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Abstract: Pollen allergies are seasonal epidemic diseases that are accompanied by high incidence
rates, especially in Beijing, China. With the development of deep learning, key progress has been
made in the task of automatic pollen grain classification, which could replace the time-consuming and
laborious manual identification process using a microscope. In China, few pioneering works have
made significant progress in automatic pollen grain classification. Therefore, we first constructed
a multi-class and large-scale pollen grain dataset for the Beijing area in preparation for the task of
pollen classification. Then, a deblurring pipeline was designed to enhance the quality of the pollen
grain images selectively. Moreover, as pollen grains vary greatly in size and shape, we proposed
an easy-to-implement and efficient multi-scale deep learning architecture. Our experimental results
showed that our architecture achieved a 97.7% accuracy, based on the Resnet-50 backbone network,
which proved that the proposed method could be applied successfully to the automatic identification
of pollen grains in Beijing.

Keywords: pollen classification; pollen image dataset; multi-scale classifier; deblurring

1. Introduction

Allergic diseases are common and are found in clinical practice [1]. They are listed as
one of the three major diseases that need to be prevented and controlled in the 21st century
by the World Health Organization. Pollen allergens are one of the main causes and affect
up to 30% of the population in industrialized countries [2]. Certain quantities of plant
pollen allergens in the air can induce a series of allergic diseases, such as allergic rhinitis,
bronchial asthma and dermatitis. These allergic diseases that are caused by plant pollen are
also called hay fever. With the intensified urbanization of human society and the expansion
of planting areas, the levels of pollen allergens have also increased. This has made pollen
allergies become seasonal epidemic diseases that are accompanied by high incidence rates.
In the United States, pollen allergies affect approximately 5% of the population and as much
as 15% of the population in some regions. In Europe, they affect 20% of the population and
it has been estimated that 30% of the population could be affected in the next 20 years [3].
In China, the incidence rate of pollen allergies is generally 0.5% to 1%, but it reaches 5%
in high incidence areas [4]. This percentage has been increasing over recent years as well.
Nearly 30% of allergic rhinitis cases in China are caused by pollen allergens. In Beijing, hay
fever patients account for about 1/3 of all respiratory allergy patients.

Effective pollen prediction can prompt hay fever patients to take positive counter-
measures. Therefore, it is of great practical significance to identify and count the main
allergenic pollen grains in the air. According to our survey, few pioneering works have
made significant progress in this topic in China at present. As an international metropolis,
the urban population in Beijing has shown an upward trend in pollen allergy incidence
rate over recent years. As a result, the proportion of the population with pollen allergies is
much higher than that in other cities. Considering this fact, we constructed an allergenic
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pollen dataset of pollen that is mainly found in the Beijing area and explored the automatic
classification and identification of the allergenic pollen grains.

As pollen grains vary greatly in size and shape, the identification of their morphologi-
cal structures is a complex task [5]. Traditional pollen identification methods are generally
realized by manually observing the surface characteristics of the pollen grains. In the
manual identification process, experts need to possess the relevant knowledge and practical
experience in pollen morphology. This process takes considerable amounts of time and
resources, which limits research progress [6]. To solve these drawbacks, the automatic
classification of pollen images has attracted more and more attention by utilizing computer
vision and pattern recognition [7].

There are two main types of methods for the classification of pollen images that are
based on computer vision: the traditional methods of manually extracting features and
deep learning-based methods. The traditional methods rely on manually extracting features
such as color, texture, shape and other features. The commonly used descriptors for texture
features include the gray-level co-occurrence matrix (GLCM) [8], local binary patterns
(LBPs) [9], log-Gabor filters (LGFs) [10] and discrete Tchebichef moments (DTMs) [11].
In [12], Marcos et al. artificially combined these four texture features and their classification
accuracy reached 94.83% using a specific pollen dataset. In order to integrate richer pollen
information, some studies have combined shape and texture features for pollen grain
classification [7,13–15]. For example, Tello-Mijares et al. [14] utilized geometric descriptors,
first-order texture statistics and second-order GLCM-based texture statistics, which were
obtained from the L*a*b* color space. Their accuracy result could reach 95.6% using a
12-class pollen dataset.

