded in the encoding
process and utilizes it along with the remaining non-attacked regions of the signal to restore
the regions altered by the attack. If the attack is limited to a threshold, the watermarked
signal y produced by the encoding process is obtained. From the watermarked signal y, the
fragile RWS extraction and recovery stage can extract the secret message and recover the
original samples from the host signal.

2.2. Selection of Schemes

The framework consists of two stages in each process that use the encoding and
decoding algorithms of a fragile reversible watermarking and a self-recovery scheme.
There are several fragile reversible watermarking schemes in the literature, but only three
were selected to test the framework; the criteria used to choose them were their transparency
and their embedding capacity; schemes with transparency over 40 dB and a payload over
one bpp were selected. On the other hand, self-recovery schemes are not as typical in the
literature; however, self-recovery schemes with perfect restoration capabilities were the
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ones used for this methodology since that is a requirement for the framework to properly
extract the watermarks in the fragile stage.

2.2.1. Fragile Reversible Watermarking Schemes

The scheme by [23] uses a histogram shifting technique, using the high correlation of
neighboring pixels in each block of the image; the authors use a threshold K to insert the
watermark bits; based on the difference values calculated for each block, the embedding
strategy is divided into two categories: positives and negatives. The embedding strategy
first divides the image in blocks of size 2× 2, 4× 4 or 8× 8 pixels. Then, the difference
values are calculated using the following equation:

α =
1
n

n

∑
i=1

(ai − bi), (1)

where n is the number of pairs of pixels, ai are all the pixels marked with (+), and bi are all
the pixels marked with (−). After the difference values have been calculated, a threshold
K+ is selected using Equations (2) and (3) and a threshold K− using Equations (4) and (5):

Kph =
⌈(αmaxP − αzero + 1

Partition level

)⌉
, (2)

K+ = Kph + mod(Kph, 2), (3)

KNh =
⌈(αzero − αminN + 1

Partition level

)⌉
, (4)

K− = −1× (KNh + mod(KNh, 2)), (5)

where αmaxP is the maximum difference value of the positive part, αzero is 0 for the center
of the coordinate, Partition level is the number of the partition, αminN is the minimum
difference value of the negative part, and d.e is the ceiling function. The watermark bits are
inserted based on the values of α, according to the following conditions:

• If α ≥ 0, there can be three cases:

Case 1 0 ≤ α ≤ k; if 1 is inserted, the histogram from that block is shifted a distance k
to the right; if a 0 is inserted, the block is left intact.

Case 2 k ≤ α ≤ 2k; if a 1 is inserted, the histogram from that block is shifted a distance
2k to the right; if a 0 is inserted, the block is shifted a distance k to the right.

Case 3 2k ≤ α ≤ 3k; if a 1 is inserted, the histogram from that block is shifted a
distance 3k to the right; if a 0 is inserted, the block is shifted a distance 2k to
the right.

• If α < 0, there can be three cases:

Case 1 −k ≤ α ≤ 0; if 1 is inserted, the histogram from that block is shifted a distance
k to the left; if a 0 is inserted, the block is left intact.

Case 2 −2k ≤ α ≤ −k; if a 1 is inserted, the histogram from that block is shifted a
distance 2k to the left; if a 0 is inserted, the block is shifted a distance k to the left.

Case 3 −3k ≤ α ≤ −2k; if a 1 is inserted, the histogram from that block is shifted
a distance 3k to the left; if a 0 is inserted, the block is shifted a distance 2k to
the left.

To extract the watermark bits, the image is divided into blocks in the same way as
for embedding. Then, the difference values are calculated using Equation (1). After the
difference values are obtained, the threshold K is obtained in the following way:

K = KpH + mod(Kph, 2), (6)
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where αmaxP is the maximum difference value of the positive part, αzero is 0 for the center
of the coordinate, Partition level is the number of the partition, and d.e is the ceiling
function. Finally, the watermark bit is extracted using the threshold K and the original
image is reconstructed.