Although the methods that use manual feature extraction have received a great amount
of attention, their classification performance can be affected by many factors, such as image
quality and descriptor selection. Due to the success of convolutional neural networks
(CNNs) in the field of computer vision, pollen image classification methods that are based
on deep learning have gradually become mainstream. In [16], Daood et al. proposed an
automatic feature learning network for pollen image classification using fine-tuned transfer
learning. They achieved an accuracy rate of 94% using a 30-class pollen dataset. In [17],
André et al. studied two methods for training CNNs using a large-scale pollen image
dataset: random initialization and fine-tuned feature learning. Their results showed that
the process of fine-tuning a pre-trained CNN achieved an accuracy of 96.24%, which was
much higher than that of the random initialization method. In [18], Gallardo-Caballero et
al. focused on the three-dimensional visual information of pollen grains. Their process
of analyzing each sample was recorded in MJPEG video format in order to make use of
the 3D information that was presented by several focal planes. They used a training set
of 251 videos and their detection results achieved scores of 98.54% for recall and 99.75%
for precision.

However, these deep learning methods can only perform transfer learning using
CNNs. Therefore, they do not focus on the characteristics of pollen images. The shape
characteristics of different pollen grains vary greatly, which results in the resolutions of
pollen grain images spanning a large range. In [19], Sevillano et al. studied the influence of
pollen image size and proposed a pre-processing algorithm. Their pre-processing algorithm
cropped the pollen grains from the original images while keeping a minimum amount
of padding around them and maintaining their size, so that all of the images could be
reframed into 227 × 227 images. However, some pollen grains were too small, which
resulted in low image resolutions and unclear details. The algorithm in [19] was ineffective
for improving the quality of pollen grain images. These unfavorable factors affect the
accuracy of image classification. Therefore, it is not sufficient to train a self-collected pollen
image dataset directly using a pre-trained CNN with a single normalized resolution.

To solve the above limitations, we studied an automatic classification method for
allergenic pollen grains in the Beijing area. The proposed work produced the following
main contributions:
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• The construction of a multi-class and large-scale dataset of pollen grain images under
a light microscope, which is the first large-scale dataset of pollen images from the
Beijing area;

• The proposal of a deblurring pipeline for super-resolution reconstruction based on
a GAN, which effectively improved the quality of the images by reconstructing the
semantic information of the pollen images;

• The proposal of an easy-to-implement and efficient multi-scale deep learning archi-
tecture with a multi-branch network for pollen image classification so that images in
different resolution ranges could be trained using the corresponding branches, which
significantly improved the classification performance.

This paper is organized as follows. In Section 2, we review several previous related
works about pollen datasets and introduce the main current automatic classification meth-
ods. In Section 3, we describe the specific process for the construction of the large-scale
dataset of pollen images from the Beijing area. Then, the super-resolution reconstruction
module that enhances the quality of blurred pollen images is proposed. Next, a multi-scale
classification method is introduced for the automatic classification of the proposed dataset.
The experimental results and ablation study are shown in Section 4 and we present our
conclusions and directions for future research in Section 5.

2. Related Works

Most of the existing works about the automatic detection/classification of pollen grains
have been implemented and evaluated using self-collected datasets. All of these public
datasets are sourced from abroad, such as Duller’s pollen dataset [20], POLEN23E [21],
Pollen13K [22] and Pollen73S [23]. Duller’s dataset consists of seven categories of pollen
images, with a total of 630 grayscale images with a size of 25 × 25. The resolution of the raw
pollen images is 768 × 576 pixels and the images were acquired using a charge-coupled
device (CCD) camera. Orlov et al. [24] introduced a multi-purpose image classifier named
WND-CHARM, which achieved an accuracy of 96% using this dataset. The POLEN23E
dataset contains images from the Brazilian savannah, with 23 different categories and
35 color images of different sizes in each category. The authors proposed a classification
algorithm that combined three feature extractors and four machine learning techniques.
By fine-tuning the proposed algorithm, they achieved an accuracy rate of more than 64%
for a large number of categories and limited feature selection. The Pollen13K dataset is a
large-scale pollen image dataset consisting of over 13,000 images that are split into four
categories. The authors proposed a pipeline to detect and extract objects from a set of
microscope images, which could effectively reduce the amount of manual work that was
required. By utilizing the traditional machine learning and deep learning algorithms, the
highest F1-score reached 0.87. The Pollen73S dataset is a public annotated image dataset
consisting of 2523 images from 73 pollen categories. The advantages of this dataset lie in
its large category coverage and its diverse range of pollen grains, which can effectively
guide computer vision to solve palynological problems. The authors utilized convolutional
neural networks (CNNs) to conduct pollen image classification and the highest accuracy
rate reached 95.7%. In Table 1, we summarize the details of the four datasets that were
described in this section and compare them to our proposed dataset.
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Table 1. The comparison between the proposed dataset and the main datasets that are used for the
pollen image classification task.

Dataset Number of
Grain Images

Image
Type Resolution Number of

Categories Region

Duller’s Pollen
Dataset [20] 630 Grayscale 25 × 25 7 Unknown

POLEN23E [21] 805 Color A minimum of 250 pixel per dimension 23 Brazilian
Savannah

Pollen13K [22] 13,310 Color 84 × 84 More than 4 Unknown

Pollen73S [23] 2523 Color
88.6% of the images have an average

size of under 512 × 512 and the remaining
11.4% are larger

73 Brazilian
Savannah

Proposed
Dataset 4389 Color Between 253 × 253 and 34 × 34 7 Beijing, China

3. Materials and Methods
3.1. Dataset

Over recent years, deep learning has enabled significant progress to be made in the
fields of image classification [25–28] and feature learning [29–32]. One of the key drivers of
the success of deep learning is the availability of large amounts of annotated data. Indeed,
the amount of training data has a great impact on the performance of deep learning processes,
which encourages the development of large-scale datasets in different scientific fields [33].
Due to regional variations in plant species, there are a great number of differences in the
types and shapes of pollen grains from different regions. Therefore, the collection of pollen
grains from specific areas is of key significance for pollen forecasting in those areas.

Section 2 introduces several open-access datasets of pollen grains from different areas.
However, the categories of pollen in these datasets do not cover all of the categories that
exist in Beijing, China. From a survey of plants in Beijing, the main airborne allergenic
pollens were found to include a total of eight taxa: Pinaceae, Cupressaceae, Salicaceae
(including Salix and Populus), Moraceae, Artemisia, Compositae, Chenopodiaceae and
Poaceae. These taxa cover about 90% of all pollen grains in the Beijing area. Out of these
eight taxa, Cupressaceae, Salicaceae (including Salix and Populus) and Pinaceae are the
main pollen contributors in spring, while Moraceae, Compositae and Chenopodiaceae are
the main pollen contributors in autumn. However, there is not a large-scale, high-quality
and adaptable dataset of pollen from Beijing, which limits the automatic classification and
prediction of pollen in the Beijing area. Therefore, we constructed a dataset of pollen grains
that were collected in the Beijing area for the automatic classification task.

The Beijing Meteorological Service Center collected pollen from 12 administrative
regions in Beijing using glass slides that were coated with Vaseline. After treatment with
basic fuchsin, the pollen grains on the slides became pink. Then, the slides were scanned
using a NanoZoomer Digital Pathology Slide Scanner (NDP). Using a 40× objective lens, we
obtained pollen scan images in NDPI format and each image was approximately 100,000 ×
50,000 pixels. We called the obtained images pollen scanning images.