The scheme by [24] uses a histogram shifting technique as well; it divides the intensity
range into non-overlapped segments and seeks the peak pixel, i.e., the pixel with a more
significant occurrence in the histogram of each segment. Bit insertion is performed only in
the peak pixels, except for each segment’s first peak pixel, which is a reference for extraction.
These schemes use a location map where all the peak pixels are marked. The embedding
process first divides the intensity levels of the image into non-overlapped segments of
equal size. Then, it generates a histogram for each block and identifies the intensity value
of the peak pixel in each segment. The pixels from the original image are read, and then, k
bits from the secret message M are embedded using a pixel substitution strategy on the
peak pixels. Afterward, a location map is created, where a 1 is inserted if the pixel is a
peak pixel or 0 otherwise. For the extraction process, the intensity values of the image are
divided into non-overlapped segments of equal size in the same way as in the embedding
process. The watermarked image and the location map are read. The peak pixels of each
reference segment are obtained; then the watermark bits are extracted, and the current
pixel is replaced with the reference peak pixel.

The scheme proposed in [25] expands the image size using an interpolation method
that uses trigonometric functions; watermark bits are inserted in the interpolated pixels;
this algorithm uses a location map. The extraction process recovers the watermark and
eliminates the pixels generated by interpolation during embedding; therefore, the original
image can be recovered. The embedding process first divides the host image into blocks of
2× 2 pixels. Each block is transformed into blocks of 3× 3 pixels through interpolation,
using the following equations:

Bi(1, 1) = Bo(1, 1)

Bi(3, 3) = Bo(2, 2)

Bi(2, 2) =

√
(Bi(1, 2)2) + (Bi(3, 2))2

2
Bi(1, 3) = Bo(1, 2)

Bi(1, 2) =

√
(Bi(1, 1))2 + (Bi(1, 3))2

2

Bi(2, 3) =

√
(Bi(1, 3))2 + (Bi(3, 3))2

2
Bi(3, 1) = Bo(2, 1)

Bi(2, 1) =

√
(Bi(1, 1))2 + (Bi(3, 1))2

2

Bi(2, 3) =

√
(Bi(3, 1))2 + (Bi(3, 3))2

2
,

where Bo is the original image block and Bi is the interpolated block. The new values are
modified using the following trigonometric functions:
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B f (1, 2) = Bi(1, 2) cos(
Bi(1, 1) + Bi(1, 3)

2
)

B f (2, 2) = Bi(2, 2) cos(
Bi(1, 2) + Bi(3, 2)

2
)

B f (2, 1) = Bi(2, 1) cos(
Bi(1, 1) + Bi(3, 1)

2
)

B f (2, 3) = Bi(2, 3) cos(
Bi(1, 3) + Bi(3, 3)

2
)

B f (3, 2) = Bi(3, 2) cos(
Bi(3, 1) + Bi(3, 3)

2
),

where B f is the block modified by the trigonometric functions. Obtain 5 bits from the
watermark M, and insert them in the interpolated pixels. The extraction process divides the
image into blocks of size 3× 3 pixels, called Ci. Then, calculate a new block using trigono-
metric functions, called C′i . The watermark bits are extracted by subtracting the two blocks
Ci − C′i , and finally, the original image is obtained by eliminating the interpolated pixels.

2.2.2. Self-Recovery Schemes

The scheme by [26] is a self-recovery one, where reference bits and check bits are in-
serted into the images themselves to restore the original samples and identify the tampered
regions. The embedding process uses a difference expansion (DE) strategy to insert both
references and check bits in all the blocks of the host image; if the watermark inserted
in one region of the image is altered, the rest of the watermark bits are not altered. The
image can be recovered using the reference bits extracted from non-tampered regions. The
embedding process divides the image into blocks of size 8× 8, and then, each block is
divided into 16 sub-blocks, where changeable and unchangeable pixels are assigned. For
each changeable pixel, the inequality gm(i, j) ≥ gu is verified:

gu + [gm(i, j)− gu] · 2 + 1 ≤ 255. (7)

If gm(i, j) < gu, then:
gu + [gm(i, j)− gu] · 2 ≤ 255, (8)

where gm represents the grayscale values of the changeable pixels for each block and gu
are the pixels designated as unchangeable of each block. When Equations (7) and (8) are
fulfilled, the pixel gm(i, j) is deemed as unusable, otherwise as usable. Afterwards, the
reference bits are generated, taking as the base the pixels from the original image. Then,
the check bits are calculated in order to identify the tampered regions, using a 64 bit hash
function. The embedding strategy used is DE using the following equation:

g̃m = gu + [gm(i, j)− gu] · 2 + w, (9)

where w is constructed with the reference and check bits to be embedded. For the extraction
process, the image is divided into N/64 blocks and N/4 sub-blocks, in the same way as
in the embedding process, where N is the total number of pixels in the image. The check
and reference bits are extracted to identify the tampered and reserved blocks. Finally, the
original grayscale values from all the pixels in the blocks identified as tampered are restored.