The obtained scanning images not only contained irregularly distributed pollen grains,
but also significant background noise (i.e., debris, dust, fungal spores and air bubbles).
By adding the special stain to the slides, the pollen grains were stained pink in general,
while the background noise was not, as shown in Figure 1. Therefore, the color extraction
method [33] could be used to extract single pollen grains, which replaced the traditional
manual localization and labeling process. Due to the large size of the pollen scanning images,
it was inconvenient to use the color extraction method. Thus, each pollen scanning image
needed to be cropped into several rectangular images with a size of 512 × 512 pixels. The
subsequent image processing pipeline was performed on these rectangular images. The
collection pipeline of our pollen grain dataset could be divided into two steps: pre-processing
and labeling. The specific operation details are described in the following subsections.



Appl. Sci. 2022, 12, 7126 5 of 16

Figure 1. Several images (with a size of 512 × 512) that were cropped from pollen scanning images.
The pollen grains are marked in red and background noise is marked in green (i.e., air bubbles, debris
and dust).

3.1.1. Pre-Processing

Generally, experienced palynologists are required to manually locate and label pollen
grains in pollen scanning images. This process is often time-consuming and labor-intensive.
Therefore, the pre-processing pipeline adopted the color extraction method from [33] to
reduce the required resources. However, the difference between [33] and this study was
that operations such as contour highlights were not required in our pipeline as the pollen
scanning images were more obviously stained. Thus, we optimized the pre-processing
pipeline on the basis of the method in [33].

The inputs of the pre-processing pipeline were the rectangular images that were
cropped from the pollen scanning images. The specific pre-processing procedure could be
divided into the following three steps. Firstly, image denoising. We utilized a mean shift
algorithm to smooth the microscopic images and then Gaussian blur was used to denoise
the images. Next, the RGB images were converted into HSV images. Secondly, image
segmentation. The images could be binarized using the designed pre-set HSV color interval.
Then, we performed closing and opening operations on the binary images to obtain mask
binary images. Therefore, all of the pollen grains were white and the background was black.
As a result, the segmentation contours of the pollen grains were obtained. Thirdly, image
cropping. Based on the segmentation contour coordinates of the pollen grains, we cropped
the rectangular images into single pollen grain images. The sizes of these images ranged
from 30 to 260 pixels. Figure 2 shows the improved color extraction process.

Figure 2. The overall pipeline for pre-processing: (a) the input pollen scanning image; (b) the
rectangular image after cropping; (c) the resulting image after denoising and the conversion of the
color space from RGB to HSV; (d) the mask that was generated by the segment operators; (e) the
output image that was cropped from the rectangular image.

3.1.2. Labeling

Labels are essential in supervised learning. To ensure the validity of the labels, all of
the pollen grains were labeled by experienced palynologists. The total number of labeled
samples was 4389, which consisted of seven different categories: Artemisia, Chenopodiaceae,
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Cupressaceae, Poaceae, Moraceae, Pinaceae and Salix. Figure 3 shows several example
pollen grain images.

Figure 3. Several example pollen grain images: (a) Artemisia; (b) Chenopodiaceae; (c) Cupressaceae;
(d) Poaceae; (e) Moraceae; (f) Pinaceae; (g) Salix.

After the above series of operations, we constructed a dataset of pollen grains from
the Beijing area, which could enable future studies on the identification and prediction of
pollen allergens. Table 2 lists the main details of our dataset. From this table, it can be seen
that the size of the pollen grains varied greatly; for example, the maximum image resolution
of Pinaceae was 253 × 253, which was nearly three times the maximum image resolution
of Artemisia (88 × 88). Due to the small size of some pollen grains and the limitations of
the scanning machine, it was difficult to acquire high-resolution single pollen images and
resulted in images with unclear details of the pollen grains (as shown in Figure 4a). In
addition, the size of the pollen grains in different categories were quite different, which led
to great variations in the resolutions of images from different categories. Figure 4b,c list
several images of Pinaceae and Artemisia grains.

Table 2. The information of different categories in the original dataset, including resolution range,
number of samples and median resolution.

Category Number of
Grain Images Minimum Size Maximum Size Median

Resolution

Artemisia 1632 34 × 34 88 × 88 58
Chenopodiaceae 673 52 × 52 120 × 120 78

Cupressaceae 926 63 × 63 156 × 156 118
Poaceae 124 68 × 68 174 × 174 92

Moraceae 279 47 × 47 96 × 96 68
Pinaceae 590 58 × 58 253 × 253 160

Salix 165 34 × 34 97 × 97 65

3.2. Deblurring Pipeline

Considering the complexity of the obtained dataset, we designed a data deblurring
pipeline for the dataset, which consisted of two steps: (1) adding a resolution selector,
which aimed to pick out the samples that needed to be enhanced; (2) deblurring using the
super-resolution reconstruction method, which aimed to recover more semantic details.
The specific operations are shown in Figure 5.
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Figure 4. Several example pollen grain images: (a) pollen grain images with unclear details;
(b) Pinaceae pollen grains; (c) Artemisia pollen grains.

Figure 5. The overall pipeline of the deblurring process.
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3.2.1. Selector

The purpose of the selector was to divide the samples in the dataset into a low-
resolution group and a high-resolution group. The resolution ranges for the different
categories are shown in Table 2. It can be seen that the resolution of the Artemisia, Chenopo-
diaceae, Moraceae and Salix images was relatively small. So, all images in these four
categories were added into the low-resolution group. For the Cupressaceae, Poaceae and
Pinaceae grains, the images had a larger resolution. Since the classification task requires the
dataset to have a consistent resolution range, we set a resolution threshold for these three
categories. The threshold for the dataset in our paper was set as the median resolution
of each category. The images with a resolution that exceeded the threshold were directly
added to the high-resolution group and the others were added to the low-resolution group.
In the low-resolution group, the images were subjected to image enhancement via the
following pipeline.

3.2.2. Deblurring

The process of deblurring was achieved using high-resolution reconstruction. For the
images in the low-resolution group, the features that were extracted by the neural network
were particularly ambiguous, which was not conductive to subsequent classification. Thus,
we utilized the super-resolution reconstruction framework SRGAN [34], with a scaling
factor of 4, to generate high-quality images. Table 3 lists the resolution ranges of the
categories in the dataset after deblurring.

Table 3. The resolution ranges of the categories in the dataset after the deblurring process.

Category Minimum Size Maximum Size

Artemisia 136 × 136 352 × 352
Chenopodiaceae 208 × 208 480 × 480

Cupressaceae 119 × 119 472 × 472
Poaceae 94 × 94 368 × 368

Moraceae 188 × 188 384 × 384
Pinaceae 161 × 161 640 × 640

Salix 136 × 136 388 × 388

In the existing classification method that is based on deep learning, bilinear inter-
polation is a common means for enhancing images with different resolutions. Thus, we
compared the deblurring effects of bilinear interpolation and SRGAN. Figure 6 shows
several low-resolution images and their deblurred counterparts. From the figure, it can
be seen that the images that were processed using the deblurring pipeline were obviously
clearer than those that were processed using bilinear interpolation.
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Figure 6. Several low-resolution images and their deblurred counterparts: (a) the original images;
(b) the deblurred images using bilinear interpolation; (c) the deblurred images using our deblurring
pipeline.

3.3. Multi-Scale Classifier

In the previous works about pollen classification, classifiers that were based on CNN
architectures were needed to normalize the resolutions of the input images [35–37]. How-
ever, the resolutions of the obtained images after deblurring still varied greatly in this study,
as shown in Table 3. The operation for normalized resolutions could lead to serious image
distortion and affect the classification performance. Inspired by multi-scale features, such
as image pyramids [38], scale-space representations [39] and coarse-to-fine approaches [40],
we adopted the idea of multi-scale resolution to develop an easy-to-implement and efficient
pollen image classification architecture.

The proposed architecture was achieved using a multi-branch network structure, with
each branch receiving images with different resolution scales as their input. By fusing
the loss functions of the different branches, we could train the whole architecture end
to end. Considering that different pollen datasets have different resolution ranges, our
model could also provide a network structure with scalable branches. Therefore, the
proposed architecture could be extended to different pollen grain datasets, which would
be a significant improvement compared to the existing classification methods for single-
resolution images.