The scheme by [27] proposes a secure block mechanism, resilient to content replace-
ment attacks. To locate the tampered blocks, it uses the unaltered pixels and the reference
bits to estimate the original five MSB of the altered pixels, using an iterative and exhaustive
restoration mechanism. The embedding process divides the image in a pseudo-random
manner using a secret key k1 in a subset of m pixels. The reference bits bri are calculated,
using Equations (10) and (11), and the bri bits are embedded into the third LSB of the pixels
in each subset.

bri = H(x̂i,1, · · · , x̂i,m) (10)
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x̂i,j = b
xi,j

8
c mod 16, j = 1, · · · , m, (11)

where H(.) is a hash function, b.c is the floor function, and x̂ ∈ [0, 15] is the decimal
value of the bits b4, · · · , b7 of each pixel xi,j. A second set of reference bits br2 is calculated
using Equations (10) and (12). The image is divided into subsets of m pixels, each using a
second secret key k2. A hash function with the five MSBs of each pixels for every subset is
calculated, then br2 is embedded into the pixels of each subset.

x̂i,j = b
xi,j

8
c, j = 1, · · · , m. (12)

Then, the image is divided into non-overlapped blocks of size 8× 8. Afterward, the
authentication code ca for each block is calculated using Equation (13), which is inserted in
the LSB of every pixel in each block.

cai = I‖n1‖ ‖n2‖ pi, (13)

where I is an exclusive index associated with each image, pi is the index of the block, and
‖n1‖ and ‖n2‖ is the bit concatenation of the image size. The extraction process divides
the image in non-overlapped blocks of 8× 8, as in the embedding process. Then, the
authentication code is extracted from the LSB of each block, and the correct authentication
code is assigned; the correct authentication code is obtained by majority voting. Afterward,
the image is divided pseudo-randomly into subsets of m pixels, using a secret key k1. The
reference bits br1 are restored from bit b3, then the four MSB of every altered pixel of every
block are calculated, by calculating the test codes cpi = H(ŷi,1, · · · , ŷi,m), where ŷi,j = b

xi,j
8 c

mod 16. If yi,j is an altered pixel, then all the possible values of the four bits are exhaustively
assigned to ŷi,j. The test codes and the reference bits are compared to identify the four MSB
matches. Then, the four MSB are extended, adding to the beginning a bit 1 and a bit 0,
generating two new values of five bits each, called restoration candidates. The image is
divided into subsets of m pixels each, but now using the second secret key k2, and only
one restoration candidate is associated with the altered pixel. Finally, the original image
is restored.

2.3. Perceptual Distortion Evaluation

The peak-signal-to-noise ratio (PSNR) measures the similarity of two signals, a ref-
erence signal, and a processed version of it, and this ratio is given in decibels [28,29] as
some signals hold a very wide dynamic range. The PSNR is a metric complementary to
distortion. The higher the PSNR, the lower the distortion is.

In image processing, a typically PSNR is measured in an 8 bit grayscale version. For
an image f and its processed version g, both of size M× N, the PSNR between f and g is
computed by:

PSNR(f, g) = 10 · log10

(
2552

MSE( f , g)

)
(14)

MSE( f , g) =
1

(M · N)

M

∑
i=1

N

∑
j=1

( fij − gij)
2 (15)

As for the mean-squared error (MSE), the difference between the pixels fij and gij is
considered an error that generates image quality loss. The lower the MSE, the higher the
PSNR; therefore, the higher the PSNR(f, g) values, the higher the image quality is. For
digital images, sometimes, a PSNR > 35 dB is considered as good quality [30].