The framework of the proposed architecture is shown in Figure 7. According to the
resolution ranges of the pollen grain images, the input images were divided into N parts,
which corresponded to N branches in the architecture. Each branch took images that were
normalized to a uniform resolution as their input. The overall loss was calculated by
combining the loss functions of all of the branches. Then, the model could be trained using
the backbone network to obtain the parameters that minimizes the overall loss function.

By assuming that aj
n was the predicted value of the n-th branch, we obtained:

aj
n = so f t max

(
zj

n

)
=

ezj
n

∑k ezk
n

. (1)

where j represents the j-th sample and zj
n represents the n-th branch of the j-th sample. The

loss function of the n-th branch could be computed using the cross-entropy of M samples:

ln(yn, an) = −
M

∑
j=0

yj
n log aj

n. (2)

where yn and an represent the vectors of the true labels and the predicted values of the M
samples, respectively.
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The overall loss function JN of the whole model could be obtained using:

JN =
N

∑
n=0

kn × ln(yn, an). (3)

where kn represents a coefficient with the value of 0 or 1. When training the n-th branch,
this coefficient was assigned a value of 1, while the k coefficient of other branches was 0.

Figure 7. Our proposed multi-scale classification architecture for easy-to-implement and efficient
pollen classification: (a) the multi-scale classification architecture, which combined several branch
networks (the multi-scale architecture included N branches and the loss function of each branch was
combined for training); (b) the branch network structure, in which each branch separately trained the
backbone network according to the resolution range.

4. Experiments

In the experiments, we utilized the pre-trained VGGNet [36] and ResNet [37] archi-
tectures that were trained using the 2012 ImageNet for the transfer learning. In [17], the
authors tested ResNet with different numbers of layers, from 18 to 152, and found that
the accuracy did not improve with an increase in the number of layers. Thus, we adopted
VGG-19 and Resnet-50 as the backbone networks for the experiments. The accuracy and
F1-score were used as the metrics to measure the performance of the different classification
methods with 5-fold cross-validation. In each fold, we chose 80% of the images from each
category for training and 20% for testing.

For the parameter settings, the learning rate was set to 0.001, the batch size was 64 and
the number of epochs was 1000. Adagrad [41] was used as the optimizer and the model
performance for the testing set was evaluated every 10 epochs. To avoid overfitting [42],
we introduced an early stop function to stop training when the performance of the model
was no longer improving. The model performance was evaluated using the testing set
every five epochs. The training process stopped when the accuracy of the testing set did
not increase within 50 epochs.

4.1. Results and Analysis

In this section, we first present the performance results of the proposed multi-scale
classifier. The number of branches was set to two. Following the selector addition and
deblurring processes, the samples were transferred to the corresponding branch network,
according to their resolution. The backbone networks of the two branches were the same.
The resolution ranges of the two branches were 0–280 and 281–650. Their normalized
resolutions were then set to 224 × 224 and 448 × 448, respectively. Table 4 shows the
number of samples in the different categories of these two branches. Since the number of
samples in the different categories of our dataset was imbalanced, we used the undersample
approach to solve this problem. Specifically, the number of Artemisia samples in Branch 1,
Chenopodiaceae samples in Branch 2 and Cupressaceae samples in Branch 2 were relatively
large. In order to eliminate the impact of this data imbalance on the classifier, we randomly
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picked 400 Artemisia samples for Branch 1 and 300 Chenopodiaceae and Cupressaceae
samples for Branch 2 (see Table 4).

Table 4. The experimental statistics of each branch.