The Watson metric, which quantifies the distortion of an image based on just noticeable
differences [31], is another tool to evaluate the distortion of a processed image. This
metric measures the errors for each DCT coefficient in each block by its corresponding
sensitivity threshold. That threshold considers contrast sensitivity, luminance masking,
and contrast masking.
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In the Watson model, for each ij DCT coefficient, the relation between the luminance
and frequency is considered, as follows:

tijk = tij

(
c00k
c̄00

)at

(16)

where tij is the threshold for the smallest frequency coefficient that yields a visible signal,
c00k is the DC coefficient of block k, c̄00 is the DC coefficient corresponding to the mean
luminance of the display (1024 for an 8 bit image), and at determines the degree of masking
(set to 0.65) [32].

When the visibility of a pattern is reduced by the presence of another pattern in the
image, this phenomenon is known as texture masking. Watson extends the results of
luminance and frequency masking to include texture masking as follows:

mijk = max[tijk, | cijk |wij t
1−wij
ijk ] (17)

where mijk is the masked threshold and wij determines the degree of texture masking.
Typically, w00 = 0 and wij = 0.7 for all other coefficients. The perceptual error in each
frequency of each block is given by

dijk =
eijk

mijk
(18)

where eijk is the quantization error.
To associate the errors in the model, the Minkowski metric is used as follows:

pij =

(
∑
k
| dijk |βs

) 1
βs

(19)

where different values of the exponent βs implement different types or degrees of pooling.
In practice, βs = 100 is commonly used.

A typical threshold for the Watson metric is 0.4, since measures below this point
guarantee visual imperceptibility [33].

The following section presents the experimental results obtained after implement-
ing the framework using the fragile reversible watermarking schemes, and self-recovery
schemes were selected.

3. Results and Discussions

In this section, framework evaluation results are presented. The evaluation is divided
into three stages: first, the fragile reversible watermarking schemes are evaluated in terms
of perceptual distortion versus payload; then, the maximum robustness of self-recovery
schemes is measured; finally, the framework is evaluated for each possible configuration of
reversible watermarking and self-recovery stages.

The six algorithms used in this study were implemented in the MatLab R2014 language,
using a computer with an Intel Core i7-1255U processor, 16 GB RAM, 128 GB solid-state
disk, and an Nvidia GeForce MX550 2 GB GDDR6 graphics card. Five algorithms were
implemented in their sequential form following their description reported in the literature.
The algorithm proposed by Bravo-Solorio et al. [27] was optimized using the MatLab parallel
computing toolbox due to its very high time complexity. For each experiment, 2000 gray-level
images from the BOWS 2 [34] data set were used; each image is 512 × 512 pixels in size.

3.1. Fragile Reversible Watermarking Schemes

Each fragile reversible watermarking scheme was applied to the data set using water-
marks of 1000 bits to 10,000 bits with 1000 bits steps. The peak-signal-to-noise ratio (PSNR)
and Watson metrics evaluated the algorithm’s distortion for different watermark lengths.
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Figure 4 shows the performance of the fragile reversible watermarking schemes using the
PNSR metric as an evaluation tool. A comparison between fragile reversible watermarking
techniques using the Watson metric as an evaluation tool is shown in Figure 5.
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Figure 4. Fragile reversible watermarking schemes performance versus payload under PSNR metric.
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Chakraborty's algorithm

10,000

-3

Figure 5. Fragile reversible watermarking schemes performance versus payload under the
Watson metric.

From Figures 4 and 5, it is possible to observe that, although performance decreases
when a higher payload is hidden, all the selected fragile reversible watermarking schemes
hold high transparency for high payloads. The PSNR and Watson values for the highest
payload applied are better than the minimum suggested in the literature.

3.2. Self-Recovery Schemes

Each self-recovery scheme was tested using the images from the data set to evaluate the
perceptual distortion and robustness of each scheme; the perceptual distortion is measured
using the PSNR and Watson metrics. To determine the robustness of the schemes, content
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replacement attacks were applied to the watermarked images using different percentages
to corroborate their robustness to a maximum percentage of attack, which is the same
maximum as the ones reported by the authors. A content replacement attack takes a region
of the image to attack and replaces it with another image with the same dimensions as
the region being replaced. Although other common attacks exist, we focus on content
replacement in this work since it is the attack that the two self-recovery schemes resist.
Figure 6 shows an example of content replacement attacks using different percentages
of substitution. Table 1 shows the mean value for the PSNR, and Watson’s values were
obtained from measuring the perceptual quality of the images watermarked with the
self-recovery schemes; the maximum percentage of attack supported by each scheme is
included in the last column. The maximum percentage of attack refers to the highest level of
substitution where each scheme is capable of producing an image with perfect restoration,
i.e., the scheme produces, as a result, an image containing the exact pixel values as the host
image. Furthermore, the time complexity for processing one image is shown in Table 1.

Figure 6. Content replacement attack: (a) 3.2%, (b) 10%, (c) 15%, and (d) 20%.

Table 1. Self-recovery schemes’ performance in perceptual, robustness, and time complexity terms.

Algorithm PSNR dB Watson Max Attack Time Complexity

Zhang and Wang [26] 29.57 0.135 3.2% 10 msec
Bravo-Solorio et al. [27] 37.90 0.067 20.0% 49.7 min

From Table 1, it is possible to observe that self-recovery strategies generate high
distortion levels on the watermarked images; this is caused because a big amount of
information from the image itself is embedded into the carrier image to guarantee self-
recovery capacities. In terms of robustness, it can be observed that the scheme by Zhang
and Wang [26] achieves robustness for a maximum attack of 3.2%, while the scheme by
Bravo-Solorio et al. [27] achieves robustness for a maximum attack of 20%. It is worth
mentioning that the scheme [27] can achieve robustness to higher percentages of attack at
higher computational time cost; in this work, an optimized implementation of the scheme
is used, which needs about 50 min to reconstruct an image tampered at 20%. Then, because
of our limited computational resources, it was prohibitive to test [27] for percentages of
tampering higher than 20%.

The workflow for the restoration of the self-recovery scheme is as follows: during
encoding, the self-recovery stage receives an image watermarked with the fragile reversible
scheme and produces a second watermarked image that contains information for self-
recovery, then that second watermarked image is attacked with a percentage of content
replacement. In the decoding phase, the self-recovery stage receives the attacked image and
extracts self-recovery information that allows perfect restoration, given that the attacked
region is smaller than the maximum percentage supported; after perfect restoration, the
image is passed to the fragile reversible stage to extract the secret message and recover the
host image. Figure 7 depicts an example of perfect restoration after a 10% attack.
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(a) (b) (c)
Figure 7. Example of image perfect restoration after a 10% attack. (a) Watermarked image, (b) attacked
image, and (c) restored image.

3.3. Framework

As described in Section 2, the framework consists of two main stages, a fragile re-
versible watermarking stage and a self-recovery stage. This section evaluates the framework
through each possible combination of fragile reversible watermarking and self-recovery
schemes. Table 2 shows the perceptual distortion performance for each scheme in detail.

Table 2. Perceptual distortion performance for fragile reversible watermarking (F1, F2, and F3) and
self-recovery schemes (S1 and S2).

ID Work
PSNR (dB) Watson

µ σ min max µ σ min max

F1 [23] 47.03 ±2.84 39.68 56.40 0.1433 ±0.0032 0.0007 0.0905
F2 [24] 65.35 ±0.03 65.21 65.48 0.0016 ±0.0015 0.0006 0.0271
F3 [25] 68.84 ±0.04 68.72 69.00 0.0003 ±0.0002 0.0002 0.0027

S1 [26] 29.57 ±4.10 20.17 46.98 0.1350 ±0.0675 0.0169 0.4146
S2 [27] 37.90 ±0.12 36.78 38.71 0.0679 ±0.0316 0.0422 0.7103

The framework was evaluated using six different configurations by combining the
three selected fragile reversible watermarking and the two self-recovery schemes. Table 3
shows the results in terms of visual transparency for each configuration; the mean, standard
deviation, minimum, and maximum values for PNSR and Watson metrics are presented.
The robustness of the framework depends only on the self-recovery stage; therefore, no
experimentation was carried out to observe the robustness of each configuration.

Table 3. Perceptual distortion performance for framework configuration. The best configuration in
terms of average PSNR and Watson values is highlighted in bold.