Category Branch 1 Branch 2

Artemisia 400 119
Chenopodiaceae 103 300

Cupressaceae 396 300
Poaceae 37 87

Moraceae 193 86
Pinaceae 347 243

Salix 118 47

We used five metrics to evaluate the performance of the multi-scale classifier with the
VGG-19 and Resnet-50 backbones: precision, recall (or true positive rate, TPR), specificity
(or true negative rate, TNR), F1-score and accuracy. Out of these metrics, F1-score and
accuracy were selected as the primary criteria. In the proposed multi-scale classifier, we
adopted a selector to pick out the images with low resolutions and then transfer them to the
deblurring process. The whole process was named “Multi-Scale + Selector + Deblur”. The
classification results for the VGG-19 and Resnet-50 backbones are shown in Tables 5 and 6,
respectively. The classification results include the precision, recall, specificity and F1-score
for each pollen category, the average F1-score and the total accuracy. From the tables, it
can be seen that the total accuracy of the multi-scale classifier was 0.977 with the Resnet-
50 backbone. It also yielded an average F1-score of 0.966 using our proposed dataset.
Meanwhile, the multi-scale classifier with the VGG-19 backbone achieved a total accuracy
of 0.968 and an average F1-score of 0.949.

Table 5. The classification results for the multi-scale classifier with the VGG-19 backbone.

Category Precision Recall Specificity F1-Score Accuracy

Artemisia 0.928 0.990 0.982 0.958 /
Chenopodiaceae 0.975 0.975 0.996 0.975 /

Cupressaceae 0.993 1.000 0.998 0.996 /
Poaceae 0.957 0.880 0.998 0.917 /

Moraceae 1.000 0.929 1.000 0.963 /
Pinaceae 0.983 0.983 0.995 0.983 /

Salix 0.871 0.818 0.992 0.844 /
Total / / / 0.949 0.968

Table 6. The classification results for the multi-scale classifier with the Resnet-50 backbone.

Category Precision Recall Specificity F1-Score Accuracy

Artemisia 0.971 0.981 0.993 0.976 /
Chenopodiaceae 0.988 0.988 0.998 0.988 /

Cupressaceae 0.986 1.000 0.995 0.992 /
Poaceae 1.000 0.920 1.000 0.958 /

Moraceae 0.964 0.964 0.996 0.964 /
Pinaceae 0.983 0.992 0.995 0.987 /

Salix 0.935 0.879 0.996 0.906 /
Total / / / 0.966 0.977

Figure 8 shows the confusion matrices of the proposed method, based on the VGG-19
and Resnet-50 backbones. It can be seen that the performance of the Resnet-50 backbone in
each category was better overall than the performance of the VGG-19 backbone.
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Figure 8. The confusion matrices for the “Multi-Scale + Selector + Deblur” process with the VGG-19
and Resnet-50 backbones: (a) the confusion matrix of the multi-scale classifier with the VGG-19
backbone; (b) the confusion matrix of the multi-scale classifier with the Resnet-50 backbone. The
lighter blue colors represent lower values and darker blue colors represent higher values. The
columns represent the true pollen labels while the rows represent the predicted labels that were
classified by the multi-scale classifier.

4.2. Ablation Study

In this paper, we mainly used our deblurring pipeline and multi-scale classifier for
the automatic pollen grain classification task. In order to demonstrate the effectiveness of
each aspect clearly, we conducted ablation experiments to illustrate the contributions of
each process.

To verify the effectiveness of the deblurring pipeline, we tested the classification
performance of the deblurring pipeline using single-scale classifiers. Results were recorded
for the “Single-Scale” and “Single-Scale + Deblur” processes. “Single-Scale” means that a
single-scale classifier was used, which was based on the VGG-19 or ResNet-50 backbones,
and “Single-Scale + Deblur” represents the single-scale classifier being used with the
deblurring pipeline. The image resolutions of the results from the two processes are shown
in Figure 9a,b. Thus, we set the normalized resolution to 112 × 112 for the "Single-Scale”
process. For “Single-Scale + Deblur”, all of the images in our proposed dataset were
deblurred using SRGAN and the normalized resolution was set to 448 × 448.

To verify the effectiveness of our multi-scale classifier, we compared the results from
the “Single-Scale + Selector + Deblur” and “Multi-Scale + Selector + Deblur” processes.
The normalized resolution was set to 336 × 336 for the single-scale classifier, while the
settings for the multi-scale classifier were those that were introduced in Section 4.1. All
of the samples in our proposed dataset were processed using our selector addition and
deblurring pipeline, the resolution range of which is shown in Figure 9c. It can be seen that
the image resolutions in Figure 9a were concentrated under 100 × 100 and that the image
resolutions in Figure 9b were concentrated under 400 × 400. Meanwhile, the resolution
distribution of samples in the two classifiers was consistent. However, the resolution
distribution in Figure 9c could be divided into two resolution ranges, with each range
covering the samples of all of the pollen categories, which was more suitable for training
the multi-scale classifier. The samples in Figure 9c not only had a higher image quality but
could also ensure the feature learning of all of the categories in each branch.
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Figure 9. The boxplots of the image size/resolution of the samples in the seven categories of the
ablation experiments: (a) “Single-Scale”; (b) “Single-Scale + Deblur”; (c) “Single-Scale + Selector +
Deblur” and “Multi-Scale + Selector + Deblur”.

Table 7 shows the classification results from the four cases, with the two groups
of ablation experiments for each of the VGG-19 and Resnet-50 backbones. In the first
group of ablation experiments, it was obvious that the accuracy and F1-score of the
“Single-Scale + Deblur” process was higher than that of the “Single-Scale” process. The
“Single-Scale + Deblur” process with the Resnet-50 backbone achieved an accuracy of
0.962 and an F1-score of 0.941, which proved that using SRGAN to deblur images was
effective for improving the classification performance. Secondly, the performance of the
multi-scale classifier was generally better than that of the single-scale classifier. The highest
accuracy was 0.977, which was achieved using the two-branch multi-scale classifier with
the Resnet-50 backbone. The F1-score for this process was 0.966, which proved that the
multi-scale classification structure was effective for improving the performance of pollen
image classification.
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Table 7. The classification results from the four cases: the two groups of ablation experiments for
each of the VGG-19 and Resnet-50 backbones.

No. Method Backbone Selector DeblurringMulti-Scale Classifier F1-Score Accuracy

1 Single-Scale VGG-19 % % % 0.901 0.934
2 Single-Scale Resnet-50 % % % 0.910 0.940
3 Single-Scale + Deblur VGG-19 % ! % 0.927 0.950
4 Single-Scale + Deblur Resnet-50 % ! % 0.941 0.962
5 Single-Scale + Selector + Deblur VGG-19 ! ! % 0.928 0.952
6 Single-Scale + Selector + Deblur Resnet-50 ! ! % 0.935 0.957
7 Multi-Scale + Selector + Deblur VGG-19 ! ! ! 0.949 0.968
8 Multi-Scale + Selector + Deblur Resnet-50 ! ! ! 0.966 0.977

5. Conclusions and Future Works

In this paper, we constructed a large-scale, high-quality pollen image dataset for the
automatic pollen grain classification task in the Beijing area. We utilized the color extraction
method to locate pollen grains in scanning images, which reduced the required human
resources. Moreover, we designed a deblurring pipeline to enhance the image quality by
learning semantic features. We also proposed an easy-to-implement and efficient multi-scale
classifier because of the large resolution range of the training dataset. We also investigated
the performance of our classifier for the pollen grain classification task and proved its
excellent performance. The proposed work could be of great significance for pollen grain
classification research in the Beijing area and could have important enlightening significance
in the quest to improve the image quality and classification performance of self-collected
pollen grain datasets.

In future studies, we aim to extend the number of categories and samples in our
dataset for Beijing area. In the process of image cropping during the data pre-processing,
we could not ensure that a pollen grain would not be split between two or more images,
so we plan to use object detection algorithms to locate the pollen grains in the scanning
images to reduce the loss of pollen samples during pre-processing. In terms of experiments,
we aim to introduce weighted averages to improve the elimination of data imbalances. We
also hope to improve the training efficiency of the classifier by reducing the parameters of
the classifier model.
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