Configurations
PSNR (dB) Watson

Payload (bits)
µ σ min max µ σ min max

F1-S1 29.02 ±4.51 20.25 40.34 0.1433 ±0.0830 0.0271 0.3953 5k
F1-S2 37.34 ±0.33 36.34 37.90 0.0688 ±0.0497 0.0497 0.4546 5k
F2-S1 29.56 ±4.09 20.17 46.76 0.1355 ±0.0675 0.0174 0.4145 10k
F2-S2 37.90 ±0.13 36.53 38.74 0.0678 ±0.0313 0.0419 0.7022 10k
F3-S1 32.39 ±3.87 23.10 46.13 0.0985 ±0.0459 0.0202 0.2977 10k
F3-S2 37.89 ±0.12 36.90 38.90 0.0678 ±0.0199 0.0420 0.3357 10k

As it is possible to observe from Table 2, fragile reversible watermarking schemes hold
low perceptual distortion; thus, self-recovery schemes produce high perceptual distortion
levels. This behavior is due to self-recovery schemes that need to embed considerable image
information to have reconstruction capacities. Table 3 shows that the perceptual distortion
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due to the framework is very close to the distortion due to the self-recovery scheme used
in the configuration; in this table, the best configuration in terms of average PSNR and
Watson values is highlighted in bold, which is the combination of the fragile reversible
scheme [24] and the self-recovery [27]. However, additional experimentation was carried
out to corroborate the framework’s performance in terms of perceptual distortion. A fragile
reversible watermarking scheme with high perceptual distortion was incorporated into
the framework, and the perceptual distortion of the framework was measured. The fragile
reversible watermarking scheme used is proposed by Coltuc and Tudoroiu [35]. Table 4
shows the performance of [35] in perceptual distortion terms when applied to the image
data set. In Table 4, n is a payload controller; thus, log2 n is the payload achieved per pixel.
In [35], n ∈ [2, 16]; in this study, the minimum and maximum values are considered.

Table 4. Perceptual distortion performance of [35].

ID Expansion n PSNR (dB) Watson
µ σ min max µ σ min max

C1 2 26.51 ±6.76 7.93 49.92 0.1673 ±0.1657 0.0118 2.8645
C2 12 15.24 ±3.37 6.25 27.83 0.7331 ±0.3117 0.1402 4.3541

As it can be observed in Table 4, the scheme proposed in [35] holds high perceptual
distortion; in fact, distortion due to this fragile reversible watermarking scheme is more
elevated than self-recovery schemes.

Table 5 shows the performance of the framework for each possible configuration using
the scheme in [35].

Table 5. Perceptual distortion performance for framework configuration using [35] as the fragile
reversible watermarking scheme.

Configurations
PSNR (dB) Watson

µ σ min max µ σ min max

C1-S1 21.74 ±5.11 7.89 40.70 0.3164 ±0.2309 0.0351 3.3922
C1-S2 25.78 ±5.88 7.92 37.65 0.1983 ±0.1686 0.0539 2.9249
C2-S1 12.40 ±2.59 6.15 22.66 1.0504 ±0.3784 0.2753 4.9221
C2-S2 15.21 ±3.34 6.55 27.44 0.7391 ±0.3116 0.1518 4.3353

From Table 5, it is possible to observe that the framework performance is determined
by the fragile reversible watermarking scheme instead of the self-recovery scheme, as
in Table 3. Then, it is possible to claim that the expected perceptual distortion of the
framework depends on the performance at each stage, regardless of its nature. Thus, the
framework distortion could be modeled as follows:

D f rame ≈ max{D f w, Dsr} (20)

where D f rame is the distortion due to the framework, D f w is due to the fragile reversible
watermarking scheme, and Dsr is due to the self-recovery scheme. Alternatively, the
performance of the framework can be expressed in terms of the PSNR as follows:

PSNR f rame ≈ min{PSNR f w, PSNRsr} (21)

where PSNR f rame is the PSNR value for the framework, PSNR f w is the PSNR value
for the fragile reversible watermarking scheme, and PSNRsr is the PSNR value for the
self-recovery scheme.

4. Conclusions

In this study, the framework proposed in [20] was evaluated using ten different
configurations to determine its perceptual distortion and robustness performance behavior.
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Using the appropriate reversible and self-recovery schemes within the framework makes
it possible to achieve high robustness to content replacement attacks. At the same time,
perceptual distortion is kept at practical levels. Moreover, an expression that approximated
the framework performance in terms of perceptual distortion was proposed. The findings
of this study will help the fast evaluation of reversible watermarking and self-recovery
schemes to provide reversible watermarking robust to content replacement attack as the
approximate perceptual distortion can be estimated by (20) and robustness is only due to
the self-recovery stage.
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